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The Propagation Series 
 
Q:  You earlier stated that signal flow graphs are helpful in (count em’) three ways. I now 
understand the first way: 

 
“Way 1 -  Signal flow graphs provide us with a graphical means of solving large 
systems of simultaneous equations.” 
 
But what about ways 2 and 3 ?? 
 
 

“Way 2 –  We’ll see the a signal flow graph can provide us with a road 
map of the wave propagation paths throughout a microwave device or 
network.”   

 
 
“Way 3 - Signal flow graphs provide us with a quick and accurate method 
for approximating a network or device.”  
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A:  Consider the sfg below: 
 
 
 
 
 
 
  
Note that node 1a  is the only independent node. This signal flow graph is for a rather 
complex single-port (port 1) device. 
 
Say we wish to determine the wave amplitude exiting port 1.  In other words, we seek: 
 

1 1inb a= Γ  
 

Using our four reduction rules, the signal flow graph above is simplified to: 
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Q:  Hey, node 1b  is not connected to anything.  What does this mean? 
 
A:  It means that 1 0b = —regardless of the value of incident wave 1a .  I.E.,: 
 

1

1

0in
b
a

Γ = =  

 
In other words, port 1 is a matched load! 
 
Q: But look at the original signal flow graph; it doesn’t look like a matched load. How can 
the exiting wave at port 1 be zero? 
 
A:  A signal flow graph provides a bit of a propagation road map through the device or 
network. It allows us to understand—often in a very physical way—the propagation of an 
incident wave once it enters a device.   
 
We accomplish this by identifying from the sfg propagation paths from an independent 
node to some other node (e.g., an exiting node).  These paths are simply a sequence of 
branches (pointing in the correct direction!) that lead from the independent node to this 
other node. 
 
Each path has value that is equal to the product of each branch of the path. 
 
 



 

3/23/2009 The Propagation Series present 4/20 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Perhaps this is best explained with some examples.   
 
One path between independent (incident wave) node 1a  and (exiting wave) node 1b  is shown 
below: 
 
 
 
 
 
 
We’ll arbitrarily call this path 2, and its value: 
 

( ) ( ) ( )2 0.5 0.4 0.5 0.1p j j= = −  
 
Another propagation path (path 5, say) is: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5

2 34

0.5 0.4 0.35 0.8 0.5 0.8 0.5

0.35 0.4 0.8 0.5
0.0112

p j j j j
j

=

=

=

 

 
Q:  Why are we doing this? 
 
A: The exiting wave at port 1 (wave amplitude 1b ) is simply the superposition of all the 
propagation paths from incident node 1a !  Mathematically speaking: 
 

1
1 1

1
n in n

n n

bb a p p
a

= ⇒ Γ = =∑ ∑  

 
Q:  Won’t there be an awful lot of propagation paths? 
 
A:  Yes! As a matter of fact there are an infinite number of paths that connect node 1a   
and 1b .  Therefore: 

1
1 1

1
n in n

n n

bb a p p
a

∞ ∞

= ⇒ Γ = =∑ ∑  

 
Q: Yikes!  Does this infinite series converge? 
 
A:  Note that the series represents a finite physical value (e.g., inΓ ), so that the infinite 
series must converge to the correct finite value. 
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Q:  In this example we found that 0inΓ = .  This means that the infinite propagation series 
is likewise zero: 

0in n
n

p
∞

Γ = =∑  

 
Do we conclude from this that all propagation paths are zero: 
 

0np =    ????? 
 

A: Absolutely not!  Remember, we have already determined that 2 0.1p = −  and 

4 0.0112p = —definitely not zero-valued!  In fact for this example, none of the propagation 
paths np  are precisely equal to zero!  
 
Q:  But then why is: 

0n
n

p
∞

=∑  ??? 

 
A: Remember, the path values np  are complex.  A sum of non-zero complex values can 
equal zero (as it apparently does in this case!). 

 
 
 



 

3/23/2009 The Propagation Series present 7/20 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Thus, a perfectly rational way of viewing this network is to conclude that there are an 
infinite number of non-zero waves exiting port 1: 
 

where 0in n n
n

p p
∞

Γ = ≠∑  

 
 It just so happens that these waves coherently add together to zero: 
 

0in n
n

p
∞

Γ = =∑  

 
—they essentially cancel each other out ! 
 
Q:  So, I now appreciate the fact that signal flow graphs: 1) provides a graphical method 
for solving linear equations and 2) also provides a method for physically evaluating the 
wave propagation paths through a network/device.  
 
