<u>Transformations on the</u> <u>Complex Γ Plane</u>

The usefulness of the complex Γ plane is apparent when we consider again the **terminated**, lossless transmission line: $z = -\ell$ z = 0

 Z_0, β

Recall that the reflection coefficient function for **any** location z along the transmission line can be expressed as (since $z_{L} = 0$):

 Γ_{in}

 \leftarrow

$$(\boldsymbol{z}) = \Gamma_{\boldsymbol{L}} \boldsymbol{e}^{j2\beta\boldsymbol{z}} = |\Gamma_{\boldsymbol{L}}| \boldsymbol{e}^{j(\theta_{\Gamma}+2\beta\boldsymbol{z})}$$

And thus, as we would **expect**:

 Z_0, β

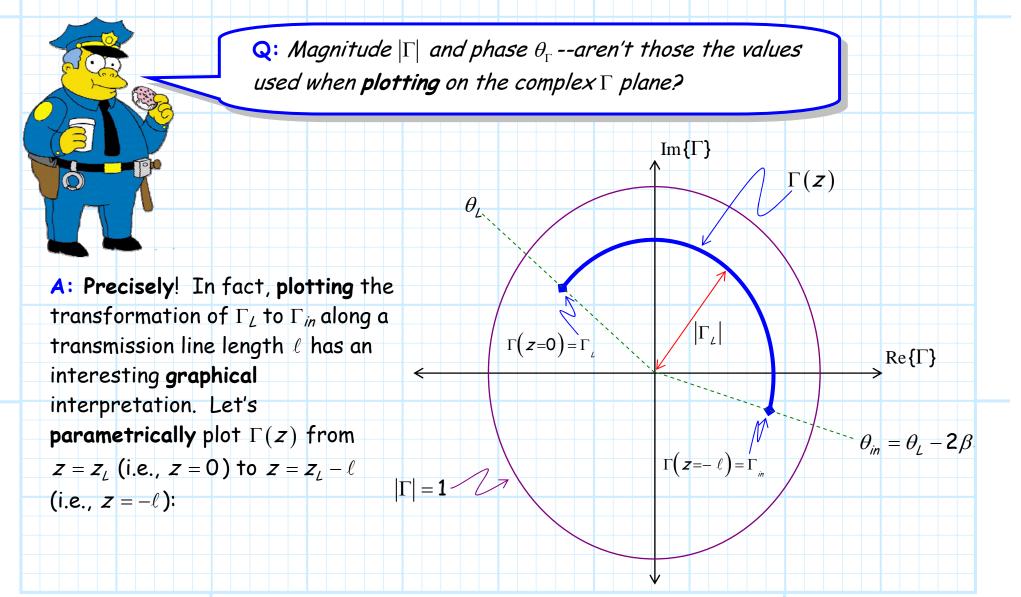
$$\Gamma(z=0) = \Gamma_{L}$$
 and $\Gamma(z=-\ell) = \Gamma_{L}e^{-j2\beta\ell} = \Gamma_{in}$

Jim Stiles

2/8

Transforming Γ_L to Γ_i

Recall this result "says" that adding a transmission line of length ℓ to a load results in a **phase shift** in θ_{Γ} by $-2\beta\ell$ radians, while the **magnitude** $|\Gamma|$ remains **unchanged**.



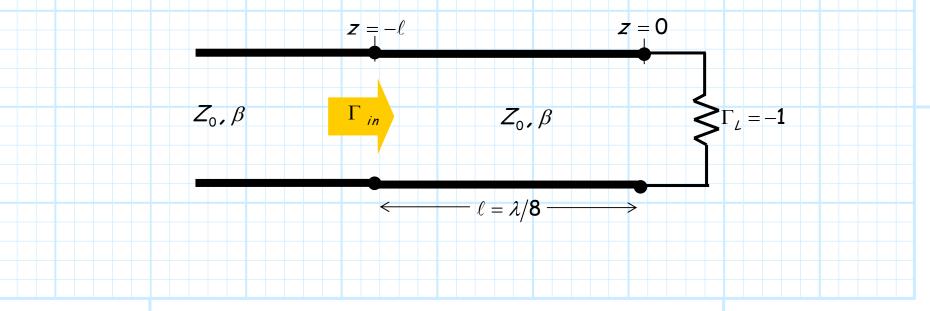
Graphically Transforming Γ_{L} to Γ_{in}



Since adding a length of transmission line to a load Γ_{L} modifies the phase θ_{Γ} but not the magnitude $|\Gamma_{L}|$, we trace a circular arc as we parametrically plot $\Gamma(z)$! This arc has a radius $|\Gamma_{L}|$ and an arc angle $2\beta\ell$ radians.

