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The Insertion 
Loss Method 

 
Recall that a lossless filter can be described in terms of 
either its power transmission coefficient ( )ωΤ  or its power 
reflection coefficient ( )ωΓ , as the two values are completely 
dependent: 

( ) ( )1ω = − ωΓ Τ  
 

Ideally, these functions would be quite simple: 
 
1. ( ) 1ω =Τ  and ( ) 0ω =Γ  for all frequencies within the pass-
band. 
 
2. ( ) 0ω =Τ  and ( ) 1ω =Γ  for all frequencies within the stop-
band. 
 
For example, the ideal low-pass filter would be: 
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Add to this a linear phase response, and you have the perfect 
microwave filter! 
 
There’s just one small problem with this perfect filterÆ It’s 
impossible to build! 
 
Now, if we consider only possible (i.e., realizable) filters, we 
must limit ourselves to filter functions that can be expressed 
as finite polynomials of the form: 
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The order N of the (denominator) polynomial is likewise the 
order of the filter. 
 
Instead of the power transmission coefficient, we often use 
an equivalent function (assuming lossless) called the power 
loss ratio LRP : 
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Note with this definition, LRP = ∞  when ( ) 1ω =Γ , and  0LRP =  
when ( ) 0ω =Γ .   
 
We likewise note that, for a lossless filter: 
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Therefore ( )LRP dB  is : 
 

( ) ( )10 1010 10 Insertion LossLR LRP dB log P log ω= = − T  
 

The power loss ratio in dB is simply the insertion loss of a 
lossless filter, and thus filter design using the power loss 
ratio  is also called the Insertion Loss Method. 
 
We find that realizable filters will have a power loss ratio of 
the form: 
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where ( )2M ω  and ( )2N ω  are polynomials with terms 

2 4 6, , ,etc.ω ω ω   
 
By specifying these polynomials, we specify the frequency 
behavior of a realizable filter.  Our job is to first choose a 
desirable polynomial! 
 
There are many different types of polynomials that result in 
good filter responses, and each type has its own set of 
characteristics. 
 
The type of polynomial likewise describes the type of 
microwave filter.  Let’s consider three of the most popular 
types: 
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1.  Elliptical 
 
Elliptical filters have three primary characteristics: 
 

a)  They exhibit very steep “roll-off”, meaning that the 
transition from pass-band to stop-band is very rapid. 
b)  They exhibit ripple in the pass-band, meaning that 
the value of Τ  will vary slightly within the pass-band. 
 
c)  They exhibit ripple in the stop-band, meaning that the 
value of Τ  will vary slightly within the stop-band. 
 

 
 
 
 
 
 
 
 
 
We find that we can make the roll-off steeper by accepting 
more ripple. 
 
2.  Chebychev 
 
Chebychev filters are also known as equal-ripple filters, and 
have two primary characteristics 
 

a) Steep roll-off (but not as steep as Elliptical). 

( )ωΤ

ω  

1 



4/27/2005 The Insertion Loss Method.doc 5/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

b) Pass-band ripple (but not stop-band ripple). 
 

 
 

 
 
 
 
 
 
 
We likewise find that the roll-off can be made steeper by 
accepting more ripple. 
 
We find that Chebychev low-pass filters have a power loss 
ratio equal to: 

( ) 2 21LR N
c

P k T ωω
ω
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 

 
where k specifies the passband ripple, ( )NT x  is a Chebychev 
polynomial of order N, and cω  is the low-pass cutoff 
frequency. 

 
3.  Butterworth 
 
Also known as maximally flat filters, they have two primary 
characteristics 
 

a) Gradual roll-off . 

( )ωΤ

ω  

1 



4/27/2005 The Insertion Loss Method.doc 6/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

b) No ripple—not anywhere. 
 
 
 
 
 
 
 

 
 
 
We find that Butterworth low-pass filters have a power loss 
ratio equal to: 

( )
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where cω  is the low-pass cutoff frequency, and N specifies 
the order of the filter. 
 
Q: So we always chose elliptical filters; since they have the 
steepest roll-off, they are closest to ideal—right? 
 
A:  Ooops! I forgot to talk about the phase response ( )21S ω∠  
of these filters.  Let’s examine ( )21S ω∠  for each filter type 
before we pass judgment. 
 
Butterworth  ( )21S ω∠      Æ  Close to linear phase. 
 
Chebychev ( )21S ω∠          Æ  Not very linear. 

( )ωΤ
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Elliptical ( )21S ω∠              Æ  A big non-linear mess! 
 
 

Thus, it is apparent that as a 
filter roll-off improves, the 
phase response gets worse 
(watch out for dispersion!). 
 
Æ There is no such thing as 
the “best” filter type!  
 
Q:  So, a filter with perfectly 
linear phase is impossible to 
construct? 
 
A:  No, it is possible to 
construct a filter with near 
perfect linear phase—but it 
will exhibit a horribly poor 
roll-off! 

 
Now, for any type of filter, we can improve roll-off (i.e., 
increase stop-band attenuation) by increasing the filter 
order N.  However, be aware that increasing the filter order 
likewise has these deleterious effects: 
 

1. It makes phase response ( )21S ω∠   worse (i.e., more non-
linear). 

 
2. It increases filter cost, weight, and size. 
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3. It increases filter insertion loss (this is bad). 
 
4. It makes filter performance more sensitive to 

temperature, aging, etc. 
 

 
From a practical viewpoint, the order of a filter should 
typically be kept to 10N < . 

 
 
 

Q:  So how do we take these polynomials and make real 
filters? 
 
A:  Similar to matching networks and couplers, we: 
 
1.  Form a general circuit structure with several degrees of 
design freedom.   
 
2. Determine the general form of the power loss ratio for 
these circuits. 
 
3.  Use our degrees of design freedom to equate terms in the 
general form to the terms of the desired power loss ratio 
polynomial. 
 
 


