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II Transmitter and Receiver Design 
 
We design radio systems using RF/microwave components. 
 
Q:  Why don’t we use the “usual” circuit components (e.g., 
resistors, capacitors, op-amps, transistors) ?? 
 
A: We do use these! But we require new devices because: 
 

1.  
 

2.   
 
 

A.  Microwave Components 
 
Let’s carefully examine each of the microwave devices that 
are useful for radio design: 
 

1)   
2)   
3)  
4)   
5)   
6)   
7)   
8)   
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1.  Transmission Lines 
 
Q:  So just what is a transmission line? 
 
A:  
 
 

   
 
Q:  Oh, so it’s simply a conducting wire, right? 
 
A:   
 
 
HO: The Telegraphers Equations 
 
HO: Time-Harmonic Solutions for Linear Circuits 
 
a)  Basic Transmission Line Theory 
 
Q:  So, what complex functions  I(z) and V(z) do satisfy both 
telegrapher equations? 
 
A:   
 
HO: The Transmission Line Wave Equations 
 
Q:  Are the solutions for I(z) and V(z) completely 
independent, or are they related in any way ? 
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A:   
 
 
HO: The Transmission Line Characteristic Impedance 
 
Q:  So what is the significance of the constant β? What does 
it tell us? 
 
A:    
   
 
HO: The Propagation Constant 
 
Q:   Is characteristic impedance Z0 the same as the concept 
of impedance I learned about in circuits class? 
 
A:  
 
 
 
HO: Line Impedance 
 
Q:  These wave functions ( )V z+  and ( )V z−  seem to be 
important.  How are they related? 
 
A:   
 
 
HO:  The Reflection Coefficient 
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HO: V, I, Z or V+, V-, Γ ?? 
 
b)  The Terminated, Lossless Transmission Line 
 
We now know that a lossless transmission line is completely 
characterized by real constants 0Z  and β . 
 
Likewise, the 2 waves propagating on a transmission line are 
completely characterized by complex constants 0V +  and 0V − . 
 
Q:  0Z  and β  are determined from L, C, and ω .  How do we 
find  0V +  and 0V −  ? 
 
A:  
 
Every transmission line has 2 “boundaries” 
 

1)      
2)     

 
Typically, there is a source at one end of the line, and a load 
at the other. 
 

 
 
 
Let’s apply the load boundary condition! 
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HO:  The Terminated, Lossless Transmission Line 
 
HO:  Special Values of Load Impedance 
 
Q:  So what is the significance of the constant β? What does 
it tell us? 
 
A:   
   
 
HO: The Propagation Constant 
 
Q: So the line impedance at the end of a line must be load 
impedance ZL  (i.e., ( )L LZ z z Z= = );  what is the line 
impedance at the beginning of the line (i.e., 

( )LZ z z ?= − = )? 
 
A:  
 
HO:  Transmission Line Input Impedance 
 
Q:  You said the purpose of the transmission line is to 
transfer E.M. energy from the source to the load.  Exactly 
how much power is flowing in the transmission line, and how 
much is delivered to the load? 
 
A:  HO: Power Flow and Return Loss 
 
Note that we can specify a load with: 
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 1)   
 2)   
 3)   
 
A fourth alternative is VSWR. 
 
HO: VSWR 
 
c)   A second boundary condition: Applying a generator to the 
transmission line 
 
Q:  A passive load ZL specifies Z(z) and Γ(z), but we still don’t 
explicitly know V(z), I(z), V+(z), or V-(z).  How are these 
functions determined? 
 
A:   
 
 
 
 
HO: A Transmission Line Connecting Source and Load 
 
Q:  OK, we can finally ask the question that we have been 
concerned with since the very beginning: How much power is 
delivered to the load by the source? 
 
A: HO: Delivered Power 
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Q:  So the power transferred depends on the source, the 
transmission line, and the load.  What combination of these 
devices will result in maximum power transfer? 
 
A: HO: Special Cases of Source and Input Impedances  
   
Q:  Yikes! The signal source is generally a Thevenin’s 
equivalent of the output of some useful device, while the load 
impedance is generally the input impedance of some other 
useful device.  I do not want to—nor typically can I—change 
these devices or alter their characteristics. 
 
Must I then just accept the fact that I will achieve 
suboptimum power transfer? 
 
A: 
 
 
 
HO: Matching Networks 
 
Q: But in microwave circuits, a source and load are connected 
by a transmission line.  Can we implement matching networks in 
transmission line circuits? 
 
A:  HO: Matching Networks and Transmission Lines 
 
Q: Matching networks seem almost too good to be true; can 
we really design and construct them to provide a perfect 
match? 
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A:  It is relatively easy to provide a near perfect match at 
precisely one frequency! 
 
But, since lossless matching networks are made entirely of 
reactive elements (not to mention the reactive components of 
the source and load impedance), we find that changing the 
signal frequency will typically “mismatch” our circuit! 
 
Thus a difficult challenge for any microwave component 
designer is to provide a wideband match to a transmission line 
with characteristic impedance Z0. 
 

   
 
 
d)  Scattering Parameters 
 
Note that a passive load is a one-port device—a device that 
can be characterized (at one frequency) by impedance ZL or 
load reflection coefficient ΓL . 
 
However, many microwave devices have multiple ports! 
 
Most common are two-port devices (e.g., amplifiers and 
filters), devices with both a gozenta and a gozouta. 
 
 
 
 

gozenta gozouta 
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Note that a transmission line is also two-port device! 
 
Q: Are there any known ways to characterize a multi-port 
device? 
 
A:  Yes! Two methods are: 
 
 1.  
 
 2.   
 
HO: The Impedance Matrix 
 
Q:  You say that the impedance matrix characterizes a multi-
port device.  But is this characterization helpful?  Can we 
actually use it to solve real problems? 
 
A:  Example: Using the Impedance Matrix 
 
Q:  The impedance matrix relates the quantities V (z) and 
I(z), is there an equivalent matrix that relates V+(z) and V-(z)? 
 
A:   
 
 
HO: The Scattering Matrix 
 
Q:  Can the scattering matrix likewise be used to solve real 
problems? 
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A:  Of course! 
 
Example: The Scattering Matrix 
 
Example: Scattering Parameters 
 
Q:  But, can the scattering matrix by itself tell us anything 
about the device it characterizes? 
 
A:  Yes! It can tell us if the device is matched, or lossless, or 
reciprocal. 
 
HO: Matched, Lossless, Reciprocal 
 
e)  Types of Transmission Lines 
 
Perhaps the most common transmission line structure is 
coaxial transmission line. 
 
HO:Coaxial Transmission Lines 
 
Coaxial transmission lines are used with connectorized 
devices. 
 
HO: Coax Connectors 
 
We can also construct transmission lines on printed circuit 
boards. 
 
HO:  Printed Circuit Board Transmission Lines 
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The Telegrapher Equations 
 
Consider a section of “wire”: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Q:  Huh ?! Current i and voltage v are a function of position z ?? 
Shouldn’t  ( , ) ( , )i z t i z z t= + ∆ and ( , ) ( , )v z t v z z t= + ∆  ? 
 
A: NO ! Because a wire is never a perfect conductor. 
 
A “wire” will have: 
 

1) Inductance 
2) Resistance 
3) Capacitance 
4) Conductance 

 

i (z,t) i (z+∆z,t) 

+ 
v (z,t) 
- 

+ 
v (z+∆z,t) 
- 

∆z 
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 i.e., 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where: 
 

R = resistance/unit length 
L = inductance/unit length 
C = capacitance/unit length 
G = conductance/unit length 

 
∴ resistance of wire length ∆z  is R∆z. 

 
 
 
Using KVL, we find: 

( , )( , ) ( , ) ( , ) i z tv z z t v z t R z i z t L z
t

∂
+ ∆ − = − ∆ − ∆

∂
 

 
and from KCL: 

( , )( , ) ( , ) ( , ) v z ti z z t i z t G z v z t C z
t

∂
+ ∆ − = − ∆ − ∆

∂
 

i (z,t) i (z+∆z,t) 

+ 
 
v (z,t) 
 
- 

+ 
 
v (z+∆z,t) 
 
- 

R ∆z L ∆z 

G ∆z 
C ∆z 

∆z 
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Dividing the first equation by ∆z, and then taking the limit as 
0z∆ → : 

( , ) ( , ) ( , )( , )
0

lim
z

v z z t v z t i z tR i z t L
z t∆ →

+ ∆ − ∂
= − −

∆ ∂
 

 
which, by definition of the derivative, becomes: 
 

( , ) ( , )( , )v z t i z tR i z t L
z t

∂ ∂
= − −

∂ ∂
 

 
Similarly, the KCL equation becomes: 
 

( , ) ( , )( , )i z t v z tG v z t C
z t

∂ ∂
= − −

∂ ∂
 

 
These equations are known as the telegrapher’s equations ! 
 