But what about helpful Way 3: 
 
“Way 3 - Signal flow graphs provide us with a quick and accurate 
method for approximating a network or device.”  ?? 
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A:  The propagation series of a microwave network is very analogous to a Taylor Series 
expansion: 

( ) ( ) ( )
0

n
n

n
n x a

d f xf x x a
d x

∞

= =

= −∑  

 
Note that there likewise is a infinite number of terms, yet the Taylor Series is quite 
helpful in engineering. 
 
Often, we engineers simply truncate this infinite series, making it a finite one: 
 

( ) ( ) ( )
0

nN
n

n
n x a

d f xf x x a
d x= =

≈ −∑  

 
Q:  Yikes! Doesn’t this result in error? 
 
A: Absolutely! The truncated series is an approximation.   
 
We have less error if more terms are retained; more error if fewer terms are retained.   
 
The trick is to retain the “significant” terms of the infinite series, and truncate those 
less important “insignificant” terms.  In this way, we seek to form an accurate 
approximation, using the fewest number of terms. 
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Q:  But how do we know which terms are significant, and which are not? 
 
A:  For a Taylor Series, we find that as the order n increases, the significance of the 
term generally (but not always!) decreases.   
 
Q:  But what about our propagation series?  How can we determine which paths are 
“significant” in the series? 
 
A: Almost always, the most significant paths in a propagation series are the forward 
paths of a signal flow graph. 
 
 

forward  path ‐ \ˈfo ̇r‐wərdˈ päth\  ‐noun   
 
A path through a signal flow graph that passes through any given node no more than once.  A path that 
passes through any node two times (or more) is therefore not a forward path.  

 
 
In our example, path 2 is a forward path.  It passes through four nodes as it travels from 
node 1a  to node 1b , but it passes through each of these nodes only once: 
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Alternatively, path 5 is not a forward path: 
 
 
 
 
 
 
 
 
We see that path 5 passes through six different nodes as it travels from node 1a  to node 

1b .  However, it twice passes through four of these nodes.   
 
The good news about forward paths is that there are always a finite number of them.  
Again, these paths are typically the most significant in the propagation series, so we can 
determine an approximate value for sfg nodes by considering only these forward paths in 
the propagation series: 

1

N
fp

n n
n n

p p
∞

=

≈∑ ∑  

 
where fp

np  represents the value of one of the N  forward paths.  
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Q: Is path 2 the only forward path in our example sfg ? 
 
A:  No, there are three. Path 1 is the most direct:  
 

1 0.144p =  
 
 
 
 
 
 
 
 
Of course we already have identified path 2: 
 

2 0.1p = −  
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And finally, path 3 is the longest forward path: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

3
2 32

0.5 0.8 0.5 0.8 0.5

0.8 0.5
0.08

p j j
j

=

=

= −

 

 
 
 
 
 
 

 
Thus, an approximate value of inΓ is: 
 

1

1
3

1

0.144 0.1 0.08
0.036

in

fp
n

n

b
a

p
=

Γ =

≈

= − −

= −

∑  

 
Q:  Hey wait! We determined earlier that 0inΓ = , but now your saying that 0.036inΓ =− .  
Which is correct?? 
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A:  The correct answer is 0inΓ = .  It was determined using the four sfg reduction rules—
no approximations were involved! 
 
Conversely, the value 0.036inΓ =−  was determined using a truncated form of the 
propagation series—the series was limited to just the three most significant terms (i.e., 
the forward paths).  The result is easier to obtain, but it is just an approximation (the 
answers will contain error!). 
 
For example, consider the reduced signal flow graph (no approximation error): 
 
 

 
 
 
 
 
 

Compare this to the same sfg, computed 
using only the forward paths: 
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No surprise, the approximate sfg (using forward paths only) is not the same as the exact 
sfg (using reduction rules).   
 
The approximate sfg contains error, but note this error is not too bad.  The values of the 
approximate sfg are certainly close to that of the exact sfg. 
 
Q: Is there any way to improve the accuracy of this approximation? 
 
A: Certainly.  The error is a result of truncating the infinite propagation series.  Note we 
severely truncated the series—out of an infinite number of terms, we retained only three 
(the forward paths).  If we retain more terms, we will likely get a more accurate answer. 
 
Q:  So why did these approximate answers turn out so well, given that we only used three 
terms? 
 
A: We retained the three most significant terms, we will find that the forward paths 
typically have the largest magnitudes of all propagation paths. 
 
Q:  Any idea what the next most significant terms are? 
 
A:  Yup.  The forward paths are all those propagation paths that pass through any node 
no more than one time.  The next most significant paths are almost certainly those paths 
that pass through any node no more than two times.   
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Path 4 is an example of such a path: 
 
 
 
 

 
 
 

There are three more of these paths (passing through a node no more than two times)—
see if you can find them! 
 
