Transmission Line Input Impedance

Consider a lossless line, length ℓ , terminated with a load Z_{ℓ} .

$$I(z) = I^{+}(z) + I^{-}(z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

→ Let's determine the input impedance of this line!

It's not Z and it's not Zo

Q: Just what do you mean by input impedance?

A: The input impedance is simply the line impedance at the beginning (at $z = -\ell$) of the transmission line, i.e.:

$$Z_{in} = Z(z = -\ell) = \frac{V(z = -\ell)}{I(z = -\ell)}$$

Note Z_{in} is equal to **neither** the load impedance Z_{L_i} nor the characteristic impedance Z_0 !

There's more on the next page...

To determine exactly what Z_{in} is, we first must determine the voltage and current at the **beginning** of the transmission line $(z = -\ell)$.

$$V\!\left(z=-\ell
ight)=V_0^+\!\left[e^{+jeta\ell}+\Gamma_0\,e^{-jeta\ell}
ight]$$

$$I(z=-\ell)=rac{V_0^+}{Z_0}\left[e^{+jeta\ell}-\Gamma_0e^{-jeta\ell}\right]$$

Therefore:

$$Z_{in} = rac{V(z=-\ell)}{I(z=-\ell)} = Z_0 \left(rac{e^{+jeta\ell} + \Gamma_0 e^{-jeta\ell}}{e^{+jeta\ell} - \Gamma_0 e^{-jeta\ell}}
ight)$$

We can **explicitly write** Z_{in} in terms of load Z_L using the previously determined relationship:

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \Gamma_0$$

...Zin can be WAY different than ZL

Combining these two expressions, we get:

$$Z_{in} = Z_{0} \frac{(Z_{L} + Z_{0})e^{+j\beta\ell} + (Z_{L} - Z_{0})e^{-j\beta\ell}}{(Z_{L} + Z_{0})e^{+j\beta\ell} - (Z_{L} - Z_{0})e^{-j\beta\ell}}$$

$$= Z_{0} \frac{Z_{L}(e^{+j\beta\ell} + e^{-j\beta\ell}) + Z_{0}(e^{+j\beta\ell} - e^{-j\beta\ell})}{Z_{L}(e^{+j\beta\ell} + e^{-j\beta\ell}) - Z_{0}(e^{+j\beta\ell} - e^{-j\beta\ell})}$$

Now, recall Euler's equations:

$$e^{+jeta\ell} = \coseta\ell + j\sineta\ell$$
 and $e^{-jeta\ell} = \coseta\ell - j\sineta\ell$

Using Euler's relationships, we can likewise write the input impedance without the complex exponentials:

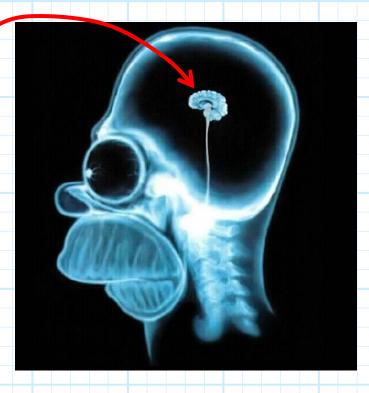
$$Z_{in} = Z_0 \left(\frac{Z_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_L \sin \beta \ell} \right) = Z_0 \left(\frac{Z_L + j Z_0 \tan \beta \ell}{Z_0 + j Z_L \tan \beta \ell} \right)$$

Note that depending on the values of β , Z_0 and ℓ , the input impedance can be radically different from the load impedance Z_{ℓ} !

Your brain should be big enough

Now let's look at the Z_{in} for some important load impedances and line lengths.

→ You should commit these results to memory!



