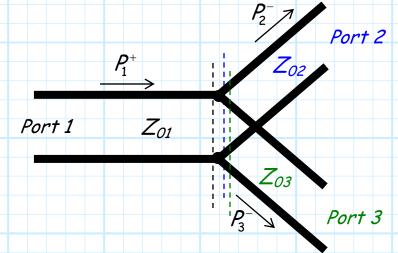
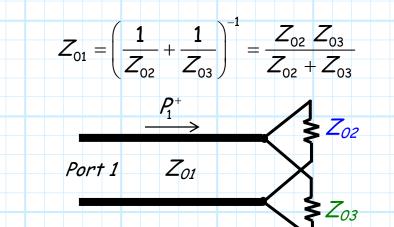
The Lossless Divider



To be ideal, we want $S_{11} = 0$. Thus, when ports 2 and port 3 are **terminated** in matched loads, the input impedance at port 1 must be equal to Z_{01} . This will only be true if the values Z_{02} and Z_{03} are selected such that:



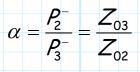
Note however that this circuit is **not** symmetric, thus we find that $S_{22} \neq 0$ and $S_{33} \neq 0$!

It is evident that this divider is **lossless** (no resistive components), so that:

$$P_1^+ = P_2^- + P_3^-$$

where P_1^+ is the power incident (and absorbed if $S_{11} = 0$) on port 1, and P_2^- and P_3^- is the power absorbed by the matched loads of ports 2 and 3.

Unless $Z_{02} = Z_{03}$, the power will not be divide equally between P_2^- and P_3^- . With a little microwave circuit analysis, it can be shown that the **division ratio** α is :



Thus, if we desire an **ideal** ($S_{11} = 0$) divider with a specific division ratio α , we will find that:

$$Z_{02} = Z_{01} \left(1 + \frac{1}{\alpha} \right)$$

 $Z_{03} = Z_{01} (1 + \alpha)$

and:

Q: I don't understand how this is helpful. Don't we typically want the characteristic impedance of all three ports to be equal to the **same** value (e.g., $Z_{01} = Z_{02} = Z_{03} = Z_0$)?

Jim Stiles

A: True ! A more practical way to implement this divider is
to use a matching network, such as a quarter wave
transformer, on ports 2 and 3:

$$\begin{array}{c} P_{2} \\ P$$

This lossless divider has a scattering matrix (at the design frequency) of this form:

$$\boldsymbol{\mathcal{S}} = \begin{bmatrix} 0 & -j/\sqrt{2} & -j/\sqrt{2} \\ -j/\sqrt{2} & \boldsymbol{\mathcal{S}}_{22} & \boldsymbol{\mathcal{S}}_{23} \\ -j/\sqrt{2} & \boldsymbol{\mathcal{S}}_{32} & \boldsymbol{\mathcal{S}}_{33} \end{bmatrix}$$

where the (non-zero!) values of S_{22} , S_{23} , S_{32} , and S_{33} depend on the division ratio α .

Note that if we desire a **3 dB** divider (i.e., $\alpha = 1$), then:

$$Z_{02} = Z_{03} = 2 Z_{01}$$