After determining the values for these paths, we can add 4 more terms to our summation 
(now we have seven terms!): 

 

( ) ( )
( ) ( )

1

1
7

1

1 2 3 5 6 74

0.036 0.014 0.0112 0.0112 0.0090
0.0094

in

n
n

b
a

p

p p p p p p p
=

Γ =

≈

= + + + + + +

= − + + + +

=

∑
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Note this value is closer to the correct value of zero than was our previous (using only 
three terms) answer of -0.036.   
 
As we add more terms to the summation, this approximate answer will get closer and 
closer to the correct value of zero.   
However, it will be exactly zero (to an infinite number of decimal points) only if we sum an 
infinite number of terms! 
 
Q:  The significance of a given path seem to be inversely proportional to the number of 
times it passes through any node.  Is this true? If so, then why is it true? 
 
A:  It is true (generally speaking)!  A propagation path that travels though a node ten 
times is much less likely to be significant to the propagation series (i.e., summation) than a 
path that passes through any node no more than (say) four times. 
 
The reason for this is that the significance of a given term in a summation is dependent on 
its magnitude (i.e., np ).  If the magnitude of a term is small, it will have far less affect 
(i.e., significance) on the sum than will a term whose magnitude is large. 
 
Q:  You seem to be saying that paths traveling through fewer nodes have larger 
magnitudes than those traveling through many nodes.  Is that true? If so why? 
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A:  Keep in mind that a microwave sfg relates wave amplitudes.  The branch values are 
therefore always scattering parameters.  One important thing about scattering 
parameters, their magnitudes (for passive devices) are always less than or equal to one! 
 

1mnS ≤  
 
 
Recall the value of a path is simply the product of each branch that forms the path.  The 
more branches (and thus nodes), the more terms in this product.   
 
Since each term has a magnitude less than one, the magnitude of a product of many 
terms is much smaller than a product of a few terms.  For example: 
 

30.7 0.343j− =         and         100.7 0.028j− =  
 

 In other words, paths with more branches (i.e., more nodes) will typically have 
smaller magnitudes and so are less significant in the propagation series. 

 
Note path 1 in our example traveled along one branch only: 

 
1 0.144p =  

 
Path 2 has five branches:  
 



 

3/23/2009 The Propagation Series present 18/20 

Jim Stiles The Univ. of Kansas Dept. of EECS 

2 0.1p = −  
 
Path 3 seven branches: 
 

3 0.08p = −  
 

Path 4 nine branches: 
 

4 0.014p =  
 

Path 5 eleven branches: 
 

5 0.0112p =  
 

Path 6 eleven branches: 
 

6 0.0112p =  
 

Path 7 thirteen branches: 
 

7 0.009p =  
 

Hopefully it is evident that the magnitude diminishes as the path “length” increases.  
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Q:  So, does this mean that we should abandon our four reduction rules, and instead use 
a truncated propagation series to evaluate signal flow graphs?? 
 
A:  Absolutely not! 
 
Remember, truncating the propagation series always results in some error.  This error 
might be sufficiently small if we retain enough terms, but knowing precisely how many 
terms to retain is problematic.   
 
We find that in most cases it is simply not worth the effort—use the four reduction 
rules instead (it’s not like they’re particularly difficult!). 
 
Q:  You say that in “most cases” it is not worth the effort.  Are there some cases where 
this approximation is actually useful?? 
 
A:  Yes.  A truncated propagation series (typically using only the forward paths) is used 
when these three things are true: 
 

1.  The network or device is complex (lots of nodes and branches). 
 
2.  We can conclude from our knowledge of the device that the forward paths are 
sufficient for an accurate approximation  (i.e., the magnitudes of all other paths in 
the series are almost certainly very small). 
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3.  The branch values are not numeric, but instead are variables that are dependent 
on the physical parameters of the device (e.g., a characteristic impedance or line 
length). 

 
The result is typically a tractable mathematical equation that relates the design 
variables (e.g., 0Z  or ) of a complex device to a specific device parameter. 
 
For example, we might use a truncated propagation series to approximately determine 
some function: 

( )01 1 02 2, , ,in Z ZΓ  
 

If we desire a matched input (i.e.,  ( )01 1 02 2, , , 0in Z ZΓ = ) we can solve this tractable 
design equation for the (nearly) proper values of 01 1 02 2, , ,Z Z . 
 
We will use this technique to great effect for designing multi-section matching networks 
and multi-section coupled line couplers. 
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The signal flow graph 
of a three-section 
coupled-line coupler. 
 


