Z_0

1/6

<u>The Multi-section</u> <u>Transformer</u>

 Γ_{N-1}

 Z_N

 \rightarrow

 $\leftarrow \ell$

Consider a sequence of Ntransmission line sections; each section has equal length ℓ , but dissimilar characteristic impedances:

Where the marginal reflection coefficients are:

 Z_2

 $\rightarrow \leftarrow \ell$

 Z_1

l -

 Γ_{in}

 \leftarrow

$$\Gamma_{0} \doteq \frac{Z_{1} - Z_{0}}{Z_{1} + Z_{0}} \qquad \Gamma_{n} \doteq \frac{Z_{n+1} - Z_{n}}{Z_{n+1} + Z_{n}} \qquad \Gamma_{N} \doteq \frac{R_{L} - Z_{N}}{R_{L} + Z_{N}}$$

 \rightarrow

If the load resistance R_L is less than Z_0 , then we should design the transformer such that:

 $Z_0 > Z_1 > Z_2 > Z_3 \cdots > Z_N > R_L$

Conversely, if R_L is greater than Z_0 , then we will design the transformer such that:

$$Z_0 < Z_1 < Z_2 < Z_3 \cdots < Z_N < R_L$$

In other words, we gradually transition from Z_0 to R_L !

Note that since R_L is **real**, and since we assume **lossless** transmission lines, all Γ_n will be **real** (this is important!).

Likewise, since we **gradually** transition from one section to another, each value:

$$Z_{n+1} - Z_{n+1}$$

will be small.

As a result, each marginal reflection coefficient Γ_n will be **real** and have a **small** magnitude.

This is also **important**, as it means that we can apply the "**theory of small reflections**" to analyze this multi-section transformer!

The theory of small reflections allows us to **approximate** the input reflection coefficient of the transformer as:

$$T \doteq \frac{\ell}{\nu_p}$$
 = propagation time through 1 section

We see that the function $\Gamma_{in}(\omega)$ is expressed as a weighted set of N basis functions! I.E.,

$$\Gamma_{in}(\omega) = \sum_{n=0}^{N} c_n \Psi(\omega)$$

where:

$$c_n = \Gamma_n$$
 and $\Psi(\omega) = e^{-j(2nT)\omega}$

We find, therefore, that by **selecting** the proper values of basis weights c_n (i.e., the proper values of reflection coefficients Γ_n), we can **synthesize** any function $\Gamma_{in}(\omega)$ of frequency ω , provided that:

1. $\Gamma_{in}(\omega)$ is periodic in $\omega = 1/2T$

2. we have sufficient number of sections N.

Q: What function should we synthesize?

A: Ideally, we would want to make $\Gamma_{in}(\omega) = 0$ (i.e., the reflection coefficient is zero for all frequencies).

Bad news: this ideal function $\Gamma_{in}(\omega) = 0$ would require an infinite number of sections (i.e., $N = \infty$)!

Instead, we seek to find an "optimal" function for $\Gamma_{in}(\omega)$, given a finite number of N elements.

Once we determine these optimal functions, we can find the values of coefficients Γ_n (or equivalently, Z_n) that will result in a matching transformer that exhibits this **optimal** frequency response.

To simplify this process, we can make the transformer symmetrical, such that:

$$\Gamma_0 = \Gamma_N, \quad \Gamma_1 = \Gamma_{N-1}, \quad \Gamma_2 = \Gamma_{N-2}, \quad \cdots \cdots$$

Note that this **does NOT** mean that:

$$Z_0 = Z_N, \quad Z_1 = Z_{N-1}, \quad Z_2 = Z_{N-2}, \quad \cdots$$

We find then that:

$$\Gamma(\omega) = \boldsymbol{e}^{-jN\omega T} \left[\Gamma_0 \left(\boldsymbol{e}^{jN\omega T} + \boldsymbol{e}^{-jN\omega T} \right) + \Gamma_1 \left(\boldsymbol{e}^{j(N-2)\omega T} + \boldsymbol{e}^{-j(N-2)\omega T} \right) + \Gamma_2 \left(\boldsymbol{e}^{j(N-4)\omega T} + \boldsymbol{e}^{-j(N-4)\omega T} \right) + \cdots \right]$$

and since:

$$\boldsymbol{e}^{j\boldsymbol{x}} + \boldsymbol{e}^{-j\boldsymbol{x}} = 2\cos(\boldsymbol{x})$$

we can write for Neven:

$$\Gamma(\omega) = 2 e^{-jN\omega T} \left[\Gamma_0 \cos N\omega T + \Gamma_1 \cos (N-2) \omega T + \dots + \Gamma_n \cos (N-2n) \omega T + \dots + \frac{1}{2} \Gamma_{N/2} \right]$$

whereas for Nodd:

$$\Gamma(\omega) = 2 e^{-jN\omega T} \Big[\Gamma_0 \cos N\omega T + \Gamma_1 \cos (N-2)\omega T + \dots + \Gamma_n \cos (N-2n)\omega T + \dots + \Gamma_{(N-1)/2} \cos \omega T \Big]$$

The remaining question then is this: given an optimal and realizable function $\Gamma_{in}(\omega)$, how do we determine the necessary number of sections N, and how do we determine the values of all reflection coefficients Γ_n ?