 
 

( , ) ( , )( , )v z t i z tR i z t L
z t

∂ ∂
= − −

∂ ∂
 

 
( , ) ( , )( , )i z t v z tG v z t C
z t

∂ ∂
= − −

∂ ∂
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Time-Harmonic Solutions 
for Linear Circuits 

 
There are an unaccountably infinite number of solutions 
( )v z ,t  and ( )i z ,t  for the telegrapher’s equations!  However, 

we can simplify the problem by assuming that the function of 
time is time harmonic (i.e., sinusoidal), oscillating at some 
radial frequencyω  (e.g.,cos ωt ). 
 
Q:  Why on earth would we assume a sinusoidal function of 
time? Why not a square wave, or triangle wave, or a 
“sawtooth” function? 
 
A:   We assume sinusoids because they have a very special 
property!   
 
Sinusoidal time functions—and only a sinusoidal time 
functions—are the eigen functions of linear, time-invariant 
systems. 
  
Q: ??? 
 
A:  If a sinusoidal voltage source with frequency ω  is used to 
excite a linear, time-invariant circuit (and a transmission line 
is both linear and time invariant!), then the voltage at each 
and every point with the circuit will likewise vary 
sinusoidally—at the same frequency ω ! 
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Q: So what? Isn’t that obvious? 
 
A:  Not at all! If you were to excite a linear circuit with a 
square wave, or triangle wave, or sawtooth, you would find 
that—generally speaking—nowhere else in the circuit is the 
voltage a perfect square wave, triangle wave, or sawtooth.  
The linear circuit will effectively distort the input signal into 
something else! 
 
Q:  Into what function will the input signal be distorted? 
 
A:  It depends—both on the original form of the input signal, 
and the parameters of the linear circuit.  At different points 
within the circuit we will discover different functions of 
time—unless, of course, we use a sinusoidal input.  Again, for a 
sinusoidal excitation, we find at every point within circuit an 
undistorted sinusoidal function! 
 
Q:  So, the sinusoidal function at every point in the circuit is 
exactly the same as the input sinusoid? 
 
A:  Not quite exactly the same.  Although at every point 
within the circuit the voltage will be precisely sinusoidal (with 
frequency ω ), the magnitude and relative phase of the 
sinusoid will generally be different at each and every point 
within the circuit. 
 
Thus, the voltage along a transmission line—when excited by a 
sinusoidal source—must have the form:  
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( ) ( ) ( )( )v z ,t v z cos ωt φ z= +  

 
Thus, at some arbitrary location z along the transmission line, 
we must find a time-harmonic oscillation of magnitude ( )v z  
and relative phase ( )φ z . 

 
Now, consider Euler’s equation, which states: 
 

jψe cos ψ j sin ψ= +  
 
Thus, it is apparent that: 
 

{ }jψRe e cos ψ=  
 

and so we conclude that the voltage on a transmission line can 
be expressed as: 
 

( ) ( ) ( )( )
( ) ( )( ){ }
( ) ( ){ }

j ωt φ z

jφ z jωt

v z ,t v z cos ωt φ z

Re v z e

Re v z e e

+

+

= +

=

=

 

 
Thus, we can specify the time-harmonic voltage at each an 
every location z along a transmission line with the complex 
function ( )V z : 
 

( ) ( ) ( )jφ zV z v z e −=  
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where the magnitude of the complex function is the 
magnitude of the sinusoid: 
 

( ) ( )v z V z=  
 

and the phase of the complex function is the relative phase of 
the sinusoid : 

( ) ( ){ }φ z arg V z=  
 

Q:  Hey wait a minute! What happened to the time-harmonic 
function jωte ?? 
 
A:  There really is no reason to explicitly write the complex 
function jωte , since we know in fact (being the eigen function 
of linear systems and all) that if this is the time function at 
any one location (such as qt the excitation source) then this 
must be time function at all transmission line locations z ! 
 
The only unknown is the complex function ( )V z .  Once we 
determine ( )V z , we can always (if we so desire) “recover” the 
real function ( )v z ,t  as: 
 

( ) ( ){ }jωtv z ,t Re V z e=  
 
Thus, if we assume a time-harmonic source, finding the 
transmission line solution ( )v z ,t  reduces to solving for the 
complex function ( )V z . 
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The Transmission Line 
Wave Equation 

 
Let’s assume that  ( , ) , and ( )v z t i z t  each have the time-
harmonic form: 
 

{ }( , ) Re ( ) j tv z t V z e ω=    and   { }( , ) Re ( ) j ti z t I z e ω=  

 
The time-derivative of these functions are: 
 

{ }( , ) Re ( ) Re ( )
j t

j tv z t eV z j V z e
t t

⎧ ⎫∂ ∂
= =⎨ ⎬∂ ∂⎩ ⎭

ω
ωω  

 

{ }( , ) Re ( ) Re ( )
j t

j ti z t eI z j I z e
t t

⎧ ⎫∂ ∂
= =⎨ ⎬

∂ ∂⎩ ⎭

ω
ωω  

 
The telegrapher’s equations thus become: 
 

{ }( ) ( ) ( )j t j tV zRe e Re R j L I z e
z

∂⎧ ⎫ = − +⎨ ⎬∂⎩ ⎭
ω ωω  

 

{ }( ) ( ) ( )j t j tI zRe e Re G j C V z e
z

∂⎧ ⎫ = − +⎨ ⎬∂⎩ ⎭
ω ωω  

 
And then simplifying, we have the complex form of 
telegrapher’s equations: 
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( ) ( ) ( )

( ) ( ) ( )

V z R j L I z
z

I z G j C V z
z

∂
= − +

∂

∂
= − +

∂

ω

ω

 

 
 

Note that these complex differential equations are not a 
function of time t ! 
 
*  The functions I(z) and V(z) are complex, where the 
magnitude and phase of the complex functions describe the 
magnitude and phase of the sinusoidal time function j te ω . 
 
*  Thus, I(z) and V(z) describe the current and voltage along the 

transmission line, as a function as position z. 
 
*  Remember, not just any function I(z) and V(z) can exist on a 

transmission line, but rather only those functions that 
satisfy the telegraphers equations. 

 
 
 
 
 
 
 
 
 
 

Our task, therefore, is to solve 
the telegrapher equations and 
find all solutions I (z) and V (z)! 
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Q: So, what functions I (z) and V (z) do satisfy both 
telegrapher’s equations?? 
 
A: To make this easier, we will combine the telegrapher 
equations to form one differential equation for V (z) and 
another for I(z). 
 
First, take the derivative with respect to z of the first 
telegrapher equation: 
 

( ) ( ) ( )

( ) ( )( )

ω

ω

∂ ∂⎧ ⎫= − +⎨ ⎬
∂ ∂⎩ ⎭
∂ ∂

= = − +
∂ ∂

V z R j L I z
z z

V z I zR j L
z z

2

2

 

 
Note that the second telegrapher equation expresses the 
derivative of I(z) in terms of V(z): 
 

( ) ( ) ( )ω∂
= − +

∂
I z G j C V z

z
 

 
Combining these two equations, we get an equation involving V (z) 
only: 

( ) ( )( ) ( )
2

2
V z R j L G j C V z
z

∂
= + +

∂
ω ω  

 
Now, we find at high frequencies that: 
 

     and       R j L G j Cω ω  
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and so we can approximate the differential equation as:   
 

( )( )( ) ( ) ( ) ( )
2

2 2
2

V z j L j C V z LC V z V z
z

∂
= = =

∂
ω ω ω β  

 
where it is apparent that: 
 

2 2LCβ ω  
 
 
In a similar manner (i.e., begin by taking the derivative of the 
second telegrapher equation), we can derive the differential 
equation: 

( ) ( )
2

2I z I z
z

β
∂

=
∂

 

 
We have decoupled the telegrapher’s equations, such that we 
now have two equations involving one function only: 
 
 

( ) ( )

( ) ( )

2
2

2
2

V z V z
z

I z I z
z

β

β

∂
=

∂

∂
=

∂

 

 
 
These are known as the transmission line wave equations. 
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Note only special functions satisfy these equations: if we take 
the double derivative of the function, the result is the original 
function (to within a constant)! 
 
 
 
 
 
 
 
 
A: Such functions do exist !   
 
