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Special Values of Load Impedance 
 
It’s interesting to note that the load ZL enforces a boundary condition that explicitly 
determines neither  V z  nor  I z —but completely specifies line impedance  Z z ! 
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Likewise, the load boundary condition leaves  V z  and  V z  undetermined, but 
completely determines reflection coefficient function  zG ! 
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Let’s look at some specific 
values of load impedance 

L L LZ R j X   and see what 
functions  Z z  and  zG  
result!   
 
We assume that the load is 
located at 0z   
( 0L G G ). 
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  The matched case 
 
In this case 0LZ Z —the load impedance is numerically equal to the characteristic 
impedance of the transmission line.   Assuming the line is lossless, then Z0 is real, and 
thus: 

0LR Z       and       0LX   
 
It is evident that the resulting load reflection coefficient is zero: 
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As  a result, we find that the reflected wave is zero, as is the reflection coefficient 
function: 

  0
jβzV z V e               0V z                 0z G  

 
Thus, the total voltage and current along the transmission line is simply voltage and 
current of the incident wave, and the line impedance is simply 0Z  at all z : 
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Power flow in the matched condition 
 
Note from these results we can conclude that out boundary conditions are satisfied: 
 

   0 00 and 0 0LZ z Z Z z     G G   !!! 
 

Note that since 0L G , this is a case where the reflected power is zero, and all the 
incident power is absorbed by the load: 

 
 

 
 
 
 
Q: Is there any other load for which this is true? 
 
A:  Nope, 0LZ Z  is the only one! 
 

 
We call this condition (when 0LZ Z ) the matched condition, and the 
load 0LZ Z  a matched load. 

 

 
0LZ Z  

abs incP P  

Pinc 0refP   
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A short-circuit load 
 
A device with no impedance ( 0LZ  ) is called a short circuit!  I.E.: 
 

0LR      and     0LX   
 
 
In this case, the voltage across the load—and thus the voltage at the end of the 
transmission line—is zero: 
 

0L L LV Z I          and        0 0V z    
 

 
Note that this does not mean that the current is zero! 
 

 0 0LI I z    
 

 
For a short, the resulting load reflection coefficient is therefore: 
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A reactive result! 
  
As a result, the reflected wave is equal in magnitude to the incident wave.  The 
reflection coefficient function thus has a magnitude of 1! 
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The reflected wave is just as big as the incident wave! 
 
The total voltage and current along a shorted transmission line take an interesting 
form: 
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Meaning that the line impedance can likewise be written in terms of a trigonometric 
function: 

   
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Note that this impedance is purely reactive! 
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Boundary conditions are confirmed 
 
From these results we can conclude that out boundary conditions are satisfied: 
 

    00 tan 0 0Z z j Z     
 
Just as we expected—a short circuit! 
 
This is likewise confirmed by evaluating the voltage and current at the end of the line 
(i.e., Lz 0z   ): 
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As expected, the voltage is zero at the end of the transmission line (i.e. the voltage 
across the short).   
 
Also, the current at the end of the line (i.e., the current through the short) is at a 
maximum!  Additionally, the reflection coefficient at the load is: 
 

   2 00 1j β jπ
Lz e e      G G  

 
Again confirming that the boundary conditions are satisfied! 
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A short cannot absorb energy 
 
Finally, let’s determine the power flow associated with this short-circuit load.  
 
Since 1L G , this is a case where the absorbed power is zero, and all the incident 
power is  reflected by the load: 
 
 

0 andabs ref incP P P   
 

 
 
 
 
 
 
 
 
 
 
 
 

 
1L   

0absP   

Pinc increfP P  
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An open-circuit load 
 
A device with infinite impedance ( LZ  )  is called an open circuit!  I.E.: 
 

LR       and/or     LX    
 
In this case, the current through the load—and thus the current at the end of the 
transmission line—is zero: 
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L

L

VI
Z

          and         0LI z z   

 
Note that this does not mean that the voltage is zero! 
 

