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The Propagation Series 
 
Q:  You earlier stated that signal flow graphs are helpful in 
(count em’) three ways. I now understand the first way: 

 
Way 1 -  Signal flow graphs provide us with a graphical 
means of solving large systems of simultaneous equations. 
 
But what about ways 2 and 3 ?? 
 

“Way 2 –  We’ll see the a signal flow graph 
can provide us with a road map of the wave 
propagation paths throughout a microwave 
device or network.”   

 
“Way 3 - Signal flow graphs provide us with 
a quick and accurate method for 
approximating a network or device.”  
 
A:  Consider the sfg below: 
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Note that node 1a  is the only independent node. This signal 
flow graph is for a rather complex single-port (port 1) device. 
 
Say we wish to determine the wave amplitude exiting port 1.  
In other words, we seek: 

1 1inb a= Γ  
 

Using our four reduction rules, the signal flow graph above is 
simplified to: 
 
 
 
 
 
 
 
 
Q:  Hey, node 1b  is not connected to anything.  What does 
this mean? 
 
A:  It means that 1 0b = —regardless of the value of incident 
wave 1a .  I.E.,: 

1

1

0in
b
a

Γ = =  

 
In other words, port 1 is a matched load! 
 
Q: But look at the original signal flow graph; it doesn’t look 
like a matched load. How can the exiting wave at port 1 be 
zero? 
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A:  A signal flow graph provides a bit of a propagation road 
map through the device or network. It allows us to 
understand—often in a very physical way—the propagation of 
an incident wave once it enters a device.   
 
We accomplish this by identifying from the sfg propagation 
paths from an independent node to some other node (e.g., an 
exiting node).  These paths are simply a sequence of branches 
(pointing in the correct direction!) that lead from the 
independent node to this other node. 
 
Each path has value that is equal to the product of each 
branch of the path. 
 
Perhaps this is best explained with some examples.   
 
One path between independent (incident wave) node 1a  and 
(exiting wave) node 1b  is shown below: 
 
 
 
 
 
 
 
 
 
We’ll arbitrarily call this path 2, and its value: 
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Another propagation path (path 5, say) is: 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5

2 34

0.5 0.4 0.35 0.8 0.5 0.8 0.5

0.35 0.4 0.8 0.5
0.0112

p j j j j
j

=

=

=

 

 
Q:  Why are we doing this? 
 
A: The exiting wave at port 1 (wave amplitude 1b ) is simply the 
superposition of all the propagation paths from incident node 

1a !  Mathematically speaking: 
 

1
1 1

1
n in n

n n

bb a p p
a

= ⇒ Γ = =∑ ∑  

 
Q:  Won’t there be an awful lot of propagation paths? 
 
A:  Yes! As a matter of fact there are an infinite number of 
paths that connect node 1a   and 1b .  Therefore: 
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Q: Yikes!  Does this infinite series converge? 
 
A:  Note that the series represents a finite physical value 
(e.g., inΓ ), so that the infinite series must converge to the 
correct finite value. 
 
Q:  In this example we found that 0inΓ = .  This means that 
the infinite propagation series is likewise zero: 
 

0in n
n

p
∞

Γ = =∑  

 
Do we conclude from this that all propagation paths are zero: 
 

0np =    ????? 
 

A: Absolutely not!  Remember, we have already determined 
that 2 0.1p = −  and 4 0.0112p = —definitely not zero-valued!  In 
fact for this example, none of the propagation paths np  are 
precisely equal to zero!  
 
Q:  But then why is: 

0n
n

p
∞

=∑  ??? 

 
A: Remember, the path values np  are complex.  A sum of non-
zero complex values can equal zero (as it apparently does in 
this case!). 
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Thus, a perfectly rational way of viewing this network is to 
conclude that there are an infinite number of non-zero 
waves exiting port 1: 
 

where 0in n n
n

p p
∞

Γ = ≠∑  

 
 It just so happens that these waves coherently add together 
to zero: 

0in n
n

p
∞

Γ = =∑  

 
—they essentially cancel each other out ! 
 
Q:  So, I now appreciate the fact that signal flow graphs: 1) 
provides a graphical method for solving linear equations and 
2) also provides a method for physically evaluating the wave 
propagation paths through a network/device.  
 
But what about helpful Way 3: 
 
“Way 3 - Signal flow graphs provide us with 
a quick and accurate method for 
approximating a network or device.”  ?? 
 