For example, the functions  ( ) j zV z e β−=  and  ( ) j zV z e β+=  each 
satisfy this transmission line wave equation (insert these into 
the differential equation and see for yourself!).  
 
Likewise, since the transmission line wave equation is a linear 
differential equation, a weighted superposition of the two 
solutions is also a solution (again, insert this solution to and see 
for yourself!): 
 

( ) 0 0
j z j zV z V e V eβ β− ++ −= +  
 

In fact, it turns out that any and all possible solutions to the 
differential equations can be expressed in this simple form! 
 
Therefore, the general solution to these wave equations (and 
thus the telegrapher equations) are: 

 
 

Q: Yeah right! Every  function that 
I know is changed after a double 
differentiation.  What kind of 
“magical” function could possibly 
satisfy this differential equation?  
  



8/23/2006 The Transmission Line Wave Equation 6/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
( )

( )

0 0

0 0

j z j z

j z j z

V z V e V e

I z I e I e

β β

β β

− ++ −

− ++ −

= +

= +

 

 
 
where 0 0 0 0and V , V , I , I+ − + −  are complex constants. 
 

 It is unfathomably important that you understand what this 
result means!  
 
It means that the functions V(z) and I(z), describing the 
current and voltage at all points z  along a transmission line, can 
always be completely specified with just four complex 
constants ( 0 0 0 0V , V , I , I+ − + − )!! 
 
We can alternatively write these solutions as: 
 
 

( ) ( ) ( )

( ) ( ) ( )

V z V z V z

I z I z I z

+ −

+ −

= +

= +

 

where:  
 

( ) ( )

( ) ( )

0 0

0 0

j z j z

j z j z

V z V e V z V e

I z I e I z I e

β β

β β

− ++ + − −

− ++ + − −
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The two terms in each solution describe two waves propagating 
in the transmission line, one wave (V +(z) or I +(z) ) propagating 
in one direction (+z) and the other wave (V -(z) or I -(z) ) 
propagating in the opposite direction (-z). 
 
 
 
 
 
 
 
Q:  So just what are the complex values 0 0 0 0V , V , I , I+ − + −  ? 
 
A:  Consider the wave solutions at one specific point on the 
transmission line—the point z = 0.  For example, we find that: 
 

( )
( )

( )

( 0)
0

0
0

0

0

0

1

j zV z V e
V e
V
V

β− =+ +

−+

+

+

= =

=

=

=

 

 
In other words, 0V +  is simply the complex value of the wave       
function V +(z) at the point z =0 on the transmission line! 
 

( ) 0
j zV z V e +− −= β  

z 

( ) 0
j zV z V e −+ += β  
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Likewise, we find:  
( )

( )

( )

0

0

0

0

0

0

V V z

I I z

I I z

− −

+ +

− −

= =

= =

= =

 

 
Again, the four complex values 0 0 0 0V , I , V , I+ + − −  are all that is 
needed to determine the voltage and current at any and all 
points on the transmission line.  
 
More specifically, each of these four complex constants 
completely specifies one of the four transmission line wave 
functions ( )V z+ , ( )I z+ , ( )V z− , ( )I z− . 
 
 
 
 
 
 
 
 
A:  As you might expect, the voltage and current on a 
transmission line is determined by the devices attached to it on 
either end (e.g., active sources and/or passive loads)! 
 
The precise values of 0 0 0 0V , I , V , I+ + − −  are therefore determined 
by satisfying the boundary conditions applied at each end of 
the transmission line—much more on this later! 

Q:  But what determines these wave 
functions?  How do we find the values 
of constants  0 0 0 0V , I , V , I+ + − −? 
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The Characteristic 
Impedance of a 
Transmission Line 

 
So, from the telegrapher’s differential equations, we know that 
the complex current I(z) and voltage V (z) must have the form: 
 

0 0

0 0

j z j z

j z j z

V ( z ) V e V e

I ( z ) I e I e

β β

β β

− ++ −

− ++ −

= +

= +

 

 
 
Let’s insert the expression for V (z) into the first telegrapher’s 
equation, and see what happens ! 
 

0 0
j z j zdV ( z ) j V e j V e j L I ( z )

dz
− ++ −= − + = −β ββ β ω  

 
Therefore, rearranging, I (z) must be: 
 

0 0( )j z j zI ( z ) V e V e
L

− ++ −= −β ββ
ω
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A:  Easy ! Both expressions for current are equal to each other. 
 

0 0 0 0( )j z j z j z j zI ( z ) I e I e V e V e
L

β β β ββ
ω

− + − ++ − + −= + = −  

 
For the above equation to be true for all z, 0 0 and I V  must be 
related as: 
 

0 0 0 0      and        z z z zI e V e I e V e
L L

+ − + − − + − +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−γ γ γ γ

ω ω
β β  

 
Or—recalling that ( )0

j zV e V z−+ +=β   (etc.)—we can express this 
in terms of the two propagating waves: 
 

( ) ( ) ( ) ( )      and        I z V z I z V z
L L

+ + − −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
ω ω
β β  

 
 Now, we note that since: 
 

 LC=β ω  
 
 

Q: But wait !  I thought we already knew 
current I(z). Isn’t it: 
 

0 0
j z j zI ( z ) I e I eβ β− ++ −= +   ?? 

 
How can both expressions for I(z) be true?? 
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We find that: 
 

 LC C
L L L
= =
ω

ω ω
β  

 
Thus, we come to the startling conclusion that: 
 

 
( )
( )

( )
( )

      and      
V VL L
I C I C

z z
z z

+ −

+ −

−
= =  

 
 
 
Q:  What’s so startling about this conclusion? 
 
A:  Note that although the magnitude and phase of each 
propagating wave is a function of transmission line position z 
(e.g., ( )V z+  and ( )I z+ ), the ratio of the voltage and current of 
each wave is independent of position—a  constant with respect 
to position z ! 
 
Although 0 0 and V I± ±  are determined by boundary conditions 
(i.e., what’s connected to either end of the transmission line), 
the ratio 0 0V I± ± is determined by the parameters of the 
transmission line only (R, L, G, C). 
 

 This ratio is an important characteristic of a transmission 
line, called its Characteristic Impedance Z0. 
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0 0
0

0 0

V V LZ
I I C

+ −

+ −

−
= =  

 
 
We can therefore describe the current and voltage along a 
transmission line as: 
 
 

0 0

0 0

0 0

j z j z

j z j z

V ( z ) V e V e

V VI ( z ) e e
Z Z

β β

β β

− ++ −

+ −
− +

= +

= −

 

 
 
or equivalently: 
 
 

0 0 0 0

0 0

j z j z

j z j z

V ( z ) Z I e Z I e

I ( z ) I e I e

β β

β β

− ++ −

− ++ −

= −

= +

 

 

 

Note that instead of characterizing a transmission line with real 
parameters L and C, we can (and typically do!) describe a 
lossless transmission line using real parameters Z0 and β . 
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Line Impedance  
 
Now let’s define line impedance ( )Z z , a complex function 
which is simply the ratio of the complex line voltage and 
complex line current: 
 
 

( ) ( )
( )

V zZ z
I z

=  

 
 
 

 
 
 
 
 
A: NO!  The line impedance ( )Z z  is (generally speaking) 
NOT the transmission line characteristic impedance Z0 !!! 
 

 It is unfathomably important that you understand 
this!!!! 

 
To see why, recall that: 
 
 

( ) ( ) ( )V z V z V z+ −= +  

 

Q:  Hey! I know what this is! The 
ratio of the voltage to current is 
simply the characteristic 
impedance Z0, right ??? 



8/25/2006 Line Impedance 2/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

And that: 

( ) ( ) ( )
0

V z V zI z
Z

+ −−
=  

Therefore: 
 
 

( ) ( )
( )

( ) ( )
( ) ( )0 0

V z V z V zZ z Z Z
I z V z V z

+ −

+ −

⎛ ⎞+
= = ≠⎜ ⎟−⎝ ⎠

 

 
 
Or, more specifically, we can write: 
 

( ) 0 0
0

0 0

j z j z

j z j z
V e V eZ z Z
V e V e

− ++ −

− ++ −

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

β β

β β  

 
 
 
 
 
 
 
A:  Yes! That is true! The ratio of the voltage to current for 
each of the two propagating waves is 0Z± .  However, the ratio 
of the sum of the two voltages to the sum of the two currents 
is not equal to Z0  (generally speaking)! 
 
This is actually confirmed by the equation above.  Say that 

( ) 0V z− = , so that only one wave ( ( )V z+ ) is propagating on 
the line. 

