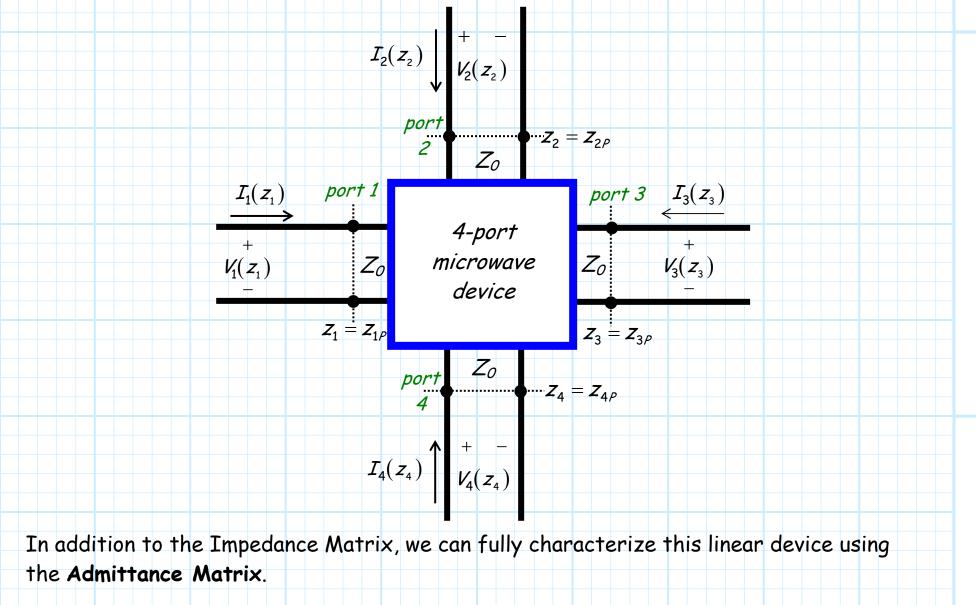
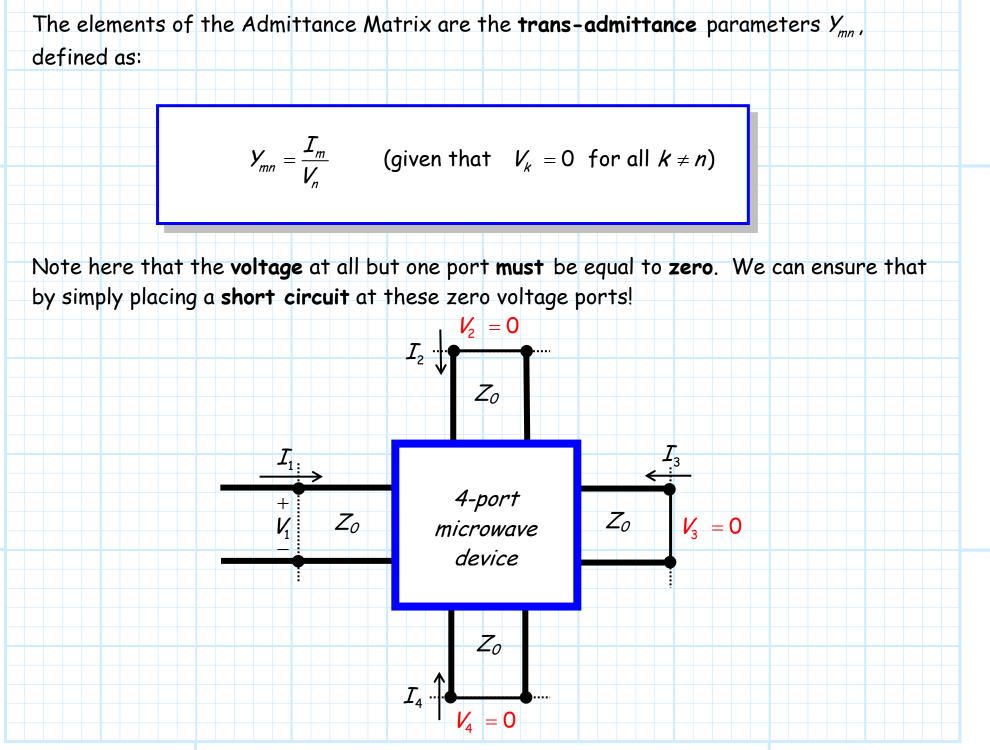
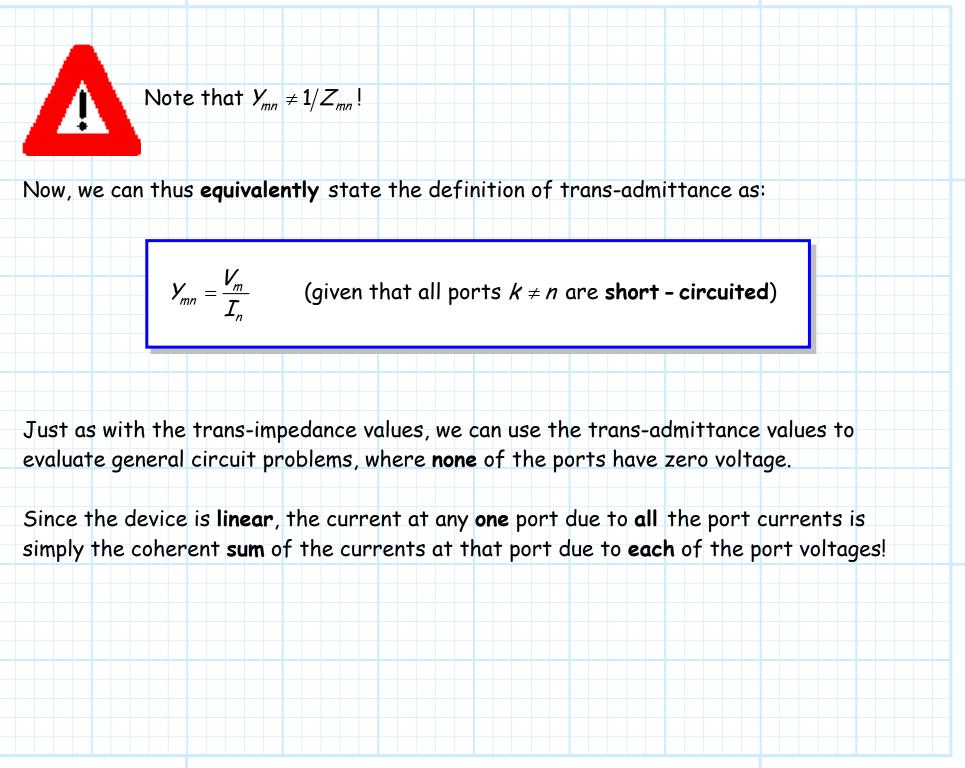
The Admittance Matrix