A:  The propagation series of a microwave network is very 
analogous to a Taylor Series expansion: 
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Note that there likewise is a infinite number of terms, yet 
the Taylor Series is quite helpful in engineering. 
 
Often, we engineers simply truncate this infinite series, 
making it a finite one: 
 

( ) ( ) ( )
0

nN
n

n
n x a

d f xf x x a
d x= =

≈ −∑  

 
Q:  Yikes! Doesn’t this result in error? 
 
A: Absolutely! The truncated series is an approximation.   
 
We have less error if more terms are retained; more error if 
fewer terms are retained.   
 
The trick is to retain the “significant” terms of the infinite 
series, and truncate those less important “insignificant” 
terms.  In this way, we seek to form an accurate 
approximation, using the fewest number of terms. 
 
Q:  But how do we know which terms are significant, and 
which are not? 
 
A:  For a Taylor Series, we find that as the order n 
increases, the significance of the term generally (but not 
always!) decreases.   
 
Q:  But what about our propagation series?  How can we 
determine which paths are “significant” in the series? 
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A: Almost always, the most significant paths in a propagation 
series are the forward paths of a signal flow graph. 
 
 

forward  path ‐ \ˈfo ̇r‐wərdˈ päth\  ‐noun   
 
A path through a signal flow graph that passes through any given node 
no more than once.  A path that passes through any node two times (or 
more) is therefore not a forward path.  

 
 
 
In our example, path 2 is a forward path.  It passes through 
four nodes as it travels from node 1a  to node 1b , but it passes 
through each of these nodes only once: 
 
 
 
 
 
 
 
 
Alternatively, path 5 is not a forward path: 
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We see that path 5 passes through six different nodes as it 
travels from node 1a  to node 1b .  However, it twice passes 
through four of these nodes.   
 
The good news about forward paths is that there are always a 
finite number of them.  Again, these paths are typically the 
most significant in the propagation series, so we can 
determine an approximate value for sfg nodes by considering 
only these forward paths in the propagation series: 
 

1

N
fp

n n
n n

p p
∞

=

≈∑ ∑  

 
where fp

np  represents the value of one of the N  forward 
paths.  
 
Q: Is path 2 the only forward path in our example sfg ? 
 
A:  No, there are three. Path 1 is the most direct:  
 

1 0.144p =  
 
 
 
 
 
 
 
 
Of course we already have identified path 2: 
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2 0.1p = −  
 
 
 
 
 
 
 

And finally, path 3 is the longest forward path: 
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Thus, an approximate value of inΓ is: 
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Q:  Hey wait! We determined earlier that 0inΓ = , but now 
your saying that 0.036inΓ =− .  Which is correct?? 
 
A:  The correct answer is 0inΓ = .  It was determined using 
the four sfg reduction rules—no approximations were 
involved! 
 
Conversely, the value 0.036inΓ =−  was determined using a 
truncated form of the propagation series—the series was 
limited to just the three most significant terms (i.e., the 
forward paths).  The result is easier to obtain, but it is just 
an approximation (the answers will contain error!). 
 
For example, consider the reduced signal flow graph (no 
approximation error): 
 
 

 
 
 
 
 

Compare this to the same sfg, computed using only the 
forward paths: 
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No surprise, the approximate sfg (using forward paths only) is 
not the same as the exact sfg (using reduction rules).   
 
The approximate sfg contains error, but note this error is not 
too bad.  The values of the approximate sfg are certainly 
close to that of the exact sfg. 
 
Q: Is there any way to improve the accuracy of this 
approximation? 
 
A: Certainly.  The error is a result of truncating the infinite 
propagation series.  Note we severely truncated the series—
out of an infinite number of terms, we retained only three 
(the forward paths).  If we retain more terms, we will likely 
get a more accurate answer. 
 
Q:  So why did these approximate answers turn out so well, 
given that we only used three terms? 
 
A: We retained the three most significant terms, we will find 
that the forward paths typically have the largest magnitudes 
of all propagation paths. 
 
Q:  Any idea what the next most significant terms are? 
 
A:  Yup.  The forward paths are all those propagation paths 
that pass through any node no more than one time.  The next 
most significant paths are almost certainly those paths that 
pass through any node no more than two times.   
 