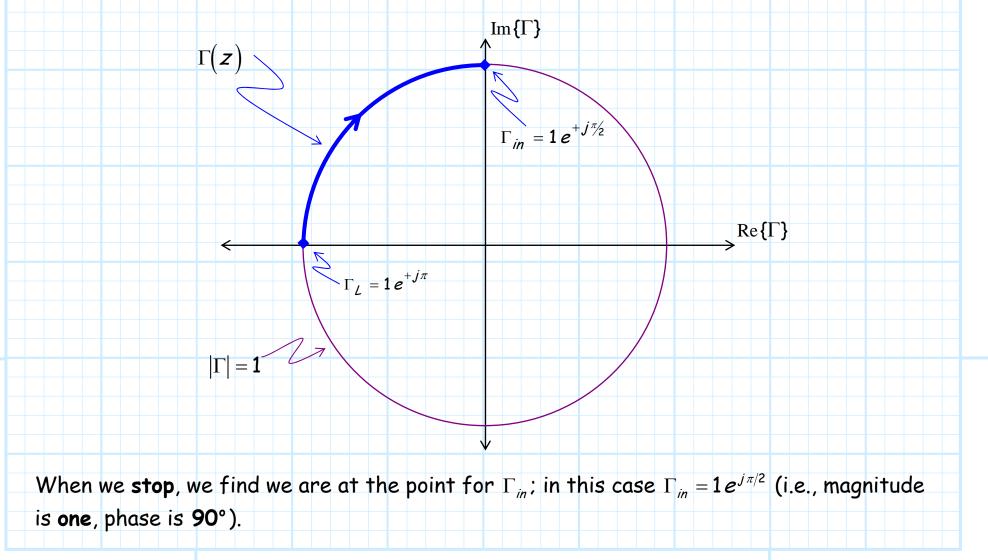
With this knowledge, we can **easily** solve many interesting transmission line problems **graphically**—using the complex Γ plane!

For **example**, say we wish to determine Γ_{in} for a transmission line length $\ell = \lambda/8$ and terminated with a **short** circuit.



Example: Graphically Transforming Γ_{L} to Γ_{in}

The reflection coefficient of a **short** circuit is $\Gamma_{L} = -1 = 1 e^{j\pi}$, and therefore we **begin** at that point on the complex Γ plane. We then move along a **circular arc** $-2\beta\ell = -2(\pi/4) = -\pi/2$ radians (i.e., rotate **clockwise** 90°).



