<u>Special Cases of Source</u> and Load Impedance

Let's look at **specific cases** of Z_g and Z_L , and determine how they affect V_0^+ and P_{abs} .

$$Z_g = Z_0$$

For this case, we find that V_0^+ simplifies greatly:

$$V_0^+ = V_g e^{-j\beta\ell} \frac{Z_0}{Z_0 (1 + \Gamma_{in}) + Z_g (1 - \Gamma_{in})}$$
$$= V_g e^{-j\beta\ell} \frac{Z_0}{Z_0 (1 + \Gamma_{in}) + Z_0 (1 - \Gamma_{in})}$$
$$= V_g e^{-j\beta\ell} \frac{1}{1 + \Gamma_{in} + 1 - \Gamma_{in}}$$
$$= \frac{1}{2} V_g e^{-j\beta\ell}$$

Look at what this says!

It says that the incident wave in this case is **independent** of the load attached at the other end!

Thus, for the **one** case $Z_g = Z_0$, we in fact can consider $V^+(z)$ as being the source wave, and then the reflected wave $V^-(z)$ as being the result of this stimulus.

Remember, the complex value V_0^+ is the value of the incident wave evaluated at the end of the transmission line $(V_0^+ = V^+ (z = 0))$. We can likewise determine the value of the incident wave at the **beginning** of the transmission line (i.e., $V^+ (z = -\ell)$). For this case, where $Z_g = Z_0$, we find that this value can be very simply stated (!):

$$V^{+}(z = -\ell) = V_{0}^{+} e^{-j\beta(z = -\ell)}$$
$$= \left(\frac{1}{2} V_{g} e^{-j\beta\ell}\right) e^{+j\beta\ell}$$
$$= \frac{V_{g}}{2}$$

Likewise, we find that the delivered power for this case can be simply stated as:

$$P_{abs} = \frac{|V_0^+|^2}{2 Z_0} (1 - |\Gamma_L|^2)$$
$$= \frac{|V_g|^2}{8 Z_0} (1 - |\Gamma_L|^2)$$

$$Z_L = Z_0$$

In this case, we find that $\Gamma_L = 0$, and thus $\Gamma_{in} = 0$. As a result:

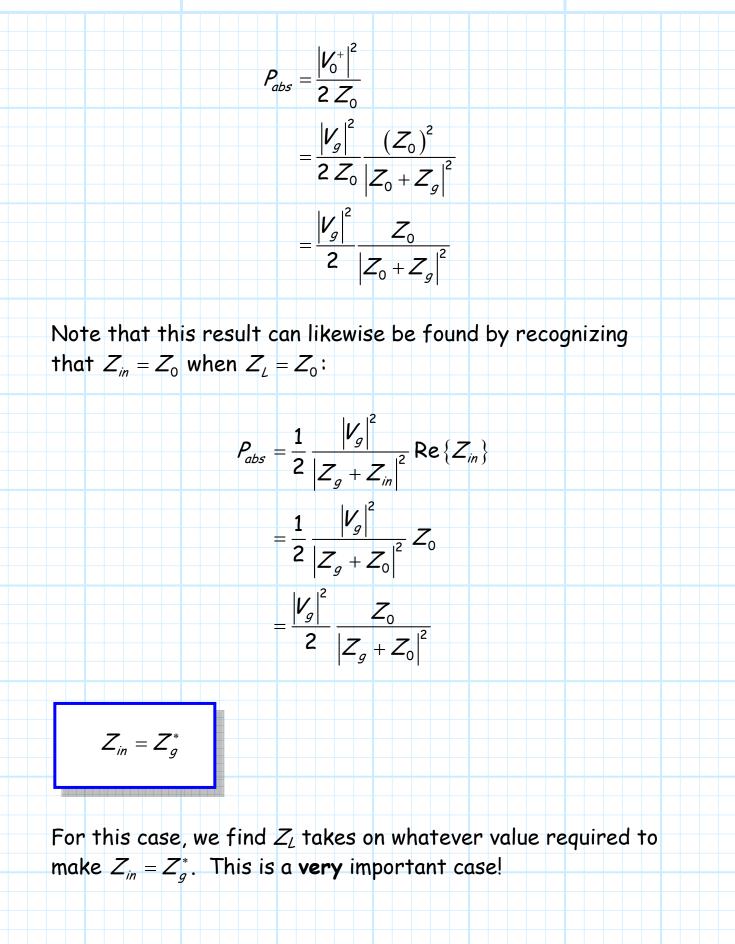
$$V_0^+ = V_g e^{-j\beta\ell} \frac{Z_0}{Z_0 (1 + \Gamma_{in}) + Z_g (1 - \Gamma_{in})}$$
$$= V_g e^{-j\beta\ell} \frac{Z_0}{Z_0 + Z_g}$$

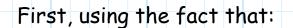
Likewise, we find that:

$$P_{abs} = \frac{|V_0^+|^2}{2Z_0} \left(1 - |\Gamma_L|^2\right) = \frac{|V_0^+|^2}{2Z_0}$$

Here the delivered power P_{abs} is simply that of the incident wave (P^+), as the matched condition causes the reflected power to be zero ($P^- = 0$)!