 

3/19/2009 The Propagation Series.doc 13/18 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Path 4 is an example of such a path: 
 
 
 
 

 
 
 

There are three more of these paths (passing through a node 
no more than two times)—see if you can find them! 
 
After determining the values for these paths, we can add 4 
more terms to our summation (now we have seven terms!): 
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Note this value is closer to the correct value of zero than 
was our previous (using only three terms) answer of -0.036.   
 
As we add more terms to the summation, this approximate 
answer will get closer and closer to the correct value of zero.   
However, it will be exactly zero (to an infinite number of 
decimal points) only if we sum an infinite number of terms! 
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Q:  The significance of a given path seem to be inversely 
proportional to the number of times it passes through any 
node.  Is this true? If so, then why is it true? 
 
A:  It is true (generally speaking)!  A propagation path that 
travels though a node ten times is much less likely to be 
significant to the propagation series (i.e., summation) than a 
path that passes through any node no more than (say) four 
times. 
 
The reason for this is that the significance of a given term in 
a summation is dependent on its magnitude (i.e., np ).  If the 
magnitude of a term is small, it will have far less affect (i.e., 
significance) on the sum than will a term whose magnitude is 
large. 
 
Q:  You seem to be saying that paths traveling through fewer 
nodes have larger magnitudes than those traveling through 
many nodes.  Is that true? If so why? 
 
A:  Keep in mind that a microwave sfg relates wave 
amplitudes.  The branch values are therefore always 
scattering parameters.  One important thing about scattering 
parameters, their magnitudes (for passive devices) are always 
less than or equal to one! 
 

1mnS ≤  
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Recall the value of a path is simply the product of each branch 
that forms the path.  The more branches (and thus nodes), 
the more terms in this product.   
 
Since each term has a magnitude less than one, the magnitude 
of a product of many terms is much smaller than a product of 
a few terms.  For example: 
 

30.7 0.343j− =         and         100.7 0.028j− =  
 

 In other words, paths with more branches (i.e., more 
nodes) will typically have smaller magnitudes and so are 
less significant in the propagation series. 

 
Note path 1 in our example traveled along one branch only: 

 
1 0.144p =  

 
Path 2 has five branches:  
 

2 0.1p = −  
 
Path 3 seven branches: 
 

3 0.08p = −  
 

Path 4 nine branches: 
 

4 0.014p =  
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Path 5 eleven branches: 
 

5 0.0112p =  
 

Path 6 eleven branches: 
 

6 0.0112p =  
 

Path 7 thirteen branches: 
 

7 0.009p =  
 

Hopefully it is evident that the magnitude diminishes as the 
path “length” increases.  
 
Q:  So, does this mean that we should abandon our four 
reduction rules, and instead use a truncated propagation 
series to evaluate signal flow graphs?? 
 
A:  Absolutely not! 
 
Remember, truncating the propagation series always results in 
some error.  This error might be sufficiently small if we 
retain enough terms, but knowing precisely how many terms to 
retain is problematic.   
 
We find that in most cases it is simply not worth the 
effort—use the four reduction rules instead (it’s not like 
they’re particularly difficult!). 
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Q:  You say that in “most cases” it is not worth the effort.  
Are there some cases where this approximation is actually 
useful?? 
 
A:  Yes.  A truncated propagation series (typically using only 
the forward paths) is used when these three things are true: 
 

1.  The network or device is complex (lots of nodes and 
branches). 
 
2.  We can conclude from our knowledge of the device 
that the forward paths are sufficient for an accurate 
approximation  (i.e., the magnitudes of all other paths in 
the series are almost certainly very small). 
 
3.  The branch values are not numeric, but instead are 
variables that are dependent on the physical parameters 
of the device (e.g., a characteristic impedance or line 
length). 

 
The result is typically a tractable mathematical equation that 
relates the design variables (e.g., 0Z  or ) of a complex 
device to a specific device parameter. 
 
For example, we might use a truncated propagation series to 
approximately determine some function: 
 

( )01 1 02 2, , ,in Z ZΓ  
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If we desire a matched input (i.e.,  ( )01 1 02 2, , , 0in Z ZΓ = ) we 
can solve this tractable design equation for the (nearly) 
proper values of 01 1 02 2, , ,Z Z . 
 
We will use this technique to great effect for designing 
multi-section matching networks and multi-section coupled 
line couplers. 
 
 
 
 
 
 
 
 
 
 
 

The signal flow graph of a three-section coupled-line coupler. 
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