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The Binomial Multi-
Section Transformer 

 
Recall that a multi-section matching network can be 
described using the theory of small reflections as: 
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where: 
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p
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Note that for a multi-section transformer, we have N  
degrees of design freedom, corresponding to the N 
characteristic impedance values nZ . 
 
Q:  What should the values of nΓ  (i.e., nZ ) be? 
 
A:  We need to define N independent design equations, which 
we can then use to solve for the N values of characteristic 
impedance nZ . 
 
First, we start with a single design frequency 0ω , where we 
wish to achieve a perfect match: 
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( )0 0in ω ωΓ = =  
 
That’s just one design equation: we need N -1 more! 
 
These addition equations can be selected using many 
criteria—one such criterion is to make the function ( )in ωΓ  
maximally flat at the point 0ω ω= . 
 
To accomplish this, we first consider the Binomial Function: 
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This function has the desirable properties that: 
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and that: 
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In other words, this Binomial Function is maximally flat at the 
point 2θ π= , where it has a value of ( )2 0θ πΓ = = . 
 
Q:  So? What does this have to do with our multi-section 
matching network? 
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A:  Let’s expand (multiply out the N identical product terms) 
of the Binomial Function: 
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where: 
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Compare this to an N-section transformer function: 

 
( ) 2 4 2

0 1 2
j T j T j N T

in Ne e eω ω ωω − − −Γ = Γ + Γ + Γ + + Γ  
 
and it is obvious the two functions have identical forms, 
provided that: 
 
 

N
n nA CΓ =       and       Tω θ=  

 
 
Moreover, we find that this function is very desirable from 
the standpoint of the a matching network.  Recall that 
( ) 0θΓ =  at 2θ π= --a perfect match! 

 
Additionally, the function is maximally flat at 2θ π= , 
therefore ( ) 0θΓ ≈  over a wide range around 2θ π= --a wide 
bandwidth! 
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Q: But how does 2θ π=  relate to frequency ω? 
 
A: Remember that Tω θ= , so the value 2θ π=  corresponds 
to the frequency: 

0
1

2 2
pv

T
π πω = =  

 
This frequency ( 0ω ) is therefore our design frequency—the 
frequency where we have a perfect match. 
 
Note that the length  has an interesting relationship with 
this frequency: 
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In other words, a Binomial Multi-section matching network 
will have a perfect match at the frequency where the section 
lengths  are a quarter wavelength! 
 
Thus, we have our first design rule: 
 
 

Set section lengths  so that they are a quarter-
wavelength ( 0 4λ ) at the design frequency 0ω . 

 
 

Q: I see! And then we select all the values Zn such that  
N

n nA CΓ = .  But wait! What is the value of A ?? 
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A:  We can determine this value by evaluating a boundary 
condition! 

 
Specifically, we can easily determine the value of ( )ωΓ  at 

0ω = . 
 
 
 
 
 
 
 
Note as ω  approaches zero, the electrical length β  of each 
section will likewise approach zero.  Thus, the input impedance 
Zin  will simply be equal to RL as 0ω → . 
 
As a result, the input reflection coefficient ( )0ωΓ =  must 
be: 
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However, we likewise know that: 
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Equating the two expressions: 
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And therefore: 
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We now have a form to calculate the required marginal 
reflection coefficients nΓ : 
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Of course, we also know that these marginal reflection 
coefficients are physically related to the characteristic 
impedances of each section as: 
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Equating the two and solving, we find that that the section 
characteristic impedances must satisfy: 
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Note this is an iterative result—we determine Z1 from Z0,  Z2 
from Z1, and so forth. 
 

Q:  This result appears to be our second design equation. 
Is there some reason why you didn’t draw a big blue box 
around it? 

 
A: Alas, there is a big problem with this result. 

 
Note that there are N+1 coefficients  nΓ  (i.e., { }0,1, ,n N∈ ) 
in the Binomial series, yet there are only N design degrees of 
freedom (i.e., there are only N  transmission line sections!). 
 
Thus, our design is a bit over constrained, a result that 
manifests itself the finally marginal reflection coefficient 

NΓ . 
 
Note from the iterative solution above, the last transmission 
line impedance NZ  is selected to satisfy the mathematical 
requirement of the penultimate reflection coefficient 1N −Γ  : 
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Thus the last impedance must be: 
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But there is one more mathematical requirement! The last 
marginal reflection coefficient must likewise satisfy: 
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where we have used the fact that 1N

NC = . 
 
But, we just selected NZ  to satisfy the requirement for 

1N −Γ ,—we have no physical design parameter to satisfy this 
last mathematical requirement! 
 
As a result, we find to our great consternation that the last 
requirement is not satisfied: 
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  !!!!!! 

 
Q:  Yikes! Does this mean that the resulting matching network 
will not have the desired Binomial frequency response? 
 
A:  That’s exactly what it means! 
 
Q: You big  #%@#$%&!!!! Why did you waste all my time by 
discussing an over-constrained  design problem that can’t be 
built?  
 