Inserting the value of V_0^+ , we find:



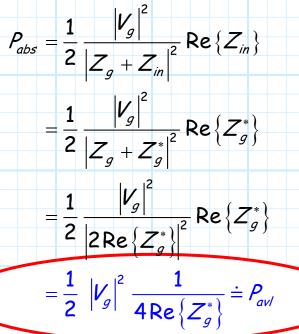


$$\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} = \frac{Z_g^* - Z_0}{Z_g^* + Z_0}$$

We can show that (trust me!):

$$V_0^+ = V_g e^{-j\beta\ell} \frac{Z_g^* + Z_0}{4\operatorname{Re}\left\{Z_g\right\}}$$

Not a particularly interesting result, but let's look at the absorbed power.



Although this result does not look particularly interesting **either**, we find the result is **very** important!

It can be shown that—for a given V_g and Z_g —the value of input impedance Z_{in} that will absorb the largest possible amount of power is the value $Z_{in} = Z_g^*$.

This case is known as the **conjugate match**, and is essentially the goal of every transmission line problem—to deliver the largest possible power to Z_{in} , and thus to Z_L as well!

This maximum delivered power is known as the **available** power (P_{avl}) of the source.

There are **two** very important things to understand about this result!

Zin

 $\mathbf{Z} = -\ell$

 Z_{g}

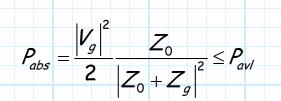
Consider again the terminated transmission line:

 Z_0

Recall that if $Z_{L} = Z_{0}$, the **reflected** wave will be **zero**, and the absorbed power will be:

 V_q

 Z_{L}



But note if $Z_{L} = Z_{0}$, the input impedance $Z_{in} = Z_{0}$ —but then $Z_{in} \neq Z_{g}^{*}$ (generally)! In other words, $Z_{L} = Z_{0}$ does **not** (generally) result in a **conjugate match**, and thus setting $Z_{L} = Z_{0}$ does **not** result in maximum power absorption!

Q: Huh!? This makes **no** sense! A load value of $Z_L = Z_0$ will **minimize** the reflected wave ($P^- = 0$)—**all** of the incident power will be absorbed.

Any other value of $Z_L = Z_0$ will result in **some** of the incident wave being reflected—how in the world could this **increase** absorbed power?

After all, just look at the expression for absorbed power:

$$P_{abs} = \frac{|V_0^+|^2}{2Z_0} (1 - |\Gamma_L|^2)$$

Clearly, this value is maximized when $\Gamma_L = 0$ (i.e., when $Z_L = Z_0$)!!!

A: You are forgetting one very important fact! Although it is true that the load impedance Z_{L} affects the **reflected** wave power P^{-} , the value of Z_{L} —as we have shown in this handout **likewise** helps determine the value of the **incident** wave (i.e., the value of P^{+}) as well.

- * Thus, the value of Z_L that minimizes P⁻ will not generally maximize P⁺!
- * Likewise the value of Z_L that maximizes P^+ will not generally minimize P^- .
- * Instead, the value of Z_L that maximizes the **absorbed** power P_{abs} is, by definition, the value that maximizes the **difference** $P^+ - P^-$.

We find that this impedance Z_{L} is the value that results in the **ideal** case of $Z_{in} = Z_{g}^{*}$.

Q: Yes, but what about the case where $Z_g = Z_0$? For that case, we determined that the incident wave **is** independent of Z_L . Thus, it would seem that at least for that case, the **delivered** power would be maximized when the **reflected** power was minimized (i.e., $Z_L = Z_0$).

A: True! But think about what the input impedance would be in that case— $Z_{in} = Z_0$. Oh by the way, that provides a conjugate match $(Z_{in} = Z_0 = Z_g^*)!$ Thus, in some ways, the case $Z_g = Z_0 = Z_L$ (i.e., **both** source and load impedances are numerically equal to Z_0) is **ideal**. A

conjugate match occurs, the incident wave is independent of Z_L , there is no reflected wave, and all the math simplifies quite nicely:

$$V_0^+ = \frac{1}{2} V_g e^{-j\beta\ell}$$
 $P_{abs} = P_{avl} = \frac{|V_g|^2}{8 Z_0}$

Very Important Thing #2

Note the conjugate match criteria says:

Given source impedance Z_g , maximum power transfer occurs when the input impedance is set at value $Z_{in} = Z_g^*$.

It does **NOT** say:

Given input impedance Z_{in} , maximum power transfer occurs when the source impedance is set at value $Z_g = Z_{in}^*$.

This last statement is in fact false!

A factual statement is this:

Given input impedance Z_{in} , maximum power transfer occurs when the source impedance is set at value $Z_g = 0 - jX_{in}$ (i.e., $R_g = 0$).

Q: Huh??

A: Remember, the value of source impedance Z_g affects the available power P_{avl} of the source. To maximize P_{avl} , the real (resistive) component of the source impedance should be as small as possible (regardless of Z_{in} !), a fact that is evident when observing the expression for available power:

$$P_{avl} = \frac{1}{2} |V_g|^2 \frac{1}{4 \operatorname{Re} \{Z_g^*\}} = \frac{|V_g|}{8R_g}$$

Thus, maximizing the power delivered to a load (P_{abs}), from a source, has two components:

1. Maximize the **power available** (P_{avl}) from a source (e.g., minimize R_g).

2. Extract all of this available power by setting the input impedance Z_{in} to a value $Z_{in} = Z_g^*$ (thus $P_{abs} = P_{avl}$).