 

Q:  I’m confused!  Isn’t: 
 

( ) ( ) 0V z I z Z+ + =  ??? 
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In this case, the ratio of the total voltage to the total 
current is simply the ratio of the voltage and current of the 
one remaining wave—the characteristic impedance Z0 ! 
 

( ) ( )
( )

( )
( )

( )
( )

( )0 0 (when 0)V z V z V zZ z Z Z V z
I z V z I z

+ +
−

+ +

⎛ ⎞
= = = = =⎜ ⎟

⎝ ⎠
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  Exactly!  Moreover, note that characteristic impedance Z0 

is simply a number, whereas line impedance ( )Z z  is a function 
of position (z )  on the transmission line. 

 

Q:  So, it appears to me that characteristic 
impedance Z0 is a transmission line 
parameter, depending only on the 
transmission line values L and C. 
 
Whereas line impedance is ( )Z z  depends 
the magnitude and phase of the two 
propagating waves ( )V z+  and ( )V z− --values 
that depend not only on the transmission 
line, but also on the two things attached to 
either end of the transmission line!   
 
Right !? 
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The Reflection Coefficient 
 
So, we know that the transmission line voltage ( )V z and the 
transmission line current ( )I z  can be related by the line 
impedance ( )Z z : 
 

( ) ( ) ( )V z Z z I z=  
 
or equivalently: 

( ) ( )
( )

V zI z
Z z

=  

 
 
 
 
 
 
 
 
 
 
 
Expressing the “activity” on a transmission line in terms of 
voltage, current and impedance is of course perfectly valid. 
 
However, let us look closer at the expression for each of 
these quantities: 
 

Q:  Piece of cake! I fully 
understand the concepts of 
voltage, current and impedance 
from my circuits classes.  Let’s 
move on to something more 
important (or, at the very least, 
more interesting). 
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( ) ( ) ( )V z V z V z+ −= +  
 
 

( ) ( ) ( )
0

V z V zI z
Z

+ −−
=  

 
 

( ) ( ) ( )
( ) ( )0

V z V zZ z Z
V z V z

+ −

+ −

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

 

 
It is evident that we can alternatively express all “activity” on 
the transmission line in terms of the two transmission line 
waves ( )V z+  and ( )V z− .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) 0
j zV z V e β+− −

+

=
−

 

z 

( ) 0
j zV z V e β−+ +

+

=
−

 

Q: I know ( )V z  and ( )I z  are related 
by line impedance ( )Z z : 
 

( ) ( )
( )

V zZ z
I z

=  

 
But how are ( )V z+  and ( )V z−  related? 
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A: Similar to line impedance, we can define a new parameter—
the reflection coefficient ( )zΓ —as the ratio of the two 
quantities: 
 

( ) ( )
( )

( ) ( ) ( )V zz V z z V z
V z

−
− +

+Γ = Γ⇒  

 
  

More specifically, we can express ( )zΓ  as: 
 

( ) 20 0

0 0

j z
j z

j z
V e Vz e
V e V

β
β

β

+− −
+

−+ +Γ = =  

 
Note then, the value of the reflection coefficient at z =0 is: 
 

( ) ( )
( )

( )2 0 0

0 0

0
0

0
jV z Vz e

V z V
β

− −
+

+ +

=
Γ = = =

=
 

 
We define this value as 0Γ , where: 
 
 

( ) 0
0

0

0 Vz
V

−

+Γ Γ = =  

 
 

Note then that we can alternatively write ( )zΓ  as: 
 

( ) 2
0

j zz e β+Γ = Γ  
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Based on your circuits experience, you 
might well be tempted to always use 
the first relationship. However, we will 
find it useful (as well as simple) indeed 
to describe activity on a transmission 
line in terms of the second 
relationship—in terms of the two 
propagating transmission line waves! 

So now we have two different but equivalent ways to describe 
transmission line activity! 
 
We can use (total) voltage and current, related by line 
impedance: 
 
 

( ) ( )
( )

( ) ( ) ( )V zZ z V z Z z I z
I z

= ∴ =  

 
 
Or, we can use the two propagating voltage waves, related by 
the reflection coefficient: 
 
 

( ) ( )
( )

( ) ( ) ( )V zz V z z V z
V z

−
− +

+Γ = ∴ = Γ  

 
 
These are equivalent relationships—we can use either when 
describing a transmission line.   
 
 
 

 



8/28/2006 I_V_Z or 1/7 

Jim Stiles The Univ. of Kansas Dept. of EECS 

V,I,Z or V+,V-,Γ ? 
 
 
 
 
 
 
 

 
A:  Remember, the two relationships are 
equivalent.  There is no explicitly wrong or 
right choice—both will provide you with 
precisely the same correct answer! 
 
For example, we know that the total voltage and current can 
be determined from knowledge wave representation: 
 

 
( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

( ) ( )( )
0

0

1

1

V z V z V z
V z z

V z V zI z
Z

V z z
Z

+ +

+

+ +

+

= +

= + Γ

−
=

− Γ
=

 

 
 

 

Q: How do I choose which relationship 
to use when describing/analyzing 
transmission line activity?  What if I 
make the wrong choice?  How will I 
know if my analysis is correct? 
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Or explicitly using the wave solutions ( ) 0
j zV z V e β+ + −=  and 

( ) 0
j zV z V e β− − += : 

 
( )

( )

( )

( )

0 0

0 0

0 0

0

0 0

0

j z j z

j z j z

j z j z

j z j z

V z V e V e
V e e

V e V eI z
Z

V e e
Z

β β

β β

β β

β β

− ++ −

− ++

− ++ −

− ++

= +

= + Γ

−
=

− Γ
=

 

 
More importantly, we find that line impedance 

( ) ( ) ( )Z z V z I z=  can be expressed as: 
 
  

( ) ( ) ( )
( ) ( )

( )
( )

0

0
1
1

V z V zZ z Z
V z V z

zZ
z

+ +

+ +

+
=

−

⎛ ⎞+ Γ
= ⎜ ⎟− Γ⎝ ⎠

 

 
 
Look  what happened—the line impedance can be completely 
and unambiguously expressed in terms of reflection 
coefficient ( )zΓ !  
 
More explicitly: 
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( ) 0 0
0

0 0
2

0
0 2

0

1
1

j z j z

j z j z

j z

j z

V e V eZ z Z
V e V e

eZ
e

β β

β β

β

β

− ++ −

− ++ −

+

+

+
=

−

+ Γ
=

− Γ

 

With a little algebra, we find likewise that the wave functions 
can be determined from ( ) ( ) ( ) and V z , I z Z z : 
 
 

( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )

( )
( )

( )

0

0

0

0

2

2

2

2

V z I z ZV z

V z Z z Z
Z z

V z I z ZV z

V z Z z Z
Z z

+

−

+
=

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠

−
=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 

 
 
From this result we easily find that the reflection coefficient 

( )zΓ can likewise be written directly in terms of line 
impedance: 
 
 

( ) ( )
( )

0

0

Z z Zz
Z z Z

−
Γ =

+
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Thus, the values ( )zΓ  and ( )Z z  are equivalent parameters—
if we know one, then we can directly determine the other! 
 
 

 
 
 
 
 
 
 
A:  Perhaps I can convince you of the value of 
the wave representation.  

 
Remember, the time-harmonic solution to the telegraphers 
equation simply boils down to two complex constants— 0V + and 

0V −.  Once these complex values have been determined, we 
can describe completely the activity all points along our 
transmission line. 
 
For the wave representation we find: 
 
 

( )

( )

( )

0

0

20

0

j z

j z

j z

V z V e

V z V e

Vz e
V

β

β

β

−+ +

+− +

−
+

+

=

=

Γ =

 

 

Q:  So, if they are equivalent, why 
wouldn’t I always use the current, 
voltage, line impedance representation?  
After all, I am more familiar and more 
confident those quantities. The wave 
representation sort of scares me! 
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Note that the magnitudes of the complex functions are in 
fact constants (with respect to position z): 
 
 

( )

( )

( )

0

0

0

0

V z V

V z V

Vz
V

+ +

− +

−

+

=

=

Γ =

 

 
While the relative phase of these complex functions are 
expressed as a simple linear relationship with respect to z : 
 

( ){ }

( ){ }

( ){ } 2

V z z

V z z

z z

β

β

β

+

−

= −

= +

Γ = +

arg

arg

arg

 

 
Now, contrast this with the complex current, voltage, 
impedance functions: 
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( )

( )

( )

0 0

0 0

0

0 0
0

0 0

j z j z

j z j z

j z j z

j z j z

V z V e V e

V e V eI z
Z

V e V eZ z Z
V e V e

β β

β β

β β

β β

− ++ −

− ++ −

− ++ −

− ++ −

= +

−
=

+
=

−

 

With magnitude: 
 

( )

( )

( )

0 0

0 0

0

0 0
0

0 0

??