Jim Stiles

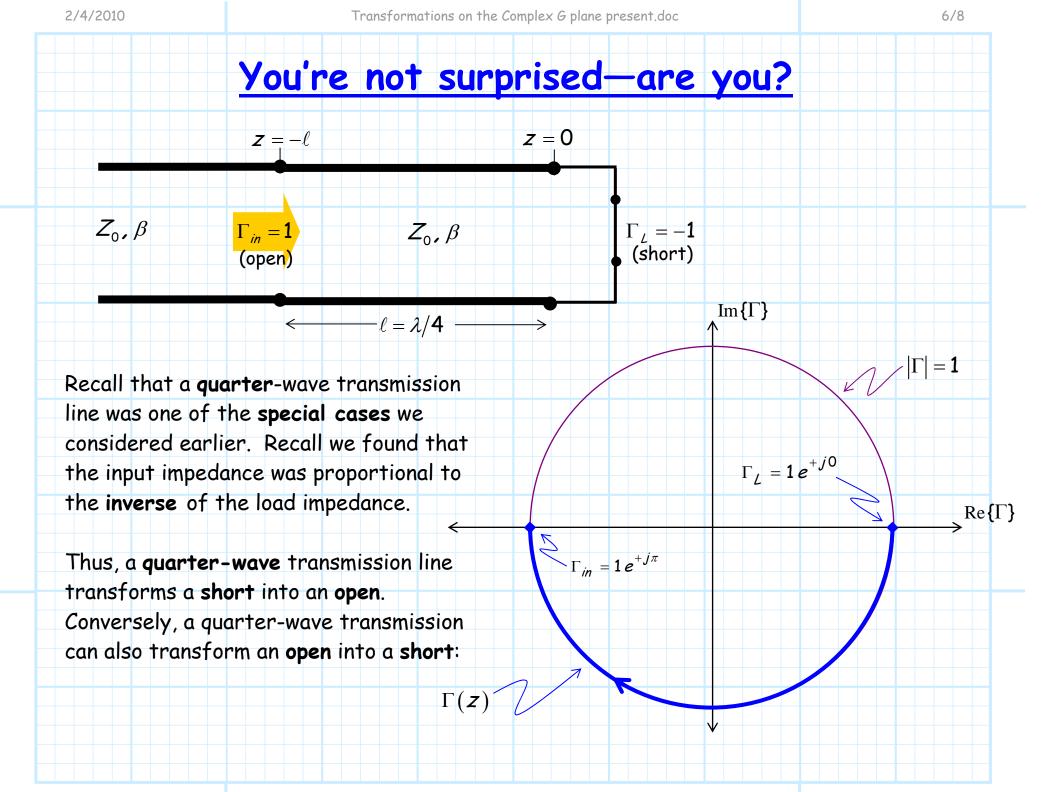
Example: Now with $l = \lambda/4$

Now, let's **repeat** this same problem, only with a **new** transmission line **length** of $\ell = \lambda/4$.

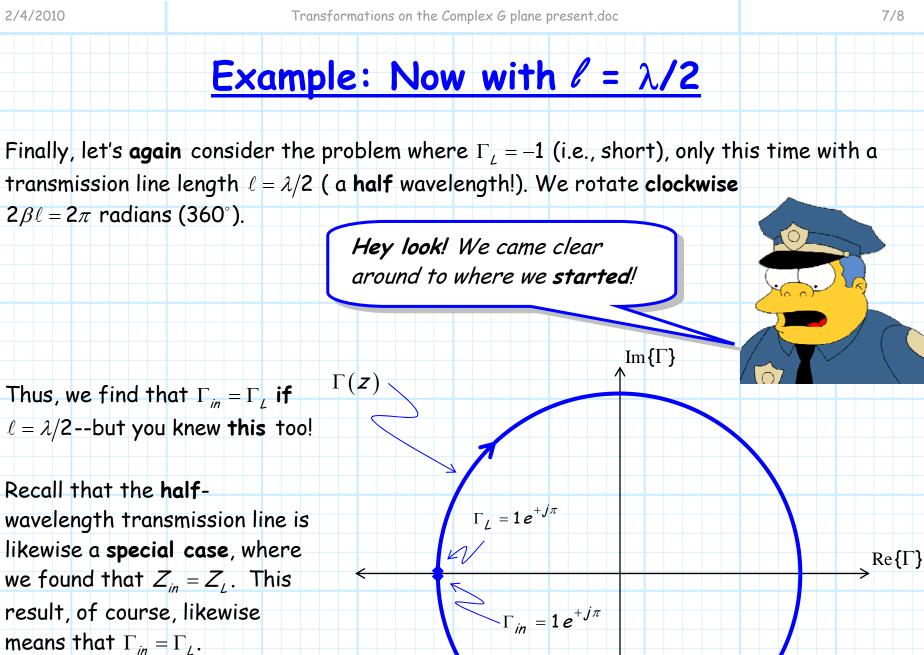
Now we rotate **clockwise** $2\beta \ell = \pi$ radians (180°). Im{Γ} $\Gamma(\mathbf{Z})$ $\Gamma_{in} = 1 e^{+j0}$ $Re{\Gamma}$ $\int \Gamma_L = \mathbf{1} e^{+j\pi}$ $|\Gamma| = 1$ For this case, the input reflection coefficient is $\Gamma_{in} = 1e^{j0} = 1$: the reflection coefficient of an open circuit! Our short-circuit load has been transformed into an open circuit with a quarter-

wavelength transmission line!

Jim Stiles



7/8



 $|\Gamma| = 1$

8/8

Now, let's consider the **opposite** problem. Say we know that the **input** impedance at the **beginning** of a transmission line with length $\ell = \lambda/8$ is:

 $Im{\Gamma}$ $\Gamma(\mathbf{z})$ Q: What is the reflection coefficient of the load? θ_{in} $\theta_{l} = \theta_{in} + 2\beta\ell$ A: In this case, we begin at Γ_{in} and 0.5 rotate COUNTER-CLOCKWISE along a circular arc (radius 0.5) $2\beta \ell = \pi/2$ $\Gamma_{m} = 0.5 \ e^{j60^{\circ}}$ radians (i.e., 60°). Essentially, we are removing the phase shift associated \leftarrow $Re{\Gamma}$ $\Gamma_{L}^{'} = 0.5 \ e^{j150^{\circ}}$ with the transmission line! $|\Gamma| = 1$ The reflection coefficient of the load is therefore: $\Gamma_{L} = 0.5 e^{j150^{\circ}}$