1. Line Length is one-half a wavelength

If the length of the transmission line is exactly one-half wavelength ($\ell= 1/2$), we find that:

$$\beta \ell = \frac{2\pi}{\Lambda} \frac{\Lambda}{2} = \pi$$

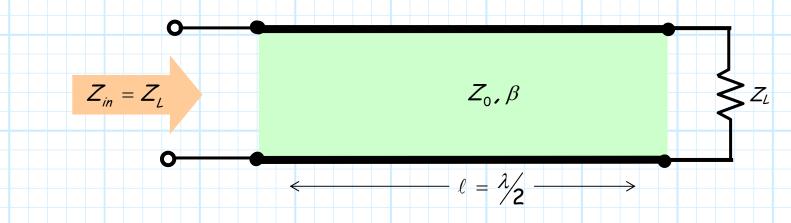
meaning that:

$$\cos \beta \ell = \cos \pi = -1$$
 and $\sin \beta \ell = \sin \pi = 0$

and therefore:

$$Z_{in} = Z_0 \left(\frac{Z_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_L \sin \beta \ell} \right) = Z_0 \left(\frac{Z_L (-1) + j Z_L (0)}{Z_0 (-1) + j Z_L (0)} \right) = Z_L$$

In other words, if the transmission line is precisely one-half wavelength long, the input impedance is equal to the load impedance, regardless of Z_0 or β .



2. Line Length is one-quarter a wavelength

If the length of the transmission line is exactly **one-quarter** wavelength $(\ell = \lambda/4)$, we find that:

$$\beta \ell = \frac{2\pi}{\Lambda} \frac{\Lambda}{4} = \frac{\pi}{2}$$

meaning that:

$$\cos \beta \ell = \cos \pi/2 = 0$$
 and $\sin \beta \ell = \sin \pi/2 = 1$

and therefore:

$$Z_{in} = Z_0 \left(\frac{Z_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_L \sin \beta \ell} \right) = Z_0 \left(\frac{Z_L (0) + j Z_0 (1)}{Z_0 (0) + j Z_L (1)} \right) = \frac{\left(Z_0 \right)^2}{Z_L}$$

In other words, if the transmission line is precisely **one-quarter** wavelength long, the input impedance is inversely proportional to the load impedance.

A short becomes an open—and vice versa!

> Think about what this means!

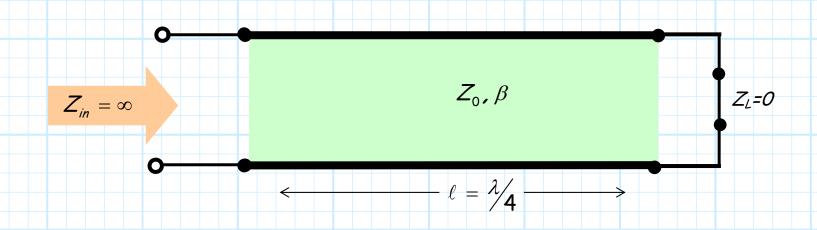
Say the load impedance is a short circuit, such that $Z_L = 0$.

The input impedance at beginning of the 1/4 transmission line is therefore:

$$Z_{in} = \frac{\left(Z_0\right)^2}{Z_I} = \frac{\left(Z_0\right)^2}{0} = \infty$$

 $Z_{in} = \infty$! This is an open circuit!

The quarter-wave transmission line **transforms** a short-circuit into an open-circuit—and vice versa!



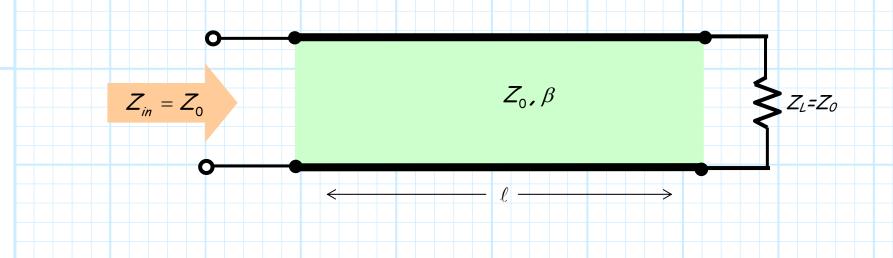
3. Load is numerically equal to Zo

If the load is numerically equal to the characteristic impedance of the transmission line (a real value), we find that—regardless of length ℓ (!)—the input impedance becomes:

$$Z_{in} = Z_0 \left(\frac{Z_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_L \sin \beta \ell} \right)$$

$$= Z_0 \left(\frac{Z_0 \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_0 \sin \beta \ell} \right) = Z_0$$