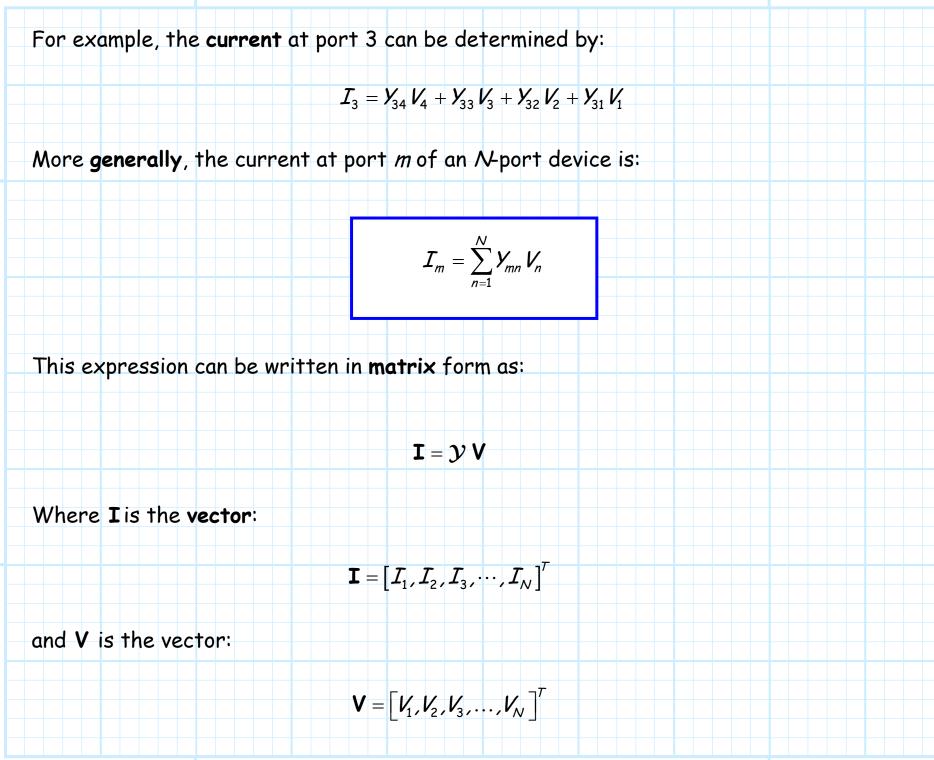
Consider again the **4-port** microwave device shown below:

