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The Frequency Response 
of a Quarter-Wave 
Matching Network 

 
Q:  You have once again provided us with confusing and 
perhaps useless information.  The quarter-wave matching 
network has an exact  SFG of: 
 
 
 
 
 
 
 
 
Using our reduction rules, we can quickly conclude that: 
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You could have left this simple and precise analysis alone—
BUT NOOO!!   
 
You had to foist upon us a long, rambling discussion of “the 
propagation series” and “direct paths” and “the theory of 
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small reflections”, culminating with the approximate (i.e., less 
accurate!) SFG: 
  
 
 
 
 
 
 
From which we were able to conclude the approximate (i.e., 
less accurate!) result: 
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The exact result was simple—and exact!  Why did you make 
us determine this approximate result? 
 
A:  In a word:  frequency response*. 
 
Although the exact analysis is about as simple to determine as 
the approximation provided by the theory of small reflections, 
the mathematical form of the result is much simpler to 
analyze and/or evaluate (e.g., no fractional terms!). 
 
Q:  What exactly would we be analyzing and/or evaluating? 
 
A:  The frequency response of the matching network, for one 
thing. 
 
*  OK, two words. 
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Remember, all matching networks must be lossless, and so 
must be made of reactive elements (e.g., lossless transmission 
lines).  The impedance of every reactive element is a function 
of frequency, and so too then is inΓ . 
 
Say we wish to determine this function ( )in ωΓ . 
 
Q:  Isn’t  ( ) 0in ωΓ =  for a quarter wave matching network? 
 
A: Oh my gosh no! A properly designed matching network will 
typically result in a perfect match (i.e., 0inΓ = ) at one 
frequency (i.e., the design frequency).  However, if the signal 
frequency is different from this design frequency, then no 
match will occur (i.e., 0inΓ ≠ ). 
 
Recall we discussed this behavior before: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.12  (p. 243) 
Reflection coefficient magnitude 
versus frequency for a single-
section quarter-wave matching 
transformer with various load 
mismatches. 
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Q:  But why is the result:  
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or its approximate form: 
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dependent on frequency? I don’t see frequency variable ω  
anywhere in these results! 
 
A: Look closer! 
 
Remember that the value of spatial frequency β  (in 
radians/meter) is dependent on the frequency ω  of our eigen 
function (aka “the signal”): 
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where you will recall that pv  is the propagation velocity of a 
wave moving along a transmission line.  This velocity is a 
constant (i.e., 1pv LC= ), and so the spatial frequency β  is 
directly proportional to the temporal frequency ω . 
 
Thus, we can rewrite: 
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p
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Where pT v=  is the time required for the wave to 
propagate a distance  down a transmission line. 
 
As a result, we can write the input reflection coefficient as a 
function of spatial frequency β : 
 

( ) 2j
in L e ββ −Γ = Γ+ Γ  

 
Or equivalently as a function of temporal frequency ω : 
 

( ) 2j T
in L e ωω −Γ = Γ+ Γ  

 
Frequently, the reflection coefficient is simply written in 
terms of the electrical length θ  of the transmission line,  
which is simply the difference in relative phase between the 
wave at the beginning and end of the length  of the 
transmission line. 

Tβ θ ω= =  
So that: 

( ) 2j
in L e θθ −Γ = Γ+ Γ  

 
Note we can simply insert the value θ β=  into the expression 
above to get ( )in βΓ , or insert Tθ ω=  into the expression to 
get ( )in ωΓ . 
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Now, we know that LΓ = Γ  for a properly designed quarter-
wave matching network, so the reflection coefficient function 
can be written as: 

( ) ( )21 j
in L e θθ −Γ += Γ  

 
Note that:             ( )01 j j j je e e eθ θ θ θ− − − += = =  

 
And that:               ( )2j j j je e e eθ θ θ θ θ− − + − −= =  

 
And so: 
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Where we have used Euler’s equation to determine that: 
 

2 cosj je eθ θ θ+ −+ =  
 
Now, let’s determine the magnitude of our result: 
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Note that ( )in θΓ  is zero-valued only when cos 0θ = .  This of 
course occurs when 2

πθ = : 
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In other words, a perfect match occurs when 2
πθ =  !! 

 
Q:  What the heck does this mean? 
 
A:  Remember, θ β= .  Thus if 2

πθ = : 
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As we (should have) suspected, the match occurs at the 
frequency whose wavelength is equal to four times the 
matching ( 1Z ) transmission line length, i.e. 4=λ .   
 
In other words, a perfect match occurs at the frequency 
where 4= λ .   
 
Note the physical length  of the transmission line does not 
change with frequency, but the signal wavelength does:  
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f
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Q: So, at precisely what frequency does a quarter-wave 
transformer with length  provide a perfect match? 
 
A:  Recall also that Tθ ω= , where pT v= .  Thus, for 2

πθ = : 
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This frequency is called the design frequency of the matching 
network—it’s the frequency where a perfect match occurs.  
We denote this as frequency 0ω , which has wavelength 0λ , i.e.: 
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Given this, yet another way of expressing θ β=  is: 
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Thus, we conclude: 
 

( ) ( )022 cos f
in L ffΓ = πΓ  

 
From this result we can determine (approximately) the 
bandwidth of the quarter-wave transformer! 
 
First, we must define what we mean by bandwidth.  Say the 
maximum acceptable level of the reflection coefficient is 
value Γm .  This is an arbitrary value, set by you the microwave 
engineer (typical values of Γm  range from 0.05 to 0.2). 
 
We will denote the frequencies where this maximum value Γm  
occurs mf . In other words:  
 

( ) ( )02Γ 2 cos mf
in m m L ff fΓ = = = πΓ  



 

4/1/2009 The Frequency Response of a Quarter 9/9 

Jim Stiles The Univ. of Kansas Dept. of EECS 

There are two solutions to this equation, the first is: 
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And the second: 
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Important note! Make sure -1cos x  is expressed in radians! 
 
You will find that  1 0 2m mf f f< <  so, the values 1mf  and 2mf  define 
the lower and upper limits on matching network bandwidth. 
 
 
 
 
 
 
 
 
 
 
 
All this analysis was brought to you by the “simple” 
mathematical form of ( )in fΓ  that resulted from the theory 
of small reflections! 
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