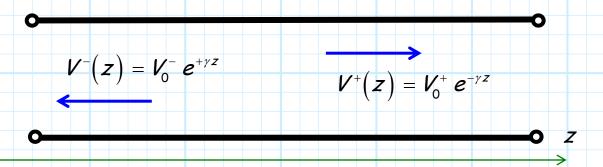
Complex Propagation Constant y

Recall that the activity along a transmission line can be expressed in terms of two functions, functions that we have described as wave functions:



where γ is a complex constant that describe the properties of a transmission line. Since γ is complex, we can consider both its real and imaginary components.

$$\mathbf{V} = \sqrt{\left(\mathbf{R} + \mathbf{j}\mathbf{\omega}\mathbf{L}\right)\!\left(\mathbf{G} + \mathbf{j}\mathbf{\omega}\mathbf{C}\right)} \doteq \mathbf{\alpha} + \mathbf{j}\mathbf{\beta}$$

where $\alpha = \text{Re}\{\gamma\}$ and $\beta = \text{Im}\{\gamma\}$. Therefore, we can write:

$$V^{+}(z) = V_{0}^{+} e^{-\gamma z} = V_{0}^{+} e^{-(\alpha + j\beta)z} = V_{0}^{+} e^{-\alpha z} e^{-j\beta z}$$

The value α

Q: What are these constants α and β ? What do they physically represent?

A: Remember, a complex value can be expressed in terms of its magnitude and phase.

For example:

$$oldsymbol{V}_0^+ = ig|oldsymbol{V}_0^+ig|oldsymbol{e}^{jarphi_0^+}$$

Likewise:

$$V^+(z) = |V^+(z)| e^{j \varphi^+(z)}$$

And since:

$$V^{+}(z) = V_0^{+} e^{-\alpha z} e^{-j\beta z}$$

$$= |V_0^{+}| e^{j\varphi_0^{+}} e^{-\alpha z} e^{-j\beta z}$$

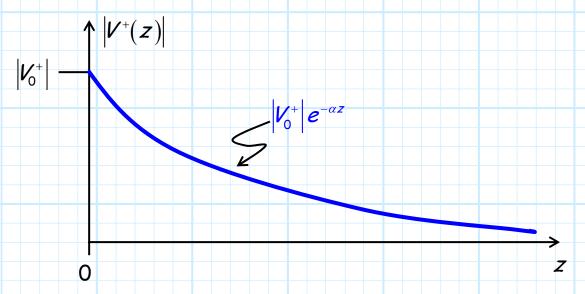
$$= |V_0^{+}| e^{-\alpha z} e^{j(\varphi_0^{+} - \beta z)}$$

we find:

$$\left|V^{+}(z)\right| = \left|V_{0}^{+}\right|e^{-\alpha z}$$
 $\varphi^{+}(z) = \varphi_{0}^{+} - \beta z$

The value α specifies attenuation

It is thus evident that $e^{-\alpha z}$ alone determines the magnitude of wave $V^+(z) = V_0^+ e^{-\nu z}$ as a function of position z.



Therefore, α expresses the **attenuation** of the signal due to the **loss** in the transmission line.

The larger the value of α , the greater the exponential attenuation.

Q: So just why does the wave attenuate as it propagates down the transmission line?

A:

The value β

Q: So what is the constant β ? What does it physically mean?

A: Recall the function;

$$\varphi^+(z) = \varphi_0^+ - \beta z$$

represents the relative **phase** of wave $V^+(z)$; a **function** of transmission line **position** z.

Since phase φ is expressed in **radians**, and z is distance (in meters), the value β must have **units** of:

$$\beta = \frac{\varphi}{z}$$
 radians meter

Thus, if the value β is **small**, we will need to move a **significant distance** Δz down the transmission line in order to observe a change in the relative phase of the oscillation.

Conversely, if the value β is **large**, a significant change in relative phase can be observed if traveling a **short** distance $\Delta z_{2\pi}$ down the transmission line.

The Wavelength λ

Q: How far must we move along a transmission line in order to observe a change in relative phase of 2π radians?

A: We can easily determine this distance ($\Delta z_{2\pi}$, say) from the transmission line characteristic β .

$$2\pi = \varphi(z + \Delta z_{2\pi}) - \varphi(z) = \beta \Delta z_{2\pi}$$

or, rearranging:

$$\Delta z_{2\pi} = \frac{2\pi}{\beta} \qquad \Rightarrow \qquad \beta = \frac{2\pi}{\Delta z_{2\pi}}$$

The distance $\Delta z_{2\pi}$ over which the relative phase changes by 2π radians, is more specifically known as the wavelength Λ of the propagating wave (i.e., $\Lambda \doteq \Delta z_{2\pi}$):

$$\lambda = \frac{2\pi}{\beta} \qquad \Rightarrow \qquad \beta = \frac{2\pi}{\lambda}$$

B is Spatial Frequency

The value β is thus essentially a **spatial frequency**, in the same way that ω is a **temporal** frequency:

$$\omega = \frac{2\pi}{T}$$

Note T is the **time** required for the phase of the oscillating signal to change by a value of 2π radians, i.e.:

$$\omega T = 2\pi$$

And the **period** of a sinewave, and related to its **frequency** in Hertz (cycles/second) as:

$$T=\frac{2\pi}{\omega}=\frac{1}{f}$$

Compare these results to:

$$\beta = \frac{2\pi}{\lambda}$$
 $2\pi = \beta\lambda$ $\lambda = \frac{2\pi}{\beta}$

Propagation Velocity

Q: So, just how fast does this wave propagate down a transmission line?

A: We describe wave velocity in terms of its **phase velocity**—in other words, how **fast** does a specific value of absolute phase φ seem to **propagate** down the transmission line.

It can be shown that this velocity is:

$$v_p = \frac{dz}{dt} = \frac{\omega}{\beta}$$

From this we can conclude:

$$v_p = f \lambda$$

as well as:

$$\beta = \frac{\omega}{v_{\beta}}$$