??

??

j z j z

j z j z

j z j z

j z j z

V z V e V e

V e V e
I z

Z

V e V e
Z z Z

V e V e

β β

β β

β β

β β

− ++ −

− ++ −

− ++ −

− ++ −

= + =

−
= =

+
= =

−

 

 
and phase: 
 

( ){ } { }

( ){ } { }

( ){ } { }
{ }

0 0

0 0

0 0

0 0

??

??

??

j z j z

j z j z

j z j z

j z j z

V z V e V e

I z V e V e

Z z V e V e

V e V e

β β

β β

β β

β β

− ++ −

− ++ −

− ++ −

− ++ −

= + =

= − =

= +

− −

=

arg arg

arg arg

arg arg

arg
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A:  Yes it is! However, this does not mean that we never 
determine V(z), I(z), or Z(z); these quantities are still 
fundamental and very important—particularly at each end of 
the transmission line! 

 

Q: It appears to me that when 
attempting to describe the 
activity along a transmission 
line—as a function of position 
z—it is much easier and more 
straightforward to use the 
wave representation.  Is my 
insightful conclusion correct 
(nyuck, nyuck, nyuck)? 
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The Terminated, Lossless 
Transmission Line 

 
Now let’s attach something to our transmission line. Consider a 
lossless line, length , terminated with a load ZL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q:  What is the current and voltage at each and every point on 
the transmission line (i.e., what is ( )I z  and ( )V z  for all points 
z where L Lz z z− ≤ ≤  ?)? 
 
A:  To find out, we must apply boundary conditions! 
 
In other words, at the end of the transmission line ( Lz z= )—
where the load is attached—we have many requirements that all 
must be satisfied!  

I(z) 

0,Z β
+ 
V (z) 
- 

+ 
VL 
- 

 
ZL 
 

IL 

Lz z= − Lz z=
z 
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1. To begin with, the voltage and current ( ( )LI z z=  and 
( )LV z z= ) must be consistent with a valid transmission line 

solution: 
 

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

0 0

0 0

L L

L L

L L L
j z j z

L L
L

j z j z

V z z V z z V z z
V e V e

V z z V z zI z z
Z Z

V Ve e
Z Z

β β

β β

+ −

− ++ −

+ −

+ −
− +

= = = + =

= +

= =
= = −

= −

 

 
2.  Likewise, the load voltage and current must be related by 
Ohm’s law: 

L L LV Z I=  
 

3.  Most importantly, we recognize that the values ( )LI z z= , 
( )LV z z=  and IL, VL are not independent, but in fact are 

strictly related by Kirchoff’s Laws!

I(z=zL) 

0,Z β

        + 
 
V (z=zL) 
 
        - 

+ 
 
VL 
 
- 

 
ZL 
 

IL 

Lz z= − Lz z=
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From KVL and KCL we find these requirements: 
 
 

( )

( )

L L

L L

V z z V

I z z I

= =

= =

 

 
These are the boundary conditions for this particular problem.  
 

 Careful! Different transmission line problems lead to 
different boundary conditions—you must access each 
problem individually and independently! 

 
Combining these equations and boundary conditions, we find 
that: 
 

( ) ( )

( ) ( ) ( ) ( )( )
0

L L L

L L L

L
L L L L

V Z I

V z z Z I z z

ZV z z V z z V z z V z z
Z

+ − + −

=

= = =

= + = = = − =

 

 
Rearranging, we can conclude: 
 
 

( )
( )

0

0

L L

L L

V z z Z Z
V z z Z Z

−

+

= −
=

= +
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Q:  Hey wait as second! We earlier defined ( ) ( )V z V z− +  as 
reflection coefficient ( )zΓ .  How does this relate to the 
expression above? 
 
A: Recall that ( )zΓ  is a function of transmission line position z.  
The value ( ) ( )L LV z z V z z− += =  is simply the value of function 
( )zΓ  evaluated at Lz z=  (i.e., evaluated at the end of the line): 

 
( )
( ) ( ) 0

0

L L
L

L L

V z z Z Zz z
V z z Z Z

−

+

= −
= Γ = =

= +
 

 
This value is of fundamental importance for the terminated 
transmission line problem, so we provide it with its own special 
symbol ( LΓ ) ! 
 

( ) 0

0

L
L L

L

Z Zz z
Z Z

−
Γ Γ = =

+
 

 
 

Q:  Wait! We earlier determined that: 
 

( ) ( )
( )

0

0

Z z Zz
Z z Z

−
Γ =

+
 

so it would seem that: 
 

( ) ( )
( )

0

0

L
L L

L

Z z z Zz z
Z z z Z

= −
Γ = Γ = =

= +
 

  
Which expression is correct?? 
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A:  They both are!  It is evident that the two expressions: 
 

0

0

L
L

L

Z Z
Z Z

−
Γ =

+
       and        ( )

( )
0

0

L
L

L

Z z z Z
Z z z Z

= −
Γ =

= +
 

 
are equal if: 

( )L LZ z z Z= =  
 

And since we know that from Ohm’s Law: 
 

L
L

L

VZ
I

=  

and from Kirchoff’s Laws: 
 

( )
( )

LL

L L

V z zV
I I z z

=
=

=
 

 
and that line impedance is: 
 

( )
( ) ( )L

L
L

V z z Z z z
I z z

=
= =

=
 

 
we find it apparent that the line impedance at the end of the 
transmission line is equal to the load impedance: 
 

( )L LZ z z Z= =  
 

The above expression is essentially another expression of the 
boundary condition applied at the end of the transmission line. 
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A: We are trying to find V(z) and I(z) when a 
lossless transmission line is terminated by a 
load ZL! 
 
 We can now determine the value of 0V −  in terms of 0V + . Since: 
 

( )
( )

0

0

L

L

j z
L

L j z
L

V z z V e
V z z V e

β

β

− +−

−+ +

=
Γ = =

=
 

We find: 
 

2
0 0

Lj z
LV e Vβ−− += Γ  

  
And therefore we find: 
 

( ) ( )2
0

Lj z j z
LV z e V eβ β− +− += Γ  

 
( ) ( )

( ) ( )

2
0

20

0

L

L

j z j z j z
L

j z j z j z
L

V z V e e e

VI z e e e
Z

β β β

β β β

− − ++

+
− − +

⎡ ⎤= + Γ⎣ ⎦

⎡ ⎤= − Γ⎣ ⎦

 

where: 
 

0

0

L
L

L

Z Z
Z Z

−
Γ =

+
 

 
 

Q:  I’m confused! Just what are were we 
trying to accomplish in this handout? 
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0Lz =  

 
Now, we can further simplify our analysis by arbitrarily 
assigning the end point zL a zero value (i.e., 0Lz = ): 
 
 
 
 
 
 
 
 
 
If the load is located at z =0 (i.e., if 0Lz = ), we find that: 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

0 0
0 0

0 0

0 0

0 00 0

0

0 0

0

0

0

0

0 0 0

0 0
0

j j

j j

V z V z V z
V e V e

V z V zI z
Z Z

V Ve e
Z

V V

V
Z

V
Z

β β

β β

+ −

− ++ −

+

+ −

+ −
− +

−

+ −

= = = + =

= +

=

= =
=

=
−

= −

+

= −

 

 

( ) 0 0
0

0 0

0 V VZ z Z
V V

+ −

+ −

⎛ ⎞+
= = ⎜ ⎟−⎝ ⎠

 

 

I(z) 

0,Z β
+ 
V (z) 
- 

+ 
VL 
- 

 
ZL 
 

IL 

z = − 0z =

z 
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Likewise, it is apparent that if 0Lz = , LΓ  and 0Γ  are the same: 
 

( ) ( )
( )

0
0

0

0
0L L

V z Vz z
V z V

− −

+ +

=
Γ = Γ = = = = Γ

=
 

 
Therefore: 

0
0

0

L
L

L

Z Z
Z Z

−
Γ = = Γ

+
 

 
Thus, we can write the line current and voltage simply as: 
 
 

( )

( )

0

0

0

                                                      for 0

j z j z
L

L

j z j z
L

V z V e e
z

VI z e e
Z

β β

β β

− ++

+
− +

⎡ ⎤= + Γ⎣ ⎦
=⎡ ⎤⎣ ⎦

⎡ ⎤= − Γ⎣ ⎦

 

 
 

 
Q:  But, how do we determine 0V +  ?? 
 