  0L LV V z z    
 
For an open, the resulting load reflection coefficient is: 
 

00

0

lim lim 1
L L

jL L
L Z Z

L L

Z Z Z e
Z Z Z 


   


G  

 



 

1/27/2012 Special Values of Load Impedance present 9/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A reactive result! 
  
As a result, the reflected wave is equal in magnitude to the incident wave. The 
reflection coefficient function thus has a magnitude of 1! 
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The reflected wave is just as big as the incident wave! 

 
The total voltage and current along the transmission line is simply (assuming Lz 0 ): 
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Meaning that the line impedance can likewise be written in terms of trigonometric 
function: 

   
   0 cot

V z
Z z j Z βz
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Again note that this impedance is purely reactive—V(z) and I(z) are again 90  out of 
phase! 
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Boundary conditions are confirmed 
 

Note from these results we can conclude that out boundary conditions are satisfied: 
 

    00 cot 0Z z j Z     
 
Just as we expected—an open circuit! 
 
This is likewise confirmed by evaluating the voltage and current at the end of the line 
(i.e., 0Lz z  ): 
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As expected, the current is zero at the end of the transmission line (i.e. the current 
through the open).  Likewise, the voltage at the end of the line (i.e., the voltage across 
the open) is at a maximum! 
 
Additionally, the reflection coefficient at the load is: 
 

   2 0 00 1j β j
Lz e e    G G  

 
Again confirming that the boundary conditions are satisfied! 
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An open cannot absorb energy 
 
Finally, let’s determine the power flow associated with this open circuit load.   
 
Since Γ 1L  , this is again a case where the absorbed power is zero, and all the 
incident power is  reflected by the load: 
 
 

0 andabs ref incP P P   
 

 
 
 
 
 
 
 
 
 
 
 

1L 
 

0absP   

Pinc increfP P  
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A purely reactive load 
 
For this case, the load impedance is purely reactive L LZ j X  (e.g. a capacitor of 
inductor), and thus the resistive portion is zero: 
 

0LR   
 
Thus, both the current through the load, and voltage across the load, are non-zero:  
 

  0L LI I z z                       0L LV V z z    
 

The resulting load reflection coefficient is: 
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Given that Z0 is real (i.e., the line is lossless), we find that this load reflection 
coefficient is a complex number.   
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V+, V- and  
 

However, we find that the magnitude of this (reactive) load reflection coefficient is: 
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Its magnitude is one!  
 
Thus, we find that for reactive loads, the reflection coefficient can be simply 
expressed as: 

Γjθ
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 We can therefore conclude that Γ

0 0
jθV e V  , and so for a reactive load, : 
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The reflected wave is again just as big as the incident wave! 
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I, V, and Z 
 
The total voltage and current along the transmission line are complex (assuming 

0Lz  ): 
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Meaning that the line impedance can again be written in terms of trigonometric 
function: 
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Again note that this impedance is purely reactive—V(z) and I(z) are once again 90  
out of phase! 
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Boundary Conditions! 
 
Note at the end of the line (i.e., 0Lz z  ), we find that 
 

       0
0 Γ Γ

0

2
0 2 cos 2 0 sin 2

VV z V θ I z j θ
Z


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As expected, neither the current nor voltage at the end of the line is zero.  
 
We also note that the line impedance at the end of the transmission line is: 
 

   0 Γ0 cot 2Z z j Z θ   
 

With a little trigonometry, we can show (trust me!) that: 
 

 Γ
0

cot 2 LXθ
Z

  

and therefore: 
 

   0 Γ0 cot 2 L LZ z j Z θ j X Z     
 
Just as we expected! 
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Déjà vu All Over Again  
 
Q:  Gee, a reactive load leads to results very similar to that of an open or short 
circuit.  Is this just coincidence? 
 
A:  Hardly!  An open and short are in fact reactive loads—they cannot absorb power 
(think about this!). 
 