A:  Relax; there is a solution to our dilemma—albeit an 
approximate one. 
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You undoubtedly have previously used the approximation: 
 

1
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An approximation that is especially accurate when y x−  is 

small (i.e., when 1y
x ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, we know that the values of 1nZ +  and nZ  in a multi-section 
matching network are typically very close, such that 

1n nZ Z+ −  is small.   Thus, we use the approximation: 
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Likewise, we can also apply this approximation (although not as 
accurately) to the value of A : 
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So, let’s start over, only this time we’ll use these 
approximations.  First, determine A : 
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        (A can be negative!) 

 
 

Now use this result to calculate the mathematically required 
marginal reflection coefficients nΓ : 
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Of course, we also know that these marginal reflection 
coefficients are physically related to the characteristic 
impedances of each section as: 
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Equating the two and solving, we find that that the section 
characteristic impedances must satisfy: 
 
 

1 2n n nZ Z exp+
⎡ ⎤= Γ⎣ ⎦  

 
 

Now this is our second design rule.  Note it is an iterative 
rule—we determine Z1 from Z0,  Z2 from Z1, and so forth. 
 

Q: Huh? How is this any better?  How does applying 
approximate math lead to a better design result?? 
 
A:  Applying these approximations help resolve our over-
constrained problem.   Recall that the over-constraint 
resulted in: 
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But, as it turns out, these approximations leads to the happy 
situation where: 
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       Sanity check!! 

 
 
provided that the value A is  likewise the approximation given 
above. 
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Effectively, these approximations couple the results, such 
that each value of characteristic impedance nZ  approximately 
satisfies both nΓ  and 1n+Γ . Summarizing: 
 

* If you use the “exact”  design equations to determine 
the characteristic impedances nZ , the last value NΓ  will 
exhibit a significant numeric error, and your design will 
not appear to be maximally flat. 

 
* If you instead use the “approximate” design equations to 
determine the characteristic impedances nZ , all values nΓ  will 
exhibit a slight error, but the resulting design will appear to 
be maximally flat, Binomial reflection coefficient function 
( )ωΓ !

 

Figure 5.15  (p. 250) 
Reflection coefficient magnitude versus frequency for multisection 
binomial matching transformers of Example 5.6 ZL = 50Ω and Z0 = 100Ω. 
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Note that as we increase the number of sections, the 
matching bandwidth increases. 
 

Q:  Can we determine the value of this bandwidth? 
 
A:  Sure!  But we first must define what we mean by 
bandwidth. 

 
As we move from the design (perfect match) frequency f0 the 
value ( )fΓ  will increase.  At some frequency (fm, say) the 
magnitude of the reflection coefficient will increase to some 
unacceptably high value ( mΓ , say).  At that point, we no longer 
consider the device to be matched. 
 
 
 
 
 
 
 
 
 
 
Note there are two values of frequency fm —one value less 
than design frequency f0, and one value greater than design 
frequency f0.  These two values define the bandwidth fΔ  of 
the matching network: 
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Q:  So what is the numerical value of  mΓ ? 
 
A:  I don’t know—it’s up to you to decide! 
 
Every engineer must determine what they consider to be an 
acceptable match (i.e., decide mΓ ).  This decision depends on 
the application involved, and the specifications of the overall 
microwave system being designed. 
 
However, we typically set mΓ  to be 0.2 or less.  
 
Q:  OK, after we have selected mΓ , can we determine the two 
frequencies fm ? 
 
A:  Sure! We just have to do a little algebra. 
 
We start by rewriting the Binomial function: 
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Now, we take the magnitude of this function: 
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Now, we define the values θ  where ( ) mθΓ = Γ  as mθ .  I.E., : 
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We can now solve for mθ  (in radians!) in terms of mΓ : 
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Note that there are two solutions to the above equation (one 
less that 2π  and one greater than 2π )! 
 
Now, we can convert the values of mθ  into specific 
frequencies. 
 
Recall that Tω θ= , therefore: 
 

1 p
m m m

v
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But recall also that 0 4λ= , where 0λ  is the wavelength at 
the design frequency 0f  (not mf !),  and where 0 0pv fλ = . 
 
Thus we can conclude: 
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or: 
( ) ( )0 04 21

2 2
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θ θ

θ
π π π
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where mθ  is expressed in radians.  Therefore: 
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Thus, the bandwidth of the binomial matching network can be 
determined as: 
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Note that this equation can be used to determine the 
bandwidth of a binomial matching network, given mΓ  and 
number of sections N. 
 
However, it can likewise be used to determine the number of 
sections N required to meet a specific bandwidth 
requirement! 
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Finally, we can list the design steps for a binomial matching 
network: 
 

1.  Determine the value N required to meet the 
bandwidth ( fΔ  and mΓ ) requirements. 
 
2. Determine the approximate value A from 0, LZ R  and N. 
 
3.  Determine the marginal reflection coefficients 

N
n nACΓ =  required by the binomial function. 

 
4. Determine the characteristic impedance of each 

section using the iterative approximation: 
 

1 2n n nZ Z exp+
⎡ ⎤= Γ⎣ ⎦  

 
5. Perform the sanity check: 
 

1
2

NL
N N

N

Rln A C
Z

⎛ ⎞
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=  

 
6.  Determine section length 0 4λ=  for design 
frequency f0. 

 


