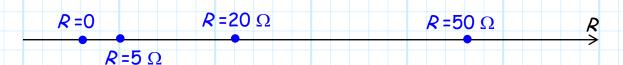
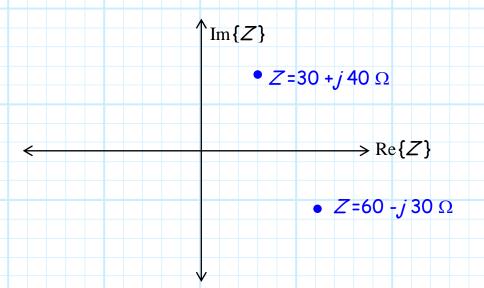
The Complex Γ Plane

Resistance R is a **real** value, thus we can indicate specific resistor values as points on the **real line**:



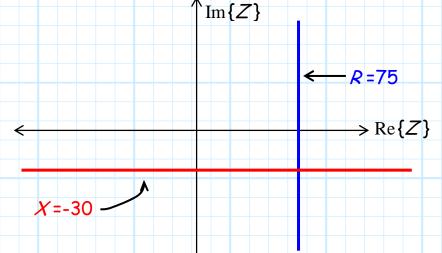
Likewise, since impedance Z is a **complex** value, we can indicate specific impedance values as point on a two dimensional **complex** plane:



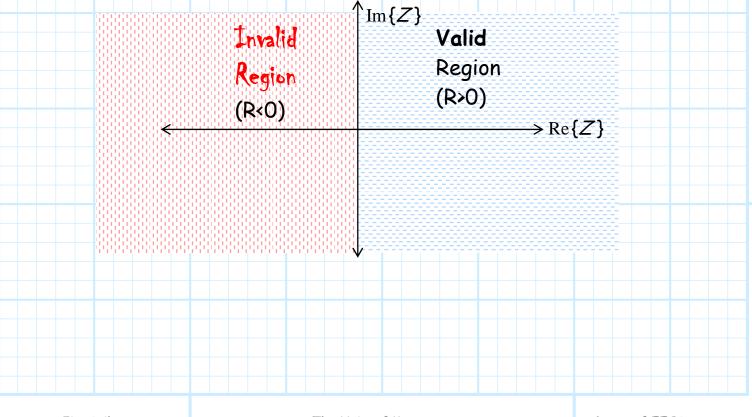
Note each dimension is defined by a single real line: the horizontal line (axis) indicating the real component of Z (i.e., $Re\{Z\}$), and the vertical line (axis) indicating the imaginary component of impedance Z (i.e., $Im\{Z\}$). The intersection of these two lines is the point denoting the impedance Z = 0.

* Note then that a vertical line is formed by the locus of all points (impedances) whose resistive (i.e., real) component is equal to, say, 75.

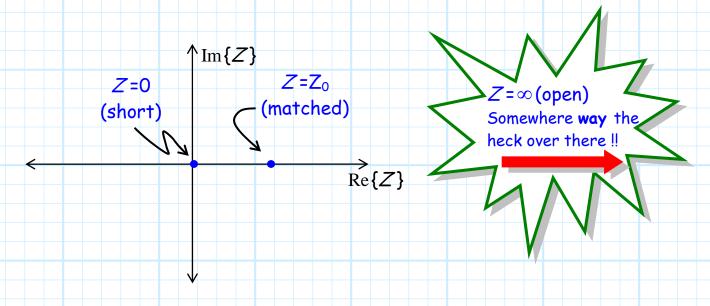
* Likewise, a horizontal line is formed by the locus of all points (impedances) whose reactive (i.e., imaginary) component is equal to -30.



If we assume that the **real** component of **every** impedance is **positive**, then we find that **only the right side** of the plane will be useful for plotting impedance Z—points on the left side indicate impedances with **negative** resistances!



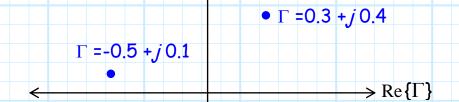
Moreover, we find that common impedances such as $Z = \infty$ (an open circuit!) cannot be plotted, as their points appear an infinite distance from the origin.



Q: Yikes! The complex Z plane does **not** appear to be a very helpful. Is there some graphical tool that **is** more useful?

A: Yes! Recall that impedance Z and reflection coefficient Γ are equivalent complex values—if you know one, you know the other.

We can therefore define a complex Γ plane in the same manner that we defined a complex impedance plane. We will find that there are many advantages to plotting on the complex Γ plane, as opposed to the complex Z plane!

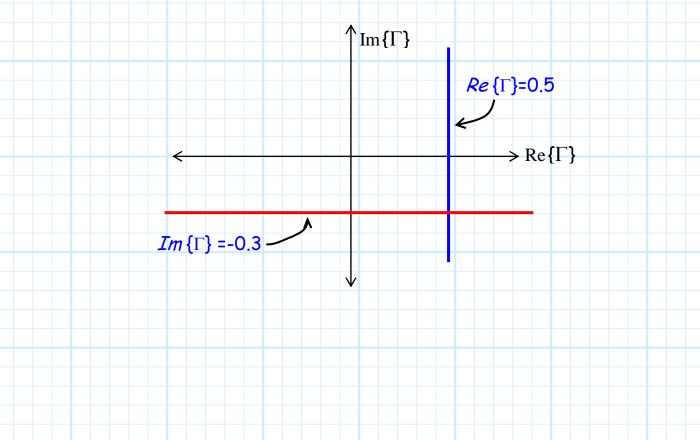


• $\Gamma = 0.6 - j 0.3$

 $\int \operatorname{Im}\{\Gamma\}$

Note that the **horizontal** axis indicates the **real** component of Γ (Re{ Γ }), while the **vertical** axis indicates the **imaginary** component of Γ (Im{ Γ }).