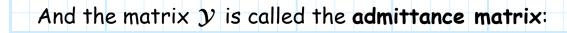


Jim Stiles









$$\boldsymbol{\mathcal{Y}} = \begin{bmatrix} \boldsymbol{\mathcal{Y}}_{11} & \dots & \boldsymbol{\mathcal{Y}}_{1n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\mathcal{Y}}_{m1} & \dots & \boldsymbol{\mathcal{Y}}_{mn} \end{bmatrix}$$

The admittance matrix is a N by N matrix that **completely characterizes** a linear, N-port device. Effectively, the admittance matrix describes a multi-port device the way that Y_L describes a single-port device (e.g., a load)!

But **beware**! The values of the admittance matrix for a particular device or network, just like Y_L , are **frequency dependent**! Thus, it may be more instructive to **explicitly** write:

$$\boldsymbol{\mathcal{Y}}(\boldsymbol{\omega}) = \begin{bmatrix} \boldsymbol{\mathcal{Y}}_{11}(\boldsymbol{\omega}) & \dots & \boldsymbol{\mathcal{Y}}_{1n}(\boldsymbol{\omega}) \\ \vdots & \ddots & \vdots \\ \boldsymbol{\mathcal{Y}}_{m1}(\boldsymbol{\omega}) & \dots & \boldsymbol{\mathcal{Y}}_{mn}(\boldsymbol{\omega}) \end{bmatrix}$$

6/6

A: I don't know! Le	t's see if we can figure it out.
Recall that we can	determine the inverse of a matrix. Denoting the matrix inverse of the
admittance matrix	
	$\mathbf{I} = \mathcal{Y} \mathbf{V}$
	$\mathcal{Y}^{-1} \mathbf{I} = \mathcal{Y}^{-1} \left(\mathcal{Y} \mathbf{V} \right)$
	$\mathcal{Y}^{-1} \mathbf{I} = (\mathcal{Y}^{-1} \mathcal{Y}) \mathbf{V}$
	$\mathcal{Y}^{-1} \mathbf{I} = \mathbf{V}$
Meaning that:	
	$\mathbf{V} = \mathcal{Y}^{-1} \mathbf{I}$
But, we likewise kno	
	V = Z I
By comparing the t	wo previous expressions, we can conclude:
by comparing men	