In other words, if the load impedance is equal to the transmission line characteristic impedance, the input impedance will be likewise be equal to Z_0 , regardless of the transmission line length $\ell!!!!$



4. Load is purely reactive (RL=0)

If the load is **purely reactive** (i.e., the **resistive** component is **zero**), the input impedance is:

$$Z_{in} = Z_0 \left(\frac{Z_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_L \sin \beta \ell} \right)$$

$$= Z_0 \left(\frac{j X_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j^2 X_L \sin \beta \ell} \right)$$

$$= j Z_0 \left(\frac{X_L \cos \beta \ell + Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell - X_L \sin \beta \ell} \right)$$

In other words, if the load is purely reactive, then the input impedance will likewise be purely reactive, regardless of the line length ℓ .



5. Load is purely real (X = 0)

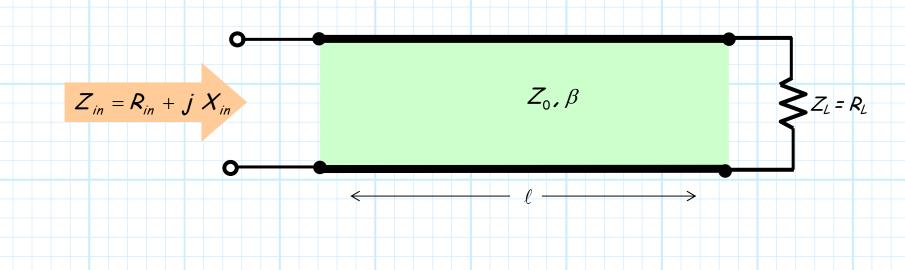
Q: Hey! If a purely reactive load results in a purely reactive input impedance, then is seems to reason that a purely resistive load would likewise result in a purely resistive input impedance.

Is this true? It seems to work for real load $Z_L = Z_0!$

A: This is definitely not true!!!!

Even if the load is **purely resistive** $(Z_L = R)$, the input impedance will in general be **complex** (both resistive and reactive components).

→ Do you see why? Why does this make sense? Make sure YOU know!



6.Line length is much shorter than a wavelength

If the transmission line is **electrically small**—its length ℓ is small with respect to signal wavelength Λ --we find that:

$$m{eta}\ell = rac{2\pi}{\Lambda}\ell = 2\pirac{\ell}{\Lambda} pprox 0$$

and thus:

$$\cos \beta \ell = \cos 0 = 1$$
 and $\sin \beta \ell = \sin 0 = 0$

so that the input impedance is:

$$Z_{in} = Z_0 \left(\frac{Z_L \cos \beta \ell + j Z_0 \sin \beta \ell}{Z_0 \cos \beta \ell + j Z_L \sin \beta \ell} \right) = Z_0 \left(\frac{Z_L (1) + j Z_L (0)}{Z_0 (1) + j Z_L (0)} \right) = Z_L$$

In other words, if the transmission line length is much smaller than a wavelength, the **input** impedance Z_{in} will **always** be equal to the **load** impedance Z_{ℓ} .

Electrically small: A wire is just a wire

This is the assumption we used in all previous circuits courses (e.g., EECS 211, 212, 312, 412)!

In those courses, we assumed that the signal frequency ω is relatively **low**, such that the signal wavelength Λ is **very large** $(\Lambda \gg \ell)$.

Note also for this case (the electrically short transmission line), the voltage and current at each end of the transmission line are approximately the same!

$$V(z=-\ell) pprox V(z=0)$$
 and $I(z=-\ell) pprox I(z=0)$ if $\ell \ll \Lambda$

If $\ell \ll \Lambda$, our "wire" behaves **exactly** as it did in EECS 211!