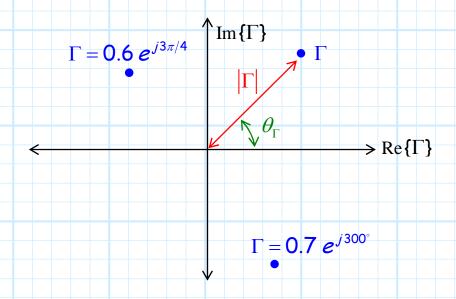
We could plot points and lines on this plane exactly as before:



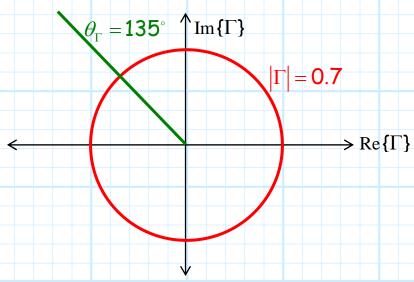
However, we will find that the utility of the complex Γ pane as a graphical tool becomes apparent **only** when we represent a **complex** reflection coefficient in terms of its **magnitude** ($|\Gamma|$) and **phase** (θ_{Γ}):

$$\Gamma = |\Gamma| e^{j\theta_{\Gamma}}$$

In other words, we express Γ using polar coordinates:



Note then that a **circle** is formed by the locus of all points whose **magnitude** $|\Gamma|$ equal to, say, 0.7. Likewise, a **radial line** is formed by the locus of all points whose **phase** θ_{Γ} is equal to 135°.



Perhaps the most important aspect of the complex Γ plane is its validity region. Recall for the complex Z plane that this validity region was the right-half plane, where $Re\{Z\} > 0$ (i.e., positive resistance).

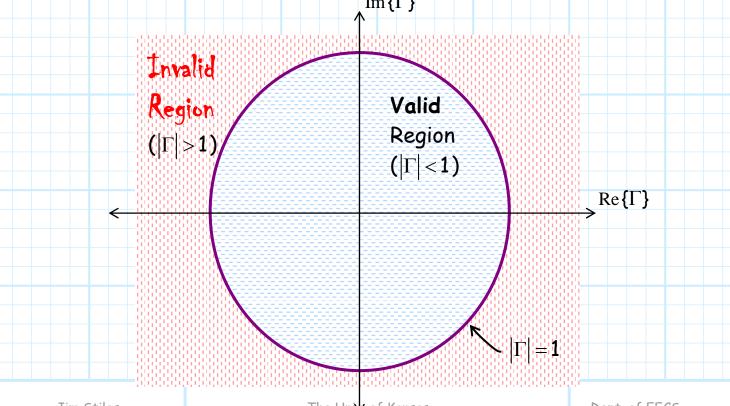
The problem was that this validity region was unbounded and infinite in extent, such that many important impedances (e.g., open-circuits) could not be plotted.

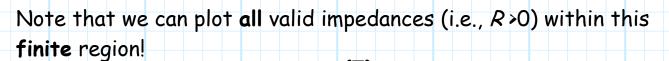
Q: What is the validity region for the complex Γ plane?

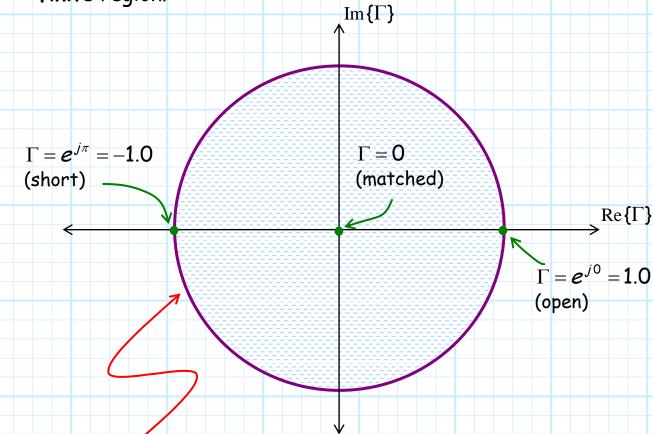
A: Recall that we found that for $Re\{Z\} > 0$ (i.e., positive resistance), the **magnitude** of the reflection coefficient was **limited**:

$$0 < |\Gamma| < 1$$

Therefore, the validity region for the complex Γ plane consists of all points inside the circle $|\Gamma|=1$ —a finite and bounded areal $\operatorname{Im}\{\Gamma\}$







$$|\Gamma| = 1$$

$$(Z = jX \rightarrow \text{purely reactive})$$