<u>Time-Harmonic Solutions</u> <u>for Linear Systems</u>

There are an **infinite** number of solutions v(z,t) and i(z,t) for the telegrapher's equations!

However, we can simplify the problem by assuming that the function of time is **time harmonic** (i.e., sinusoidal), oscillating at some radial **frequency** (e.g., *cos* wt).

Q: Why on earth would we assume a sinusoidal function3of time? Why not a square wave, or triangle wave, or a1"sawtooth" function?1

A: Sinusoids have a very special property! Sinusoidal time functions—and only these functions—are the eigen functions of linear, time-invariant systems.

→ If a sinusoidal voltage source with frequency w is used to excite a linear, timeinvariant circuit (e.g., a transmission line), then the voltage at each and every point within the circuit will likewise vary sinusoidally—at the same frequency w!

sin(x)

 $\cos(x)$

Size and Cosine

 $-3\pi - \frac{5\pi}{2} - 2\pi - \frac{3\pi}{2} - \pi - \frac{\pi}{2} = 0 - \frac{\pi}{2} - \pi - \frac{\pi}{2} = 0 - \frac{\pi}{2} - \pi - \frac{3\pi}{2} - \frac{3\pi$

2/6

Eigen Functions and Transmission Lines

Q: So, the sinusoidal function at every point in the circuit is **exactly** the same as the input sinusoid?

A: Not quite exactly the same. Although at every point within the circuit the voltage will be precisely sinusoidal (with frequency ω), the magnitude and relative phase of the sinusoid will generally be different at each and every point within the circuit.

Thus, the voltage along a transmission line—**when** excited by a sinusoidal source—**must** have the form:

$$v(z,t) = v(z) cos(wt + \varphi(z))$$

Thus, at some arbitrary location z along the transmission line, we **must** find a timeharmonic oscillation of magnitude v(z) and relative phase $\varphi(z)$.

For a given frequency ω , the two functions v(z) and $\varphi(z)$ (functions of position z only!) completely describe the oscillating voltage at each and every point along the transmission line.

A Complex Representation of v (z, t)

Q: I just thought of something! Our sinusoidal oscillations are described by a magnitude (v(z)) and a phase $(\varphi(z))$ —but a complex value is also defined by its magnitude and phase $(i.e., c = |c|e^{j\varphi_c})$. Is there a connection between our oscillations and a complex value?

A: Absolutely! A connection made by Euler's Identity

From this it is apparent that:

$$Re\left\{e^{j\psi}
ight\}=cos\psi$$

and so we conclude that the voltage on a transmission line can be expressed as:

$$v(z,t) = v(z)\cos(\omega t + \varphi(z))$$
$$= Re\left\{v(z)e^{j(\omega t + \varphi(z))}\right\}$$
$$= Re\left\{v(z)e^{+j\varphi(z)}e^{j\omega t}\right\}$$

The Complex Function V(z)

It is apparent that we can specify the time-harmonic voltage at each an every location z along a transmission line with the **complex** function V(z):

$$V(z) = v(z)e^{-j\varphi(z)}$$

So that:

$$V(z,t) = V(z)\cos(\omega t + \varphi(z))$$
$$= Re\left\{V(z)e^{+j\varphi(z)}e^{j\omega t}\right\}$$
$$= Re\left\{V(z)e^{j\omega t}\right\}$$

where the magnitude of the complex function is the magnitude of the sinusoid:

 $\mathbf{v}(\mathbf{z}) = |\mathbf{v}(\mathbf{z})|$

and the **phase** of the **complex function** is the relative **phase** of the sinusoid :

$$\varphi(z) = arg\{V(z)\}$$

Jim Stiles

The Complex Function V(z) and You

Microwave engineers almost always describe the activity of a transmission line (if excited by time harmonic sources) in terms of complex functions of position z—and only in terms of complex functions of position z.

As a result, it is **unfathomably important** that you understand what these complex functions **mean**. You **must understand** what these complex functions are telling you about the currents, voltages, etc. along a transmission line.

Perhaps it's helpful to think about these functions as sort of a **compression algorithm**, with the important information **"embedded"** in the complex values. To recover the information, we simply take the **magnitude** and **phase** of these complex values.

$$v(z) = |V(z)|$$
 $\varphi(z) = \arg\{V(z)\}$

See if **you** can determine what these complex values tell you about the **voltage** at different points along a transmission line:

$$V(z=0)=3$$
 $V(z=1)=j$ $V(z=2)=e^{j\pi/4}$

$$V(z=3) = -2$$
 $V(z=4) = \sqrt{2} + j\sqrt{2}$ $V(z=5) = 3e^{-j\frac{\pi}{4}}$

6/6

Why we Love Eigen Functions

Note that the complex function V(z) is a function of position z only!

Q: Hey wait a minute! What happened to the time-harmonic function $e^{j\omega t}$??

A: There really is no reason to **explicitly** write the complex function $e^{j\omega t}$, since we know in fact (being the eigen function of linear systems and all) that if this is the time function at any **one** location (such as the excitation source) then this must be time function at **all** transmission line locations z!

The only **unknown** is the **complex function** V(z). Once we determine V(z), we can always (if we so desire) "recover" the **real** function v(z,t) as:

$$v(z,t) = Re\{V(z)e^{j\omega t}\} = v(z)cos(\omega t + \varphi(z))$$

Thus, if we assume a time-harmonic source, finding the transmission line solution v(z,t) reduces to solving for the complex function V(z)!!!