A: We require a second boundary condition to determine 0V + .  
The only boundary left is at the other end of the transmission 
line.  Typically, a source of some sort is located there.  This 
makes physical sense, as something must generate the incident 
wave ! 
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Special Values of 
Load Impedance 

 
It’s interesting to note that the load ZL enforces a boundary 
condition that explicitly determines neither V(z) nor I(z)—but 
completely specifies line impedance Z(z)! 
 
 

( )

( )

0
0 0

0

2 20

0

j z j z
L L

j z j z
L L

j z j zL
L

L

e e Z cos z jZ sin zZ z Z Z
e e Z cos z jZ sin z

Z Zz e e
Z Z

β β

β β

β β

β β
β β

− +

− +

+ +

+ Γ −
= =

− Γ −

−
Γ = Γ =

+

 

 
Likewise, the load boundary condition leaves ( )V z+  and ( )V z−  
undetermined, but completely determines reflection 
coefficient function ( )zΓ ! 
 
Let’s look at some specific values of load impedance 

L L LZ R jX= +  and see what functions Z(z) and ( )zΓ  result! 
 
1.  0LZ Z=  
 
In this case, the load impedance is numerically equal to the 
characteristic impedance of the transmission line.   Assuming 
the line is lossless, then Z0 is real, and thus: 
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0LR Z=       and       0LX =  

 
It is evident that the resulting load reflection coefficient is 
zero: 

0 0 0

0 0 0

0L
L

L

Z Z Z Z
Z Z Z Z

− −
Γ = = =

+ +
 

 
This result is very interesting, as it means that there is no 
reflected wave ( )V z− ! 
 
Thus, the total voltage and current along the transmission line 
is simply voltage and current of the incident wave: 
 

( ) ( )

( ) ( )

0

0

0

j z

j z

V z V z V e

VI z I z e
Z

β

β

−+ +

+
−+

= =

= =

 

 
Meaning that the line impedance is likewise numerically equal 
to the characteristic impedance of the transmission line for 
all line position z: 
 

( ) ( )
( )

0
0 0

0

j z

j z
V z V eZ z Z Z
I z V e

β

β

−+

−+= = =  

 
And likewise, the reflection coefficient is zero at all points 
along the line: 
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( ) ( )
( ) ( )

0 0V zz
V z V z

−

+ +Γ = = =  

 
We call this condition (when 0LZ Z= ) the matched condition, 
and the load 0LZ Z=  a matched load. 
 
 
2.  L LZ jX=  
 
For this case, the load impedance is purely reactive (e.g. a 
capacitor of inductor), the real (resistive) portion of the load 
is zero: 

0LR =  
 
The resulting load reflection coefficient is: 
 

00

0 0

LL
L

L L

jX ZZ Z
Z Z jX Z

−−
Γ = =

+ +
 

 
Given that Z0is real (i.e., the line is lossless), we find that this 
load reflection coefficient is generally some complex number.   
 
We can rewrite this value explicitly in terms of its real and 
imaginary part as: 
 

2 2
0 00

2 2 2 2
0 0 0

2L LL
L

L L L

jX Z Z XX Z j
jX Z X Z X Z

⎛ ⎞ ⎛ ⎞− −
Γ = = +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

 

 
Yuck! This isn’t much help!   
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Let’s instead write this complex value LΓ  in terms of its 
magnitude and phase.  For magnitude we find a much more 
straightforward result!   
 

2 2 2
2 0 0

2 2 2
00

1L L
L

LL

jX Z X Z
X ZjX Z

− +
Γ = = =

++
 

 
Its magnitude is one! Thus, we find that for reactive loads, 
the reflection coefficient can be simply expressed as: 
 

j
L e θΓΓ =  

where 
1 0

2 2
0

2 L

L

Z Xtan
X Z

θ −
Γ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

 
 We can therefore conclude that for a reactive load: 
 

0 0
jV e VθΓ− +=  

 
As a result, the total voltage and current along the 
transmission line is simply (assuming 0Lz = ): 

 
 

 

( ) ( )
( ) ( )( )
( )

0

2 22
0

2
02 cos 2

Lj z j j z

j z j zj

j

V z V e e e

V e e e

V e z

β θ β

β θ β θθ

θ β θ

Γ ΓΓ

Γ

− + ++

− + + +++

++
Γ

= +

= +

= +
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( ) ( )

( ) ( )( )

( )

0

0

2 220

0

20

0

2 sin 2

L LL

L

j z j z

j z j zj

j
L

VI z e e
Z
V e e e
Z

Vj e z
Z

β β

β θ β θθ

θ β θ

+
− +

+
− + + ++

+
+

= −

= −

= − +

 

 
Meaning that the line impedance can be written in terms of a 
trigonometric function: 
 

( ) ( )
( )

( )0 cot 2V zZ z j Z z
I z

β θΓ= = +  

 
Note that this impedance is purely reactive—V(z) and I(z) are  
90  out of phase! 
 
We also note that the line impedance at the end of the 
transmission line is: 
 

( ) ( )00 2Z z jZ cot θΓ= =  
 

With a little trigonometry, we can show (trust me!) that: 
 

( )
0

2 LXcot
Z

θΓ =  

and therefore: 
 

( ) ( )00 2 L LZ z jZ cot j X ZθΓ= = = =  
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Just as we expected (and our boundary condition demanded)! 
 
Finally, the reflection coefficient function is: 
 

( ) ( )
( )

( )2 20

0

j j z
j z

j z
V z V e ez e
V z V e

θ β
β θ

β

Γ
Γ

− + ++
+ +

−+ +Γ = = =  

 
Meaning that for purely reactive loads: 
 

( ) ( )2 2 1j zz e β θΓ+ +Γ = =  

 
In other words, the magnitude reflection coefficient function 
is equal to one—at each and every point on the transmission 
line. 
  
 
3.  L LZ R=  
 
For this case, the load impedance is purely real (e.g. a 
resistor), and thus there is no reactive component: 
 

0LX =  
 

The resulting load reflection coefficient is:  
 

0 0

0 0

L
L

L

Z Z R Z
Z Z R Z

− −
Γ = =

+ +
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Given that Z0 is real (i.e., the line is lossless), we find that 
this load reflection coefficient must be a purely real value! 
In other words: 
 

{ } 0

0
L

R ZRe
R Z
−

Γ =
+

            { }Im 0LΓ =  

 
So a real-valued load ZL results in a real valued load reflection 
coefficient GL . 
 
Now let’s consider the line impedance ( )Z z  and reflection 
coefficient function ( )zΓ . 
 
Q: I bet I know the answer to this one!  We know that a 
purely imaginary (i.e., reactive) load results in a purely 
reactive line impedance.  
 
Thus, a purely real (i.e., resistive) load will result in a purely 
resistive line impedance, right?? 
 
A:  NOPE!  The line impedance resulting from a real load is 
complex—it has both real and imaginary components! 
 
Thus the line impedance, as well as reflection coefficient 
function, cannot be further simplified for the case where 

L LZ R= . 
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Q:  Why is that?   
 
A:   Remember, a lossless transmission line has series 
inductance and shunt capacitance only.  In other words, a 
length of lossless transmission line is a purely reactive device 
(it absorbs no energy!). 
 
*  If we attach a purely reactive load at the end of the 
transmission line, we still have a completely reactive system 
(load and transmission line).  Because this system has no 
resistive (i.e., real) component, the general expressions for 
line impedance, line voltage, etc. can be significantly 
simplified. 
 
*  However, if we attach a purely real load to our reactive 
transmission line, we now have a complex system, with both 
real and imaginary (i.e., resistive and reactive) components.  
This complex case is exactly what our general expressions 
already describes—no further simplification is possible! 
 
4.  L L LZ R jX= +  
 
Now, let’s look at the general case, where the load has both a 
real (resitive) and imaginary (reactive) component. 
 
Q:  Haven’t we already determined all the general 
expressions (e.g., ( ) ( ) ( ) ( )L ,V z ,I z ,Z z , zΓ Γ ) for this general 
case?  Is there anything else left to be determined? 
 
 



8/30/2006 Special Values of Load Impedance 9/11 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A: There is one last thing we need to discuss.  It seems 
trivial, but its ramifications are very important! 
 
For you see, the “general” case is not, in reality, quite so 
general.  Although the reactive component of the load can be 
either positive or negative ( LX−∞ < < ∞ ), the resistive 
component of a passive load must be positive ( 0LR > )—there’s 
no such thing as negative resistor! 
 
