<u>The Transmission Line</u> <u>Wave Equations</u>

So let's assume that v(z,t) and i(z,t) each have the time-harmonic form:

 $v(z,t) = \operatorname{Re}\left\{V(z) \ e^{jwt}\right\} \quad \text{and} \quad i(z,t) = \operatorname{Re}\left\{I(z) \ e^{jwt}\right\}$

The time-derivative of these eigen functions are easily determined. E.G., :

$$\frac{\partial \mathbf{v}(\mathbf{z}, \mathbf{t})}{\partial \mathbf{t}} = \operatorname{Re}\left\{\mathbf{V}(\mathbf{z})\frac{\partial e^{j\boldsymbol{\omega}\mathbf{t}}}{\partial \mathbf{t}}\right\} = \operatorname{Re}\left\{j\boldsymbol{\omega}\,\mathbf{V}(\mathbf{z})e^{j\boldsymbol{\omega}\mathbf{t}}\right\}$$

From this we can show that the **telegrapher equations** relate I(z) and V(z) as:

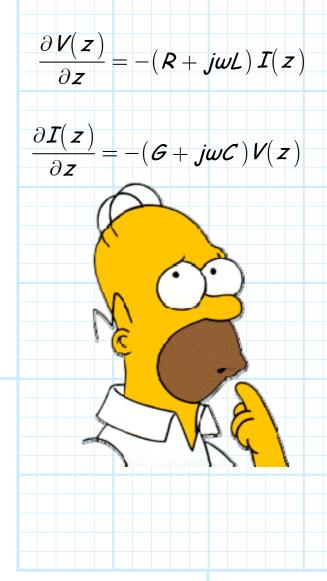
$$\frac{\partial V(z)}{\partial z} = -(R + j\omega L) I(z) \qquad \qquad \frac{\partial I(z)}{\partial z} = -(G + j\omega C) V(z)$$

These are the complex form of the telegrapher equations.

Jim Stiles

What's your quest?

Note that these complex differential equations are **not** a function of **time** *t* !



The functions I(z) and V(z) are complex, where the magnitude and phase of the complex functions describe the magnitude and phase of the sinusoidal time function e^{jwt}.
Thus, I(z) and V(z) describe the current and voltage along the transmission line, as a function as position z.

* **Remember**, not just **any** function I(z) and V(z) can exist on a transmission line, but rather **only** those functions that satisfy the **telegraphers equations**.

Our quest, therefore, is to solve the telegrapher equations and find all solutions I(z) and V(z)!

Jim Stiles

The Transmission Line Wave Equations

Q: So, what functions I(z) and V(z) **do** satisfy both telegrapher's equations??

A: The complex telegrapher's equations are a pair of **coupled** differential equations.

With a little mathematical elbow grease, we can **decouple** the telegrapher's equations, such that we now have **two** equations involving **one** function only:

$$\frac{\partial^2 V(z)}{\partial z^2} = \gamma^2 V(z)$$
where
$$\frac{\partial^2 I(z)}{\partial z^2} = \gamma^2 I(z)$$

These equations are known as the transmission line wave equations. Since they each involve only one unknown function they are easily solved!

The (one and only) solution

to the Wave Equations

The solutions to these wave equations are:

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{+\gamma z}$$

where V_0^+ , V_0^- , I_0^+ , and I_0^- are complex constants.

It is unfathomably important that you understand what this result means!

It means that the functions V(z) and I(z), describing the current and voltage at all points z along a transmission line, can always be completely specified with just four complex constants $(V_0^+, V_0^-, I_0^+, I_0^-)!!$

The wave interpretation

We can **alternatively** write these solutions as:

$$\mathcal{V}(z) = \mathcal{V}^+(z) + \mathcal{V}^-(z)$$
 $\mathcal{I}(z) = \mathcal{I}^+(z) + \mathcal{I}^-(z)$

where:

$$V^+(z) \doteq V_0^+ e^{-\gamma z}$$
 $V^-(z) \doteq V_0^- e^{+\gamma z}$

$$I^+(z) \doteq I_0^+ e^{-\gamma z}$$
 $I^-(z) \doteq I_0^- e^{+\gamma z}$

Q: Just what do the two functions $V^+(z)$ and $V^-(z)$ tell us? Do they have any physical meaning?

A: An incredibly important physical meaning!

Function
$$V^{+}(z)$$
 describes a
wave propagating in the
direction of increasing z, and
 $V^{-}(z)$ describes a wave in the
opposite direction.

<u>Complex amplitudes</u>

Q: So just what **are** the complex values V_0^+ , V_0^- , I_0^+ , I_0^- ?

A: They are called the complex amplitudes of each propagating wave.

Q: Do they have any physical meaning?

A: Consider the wave solutions at one specific point on the transmission line—the point where z=0. We find that the complex value of the wave at that point is:

$$V^{+}(z=0) = V_{0}^{+} e^{-v(z=0)}$$

$$= V_{0}^{+} e^{-(0)}$$

$$= V_{0}^{+} (1)$$

$$= V_{0}^{+}$$

$$Iikewise:$$

$$I_{0}^{+} = I^{+}(z=0)$$

$$I_{0}^{-} = I^{-}(z=0)$$

So, the complex wave amplitude V_0^+ is simply the complex value of the wave function $V^+(z=0)$ at the point z=0 on the transmission line (that's what the subscript $_0$ means—the value at z=0)!

Determining the 4 complex wave amplitudes

Again, the **four** complex values V_0^+ , I_0^+ , V_0^- , I_0^- are **all** that is needed to determine the voltage and current at **any and all** points on the transmission line!

More specifically, **each** of these four complex constants completely specifies **one** of the four transmission line wave functions $V^+(z)$, $I^+(z)$, $V^-(z)$, $I^-(z)$.

Q: But what **determines** these wave functions? How do we **find** the values of constants V_0^+ , I_0^+ , V_0^- , I_0^- ?

A: As you might expect, the voltage and current on a transmission line is determined by the devices **attached** to it on either end (e.g., active **sources** and/or passive **loads**)!

The precise values of V_0^+ , I_0^+ , V_0^- , I_0^- are therefore determined by satisfying the **boundary conditions** applied at **each end** of the transmission line—much more on this **later**!