Transformations on the
Complex I" Plane

The usefulness of the complex I' plane is apparent when we consider again the terminated,
lossless transmission line:

z=—/ z=0
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Recall that the reflection coefficient function for any location zalong the transmission
line can be expressed as (since z, =0):

I(z)=Tr, e =|r,| /%"
And thus, as we would expect:

I[(z=0)=I, and [(z=-0)=T,e’?" =T,
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Transforming I': to T

Recall this result "says” that adding a transmission line of length ¢ to a load results in a
phase shift in . by -2/ radians, while the magnitude |I'| remains unchanged.

Q: Magnitude |U'| and phase 6, --aren't those the values
@ @% used when plotting on the complexT plane?

Im{I'}

A: Precisely! In fact, plotting the
transformation of I', to I';, along a
transmission line length ¢ has an
interesting graphical
interpretation. Let's
parametrically plot T'(z) from
z=2z (ie.,z=0)toz=2z, ¢
(ie., z=-1):




Graphically Transforming I'z to T

1 Since adding a length of transmission line to a load I', modifies
() the phase 6. but not the magnitude |, |, we trace a circular arc
"f'%.‘ as we parametrically plot T'(z)! This arc has a radius |, | and an
i f arc angle 24/ radians.
- 1—'1"1-#-1 \ T"'{‘
N :1-—_5 “~ { \_| With this knowledge, we can easily solve many interesting
| Transmission line problems graphically—using the complex I" planel!

For example, say we wish to determine I'y, for a transmission line length ¢ =1/8 and
terminated with a short circuit.

zZ=—/ z=0
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Example: Graphically Transforming I'z to T

The reflection coefficient of a short circuitis ', =-1=1¢’", and therefore we begin at

that point on the complex I' plane. We then move along a circular arc
-2t =-2(z/4) =-x/2 radians (i.e., rotate clockwise 90°).

Im{I['}

Re{l'}
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When we stop, we find we are at the point for I, in this case I',, =1’ (i.e., magnitude
is one, phase is 90°).



Example: Now with / = \/4

Now, let's repeat this same problem, only with a new transmission line length of ¢ =1/4.

Now we rotate clockwise 23/ = = radians (180°). o
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I'(z)

Re{l'}

For this case, the input reflection coefficient is T, =1e’/° =1 : the reflection coefficient

of an open circuit!

Our short-circuit load has been transformed into an open circuit with a quarter-
wavelength transmission line!



You're not surprised—are you?
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Recall that a quarter-wave transmission
line was one of the special cases we

considered earlier. Recall we found that
the input impedance was proportional to

the inverse of the load impedance. Re{l'}
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Thus, a quarter-wave transmission line
transforms a short into an open.
Conversely, a quarter-wave transmission
can also transform an open into a short:
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Example: Now with / = 1/2

Finally, let's again consider the problem where I', =-1 (i.e., short), only this time with a
transmission line length ¢ = 4/2 ( a half wavelengthl). We rotate clockwise

20 =2rx radians (360°).
Hey look! We came clear
around to where we started/!

/ Im{I'}

Thus, we find that I, =T, if r(z)

( = A/2--but you knew this too!

Recall that the half-

wavelength transmission line is
likewise a special case, where

we found that Z, =Z,. This N
result, of course, likewise

means that ', =T ,.

Re{l'}




Example: Now transform I'in to T':

Now, let's consider the opposite problem. Say we know that the input impedance at the

beginning of a transmission line with length ¢ =1/8 is:

r,=05e*
Q: What is the reflection coefficient of the load?

0, =06, +2pl
A: In this case, we begin at I';,and

rotate COUNTER-CLOCKWISE along
a circular arc (radius 0.5) 24/ = /2

radians (i.e., 60°). Essentially, we are

Im{I'}

removing the phase shift associated
with the tfransmission line!
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The reflection coefficient of the load
is therefore:
r,=05e"

Re{I'}