Specifically, for an open, we find Γ 0θ  , so that:            Γ 1jθ
L e G  

 
Likewise, for a short, we find that Γθ π , so that:          Γ 1jθ

L e  G  
 
The power flow associated with a reactive load is the same as for an 
open or short.  
 
Since 1L G , it is again a case where the absorbed power is zero, and all 
the incident power is  reflected by the load: 
 

 
 

 

 

 
1L   

0absP   

Pinc increfP P  
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Resistive Load 
 
For this case L LZ R , so the load impedance is purely real (e.g. a resistor), meaning its 
reactive portion is zero: 

0LX   
 
 
The resulting load reflection coefficient is: 
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Given that Z0 is real (i.e., the line is lossless), we find that this load reflection 
coefficient must be a purely real value!   
 
In other words: 
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Phase difference is either 0 or  
 
The magnitude is thus: 

0

0
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R Z
R Z




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whereas the phase Γθ  can take on one of two values: 
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For this case, the impedance at the end of the line must be real (  L LZ z z R  ).   
 
Thus, the current and the voltage at this point are precisely in phase, or precisely 180 
degrees out of phase! 
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The load is real; why isn’t the line impedance? 
 
However, even though the load impedance is real, the line impedance at all other 
points on the line is generally complex! 
 
Moreover, the general current and voltage expressions, as well as reflection 
coefficient function, cannot be further simplified for the case where L LZ R . 
 
Q:  Why is that?   
 
When the load was purely imaginary (reactive), we where able to simply our general 
expressions, and likewise deduce all sorts of interesting results! 
 
A:  True! And here’s why.   
 
Remember, a lossless transmission line has series inductance and shunt capacitance 
only.   
 
In other words, a length of lossless transmission line is a purely reactive device (it 
absorbs no energy!). 
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Remember, a lossless line is purely reactive! 
 
 
 

* If we attach a purely reactive load at the end of the transmission line, we still 
have a completely reactive system (load and transmission line).  

 
* Because this system has no resistive (i.e., real) component, the general 

expressions for line impedance, line voltage, etc. can be significantly simplified. 
 

* However, if we attach a purely real load to our reactive transmission line, we now 
have a complex system, with both real and imaginary (i.e., resistive and reactive) 
components.   

 
* This complex case is exactly what our general expressions already describes—no 

further simplification is possible! 
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The “General” Load  
 

Now, let’s look at the general case L L LZ R jX  , where the load 
has both a real (resistive) and imaginary (reactive) component. 
 
Q:  Haven’t we already determined all the general expressions 
(e.g.,        , , , ,L V z I z Z z zG G ) for this general case?   
 
Is there anything else left to be determined? 
 
A: There is one last thing we need to discuss.   
 
It seems trivial, but its ramifications are very important! 
 
For you see, the “general” case is not, in reality, quite so general.   
 
Although the reactive component of the load can be either positive or negative 
( LX    ), the resistive component of a passive load must be positive ( 0LR  )—
there’s no such thing as a (passive) negative resistor! 
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Complex arithmetic—is there anything funer? 
 
This leads to one very important and very useful result.   
 
Consider the load reflection coefficient: 
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Now let’s look at the magnitude of this value: 
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A passive load? Then ||<1! 
 
It is apparent that since both LR  and 0Z  are positive, the numerator of the above 
expression must be less than (or equal to) the denominator of the above expression. 
 

 In other words, the magnitude of the load reflection coefficient is always less 
than or equal to one! 
 
 

 
1L G     (for 0LR  ) 

 
 
 
Moreover, we find that this means the reflection coefficient function likewise always 
has a magnitude less than or equal to one, for all values of position z. 
 

  1z G     (for all  z) 
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A passive load? Then the reflected wave will 
always be less than the incident! 

 
 
Which means, of course, that the reflected wave will always have a magnitude less 
than that of the incident wave magnitude: 
 
 
 
 

   V z V z           (for all  z) 

 
 

 
 
Recall this result is consistent with conservation of energy—the reflected wave from 
a passive load cannot be larger than the wave incident on it. 