This leads to one very important and useful result.  Consider 
the load reflection coefficient: 
 

( )
( )
( )
( )

0

0

0

0

0

0

L
L

L

L L

L L

L L

L L

Z Z
Z Z
R jX Z
R jX Z
R Z jX
R Z jX

−
Γ =

+

+ −
=

+ +

− +
=

+ +

 

 
Now let’s look at the magnitude of this value: 
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( )
( )
( )
( )
( )
( )
( )
( )

2
2 0

0

2 2
0

2 2
0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2
2

2
2

L L
L

L L

L L

L L

L L L

L L L

L L L

L L L

R Z jX
R Z jX

R Z X
R Z X
R R Z Z X
R R Z Z X

R Z X R Z
R Z X R Z

− +
Γ =

+ +

− +
=

+ +

− + +
=

+ + +

+ + −
=

+ + +

 

 
It is apparent that since both LR  and 0Z  are positive, the 
numerator of the above expression must be less than (or equal 
to) the denominator of the above expression. 
 

 In other words, the magnitude of the load reflection 
coefficient is always less than or equal to one! 
 
 

1LΓ ≤     (for 0LR ≥ ) 
 
 
Moreover, we find that this means the reflection coefficient 
function likewise always has a magnitude less than or equal to 
one, for all values of position z. 
 

( ) 1zΓ ≤     (for all  z) 
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Which means, of course, that the reflected wave will always 
have a magnitude less than that of the incident wave 
magnitude: 
 
 

( ) ( )V z V z− +≤          (for all  z) 
 

 
 
We will find out later that this result is consistent with 
conservation of energy—the reflected wave from a passive 
load cannot be larger than the wave incident on it. 
 
 

 
 



8/30/2006 The Propagation Constant B 1/5 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Propagation 
Constant β 

 
Recall that the activity along a transmission line can be 
expressed in terms of two functions, functions that we have 
described as wave functions: 
 

( )

( )

0

0

j z

j z

V z V e

V z V e

β

β

−+ +

+− −

=

=

 
 
where β is a real constant with value:  
 

LC=β ω  
 

Q:  What is this constant β? What does it physically represent?  
 
A:  Remember, a complex function can be expressed in terms of 
its magnitude and phase: 
 

( ) ( ) ( )fj zf z f z e φ=  
Thus: 
 

( ) ( )

( ) ( )

0 0

0 0

V z V z z

V z V z z

φ β φ

φ β φ

+ + + +

− − − −

= = − +

= = + +
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Therefore, 0zβ φ +− +  represents the relative phase of wave 
( )V z+ ; a function of transmission line position z.  Since phase φ  

is expressed in radians, and z is distance (in meters), the value 
β must have units of: 
 

radians     
meterz

=
φβ  

 
The wavelength λ  of the propagating wave is defined as the 
distance 2z π∆  over which the relative phase changes by 2π  
radians. So: 
 

2 22 ( )- ( ) = =z z z zπ ππ φ φ β β λ= + ∆ ∆  
 
or,  rearranging: 

2
=

πβ
λ

 

 
Thus, the value β  is thus essentially a spatial frequency, in the 
same way that ω  is a temporal frequency: 
 

2
T

π
ω =  

 
where T  is the time required for the phase of the oscillating 
signal to change by a value of 2π  radians, i.e.: 
 

2Tω π=  
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Note that this time is the period of a sinewave, and related to 
its frequency in Hertz (cycles/second) as: 
 

2 1T
f

π
ω

= =  

 
Q:  So, just how fast does this wave propagate down a 
transmission line? 
 
We describe wave velocity in terms of its phase velocity—in 
other words, how fast does a specific value of absolute phase φ  
seem to propagate down the transmission line. 
 
Since velocity is change in distance with respect to time, we 
need to first express our propagating wave in its real form: 
 

( ) ( ){ }
( )0 0

j tv z ,t Re V z e

V cos t z

ω

ω β φ

−+ +

+ +

=

= − +
 

 
Thus, the absolute phase is a function of both time and 
frequency: 

( ) 0z ,t t zφ ω β φ+ += − +  
 

Now let’s set this phase to some arbitrary value of cφ  radians. 
 

0 ct zω β φ φ+− + =  
 

For every time t, there is some location z on a transmission line 
that has this phase value cφ .  That location is evidently: 
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0 ctz ω φ φ
β

++ −
=  

 
Note as time increases, so too does the location z  on the line 
where ( ) cz ,tφ φ+ = . 
 
The velocity vp  at which this phase point moves down the line 
can be determined as: 

0 c

p

td
dzv
dt dt

ω φ φ
β ω

β

+⎛ ⎞+ −
⎜ ⎟
⎝ ⎠= = =  

 
This wave velocity is the velocity of the propagating wave! 
 
Note that the value: 

2 2
pv

fω β ω
λ β π π

= = =  

 
and thus we can conclude that: 
 

pv f λ=  
 

as well as: 

pv
ωβ =  

 
Q:  But these results were derived for the ( )V z+  wave; what 
about the other wave ( ( )V z− )? 
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A:  The results are essentially the same, as each wave depends 
on the same value β. 
 
The only subtle difference comes when we evaluate the phase 
velocity.  For the wave ( )V z− , we find: 
 

( ) 0z ,t t zφ ω β φ− −= ++  
 

Note the plus sign associated with βz ! 
 
We thus find that some arbitrary phase value will be located at 
location: 

0 c tz φ φ ω
β

−− + −
=  

 
Note now that an increasing time will result in a decreasing 
value of position z .  In other words this wave is propagating in 
the direction of decreasing position z—in the opposite direction 
of the ( )V z+  wave!  
 
This is further verified by the derivative:  
 

0 c

p

td
dzv
dt dt

φ φ ω
β ω

β

−⎛ ⎞− + −
⎜ ⎟
⎝ ⎠= = = −  

 
Where the minus sign merely means that the wave propagates in 
the –z direction.  Otherwise, the wavelength and velocity of the 
two waves are precisely the same!  
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Transmission Line  
Input Impedance 

 
Consider a lossless line, length , terminated with a load ZL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let’s determine the input impedance of this line! 
 

Q:  Just what do you mean by input impedance? 
 
A:  The input impedance is simply the line impedance seen 
at the beginning (z = − ) of the transmission line, i.e.: 
 

( ) ( )
( )in

V zZ Z z
I z

= −
= = − =

= −
 

Note Zin equal to neither the load impedance ZL nor the  
characteristic impedance Z0 !  
 

0     and      in inLZ Z Z Z≠ ≠  

I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  
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To determine exactly what Zin is, we first must determine the 
voltage and current at the beginning of the transmission line 
(z = − ). 

0

0

0

j j
L

j j
L

V ( z ) V e e

VI ( z ) e e
Z

β β

β β

+ −+

+
+ −

⎡ ⎤= − = + Γ⎣ ⎦

⎡ ⎤= − = − Γ⎣ ⎦

 

Therefore: 
 

( )
( ) 0

j j
L

in j j
L

V z e eZ Z
I z e e

+ −

+ −

⎛ ⎞= − + Γ
= = ⎜ ⎟= − − Γ⎝ ⎠

β β

β β  

 
We can explicitly write inZ  in terms of load ZL using the 
previously determined relationship: 
 

0

0

L
L

L

Z Z
Z Z

−
=

+
Γ  

 
Combining these two expressions, we get: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0
0

0 0

0
0

0

j j
L L

in j j
L L

j j j j
L

j j j j
L

Z Z e Z Z e
Z Z

Z Z e Z Z e

Z e e Z e e
Z

Z e e Z e e

β β

β β

β β β β

β β β β

+ −

+ −

+ − + −

+ − + −

+ + −
=

+ − −

⎛ ⎞+ + −
= ⎜ ⎟⎜ ⎟+ − −⎝ ⎠

 

 
Now, recall Euler’s equations: 
 

cos sin
cos sin

j

j

e j
e j

β

β

β β

β β

+

−

= +

= −
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Using Euler’s relationships, we can likewise write the input 
impedance without the complex exponentials: 

 
0

0
0

0
0

0

cos sin
cos sin

tan
tan

L
in

L

L

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

β β
β β

β
β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

 

 
Note that depending on the values  of 0,  and Zβ , the input 
impedance can be radically different from the load impedance 
ZL ! 
 
Q:  So is there a similar concept of input reflection 
coefficient? 
 
A:  There sure is! As you might expect, it is simply the value of 
reflection coefficient function ( )zΓ  evaluated at the beginning 
of the transmission line (i.e., at z = − ): 
 

( ) 2
0

j
in z e β−Γ Γ = − = Γ  

 
Note that the input impedance and input reflection coefficient 
are related in the same way as Z and Γ are at every other point 
on the transmission line: 
 

0

0

in
in

in

Z Z
Z Z

−
Γ =

+
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Power Flow and  
Return Loss 

 
We have discovered that two waves propagate along a  
transmission line, one in each direction ( ( ) ( ) and  V z V z+ − ).   
 
 
 
 
 
 
 
 
 
 
 
 
The result is that electromagnetic energy flows along the 
transmission line at a given rate (i.e., power).  
 

Q: How much power flows along a transmission line, and 
where does that power go? 

 
A: We can answer that question by determining the 

power absorbed by the load! 

0

0

( ) j z j z
L

VI z e e
Z

β β
+

− +⎡ ⎤= − Γ⎣ ⎦  

    + 
( ) 0

j z j z
LV z V e eβ β− ++ ⎡ ⎤= + Γ⎣ ⎦  

    - 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  
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The time average power absorbed by an impedance ZL is: 
 

{ }

{ }

( ) ( ){ }
( ){ }

( )

Re

Re

Re

Re

0 0 0 0
0 0

0
2

20

0
2

20

0

1
2
1 ( 0) ( 0)
2

1
2

1
2

1
2

abs L L

j j j j
L L

L L L

L

P V I

V z I z

V e e V e e
Z

V
Z

V
Z

β β β β

∗

∗

∗
− + − ++ +

+
∗

+

=

= = =

⎡ ⎤ ⎡ ⎤= + Γ − Γ⎣ ⎦ ⎣ ⎦

= − Γ −Γ − Γ

= − Γ
 

 
The significance of this result can be seen by rewriting the 
expression as: 
 

( )
2

20

0
2 2

0 0

0 0
2 2

0 0

0 0

1
2

2 2

2 2

abs L

L

V
P

Z

V V
Z Z

V V
Z Z

+

+ +

+ −

= − Γ

Γ
= −

= −

 

 
The two terms in above expression have a very definite physical 
meaning.  The first term is the time-averaged power of the 
wave propagating along the transmission line toward the load. 
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We say that this wave is incident on the load: 
 

2
0

02inc

V
P P

Z

+

+= =  

 
Likewise, the second term of the Pabs equation describes the 
power of the wave moving in the other direction (away from 
the load).  We refer to this as the wave reflected from the 
load: 
 

2 22
20 0

0 02 2
L

L incref

V V
P P P

Z Z

− +

−

Γ
= = = = Γ  

 
Thus, the power absorbed by the load is simply: 
 

abs inc refP P P= −  
 

or, rearranging, we find: 
 

inc abs refP P P= +  
 

This equation is simply an expression of the conservation of 
energy !   
 
It says that power flowing toward the load (Pinc) is either 
absorbed by the load (Pabs) or reflected back from the load 
(Pref). 
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Note that if 2 1LΓ = , then Pinc = Pref, and therefore no power is 
absorbed by the load. 
 
This of course makes sense !   
 
The magnitude of the reflection coefficient ( LΓ ) is equal to 
one  only when the load impedance is purely reactive (i.e., purely 
imaginary). 
 
Of course, a purely reactive element (e.g., capacitor or inductor) 
cannot absorb any power—all the power must be reflected! 
 
Return Loss 
 
The ratio of the reflected power to the incident power is known 
as return loss. Typically, return loss is expressed in dB: 

 
2

10 1010 10ref
L

inc

PR L
P

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
Γ. . log log  

 
ZL 
 

Pabs 

Pinc Pref 
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For example, if the return loss is 10dB, then 10% of the 
incident power is reflected at the load, with the remaining 90% 
being absorbed by the load—we “lose” 10% of the incident 
power 
 
Likewise, if the return loss is 30dB, then 0.1 % of the incident 
power is reflected at the load, with the remaining 99.9%  being 
absorbed by the load—we “lose” 0.1% of the incident power. 
 
Thus, a larger numeric value for return loss actually indicates 
less lost power!  An ideal return loss would be ∞dB, whereas a 
return loss of 0 dB indicates that 1LΓ = --the load is reactive! 
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VSWR 
 
Consider again the voltage along a terminated transmission line, 
as a function of position z : 
 

( ) 0
j z j z

LV z V e eβ β− ++ ⎡ ⎤= + Γ⎣ ⎦  
 

Recall this is a complex function, the magnitude of which 
expresses the magnitude of the sinusoidal signal at position z, 
while the phase of the complex value represents the relative 
phase of the sinusoidal signal. 
 
Let’s look at the magnitude only: 
 

( ) 0
2

0
2

0

| | | | | |
           | || ||1 |
           | ||1 |

j z j z
L

j z j z
L

j z
L

V z V e e
V e e
V e

β β

β β

β

− ++

− ++

++

= + Γ

= + Γ

= + Γ

 

 
ICBST the largest value of |V (z)| occurs at the location z 
where: 

2 0j z
L Le jβ+Γ = Γ +  

 
while the smallest value of |V (z)|occurs at the location z 
where: 

2 0j z
L Le jβ+Γ = − Γ +  
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As a result we can conclude that:  
 

( ) ( )

( ) ( )

0

0

1

1

L

L

V z V

V z V

+

+

= + Γ

= − Γ

max

min

 

 
The ratio of ( ) ( ) to V z V zmax min  is known as the Voltage 
Standing Wave Ratio (VSWR): 
 
 

( )
( )

1
VSWR 1

1
L

L

V z
VSWR

V z
+ Γ

= ∴ ≤ ≤ ∞
− Γ

max

min

 

 
 
Note if 0LΓ =  (i.e., 0LZ Z= ), then VSWR = 1.  We find for this 
case: 

( ) ( ) 0max min   V z V z V += =  
 

In other words, the voltage magnitude is a constant with 
respect to position z. 
 
Conversely, if 1LΓ =  (i.e., LZ jX= ), then VSWR = ∞ .  We find 
for this case: 
 

( ) ( ) 0min max0      and       2V z V z V += =  
 

In other words, the voltage magnitude varies greatly with 
respect to position z. 
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As with return loss, VSWR is dependent on the magnitude of ΓL 
(i.e, |ΓL|) only ! 
 
 

|V(z)|max 

|V(z)| 

|V(z)|min 

z 

2z λ∆ =  
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A Transmission Line 
Connecting Source & Load 

 
 
We can think of a transmission line as a conduit that allows 
power to flow from an output of one device/network to an input 
of another. 
 
To simplify our analysis, we can model the input of the device 
receiving the power with it input impedance (e.g., ZL), while we 
can model the device output delivering the power with its 
Thevenin’s or Norton’s equivalent circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
- Vg 

Zg 

 + 
 
Vi 
 
 - 

Ii 

Ig Zg 

 + 
 
Vi 
 
 - 

Ii 

g i g iV V Z I= +  i
g i

g

VI I
Z

= +  
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Typically, the  power source is modeled with its Thevenin’s 
equivalent; however, we will find that the Norton’s equivalent 
circuit is useful if we express the remainder of the circuit in 
terms of its admittance values (e.g., 0, , ( )LY Y Y z ).                                     
 
 
 
 
 
 
 
 
 
 
Recall from the telegrapher’s equations that the current and 
voltage along the transmission line are: 
 

0 0

0 0

0 0

j z j z

j z j z

V ( z ) V e V e

V VI ( z ) e e
Z Z

β β

β β

+ − − +

+ −
− +

= +

= −

 

 
At 0z = , we enforced the boundary condition resulting from 
Ohm’s Law: 
 

( )0 0

0 0

0 0

0
0

( )
( )

L
L

L

V VV V zZ
I I z V V

Z Z

+ −

+ −

+=
= = =

= ⎛ ⎞
−⎜ ⎟

⎝ ⎠

 

 
 

+ 
- 

Vg 
 + 

Vi 

 - 

Ii 

LZ  
 

z = −  0z =  

0Z  
gZ  
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Which resulted in: 
 

00

0 0

L
L

L

Z ZV
V Z Z

−

+

−
=

+
Γ  

 
So therefore: 
 

0

0

0

j z j z
L

j z j z
L

V ( z ) V e e

VI ( z ) e e
Z

β β

β β

+ − +

+
− +

⎡ ⎤= + Γ⎣ ⎦

⎡ ⎤= − Γ⎣ ⎦

 

 
We are left with the question: just what is the value of complex 
constant 0V + ?!? 
 
This constant depends on the signal source!  To determine its 
exact value, we must now apply boundary conditions at z = − . 
 
We know that at the beginning of the transmission line: 
 

0

0

0

j j
L

j j
L

V ( z ) V e e

VI ( z ) e e
Z

β β

β β

+ + −

+
+ −

⎡ ⎤= − = + Γ⎣ ⎦

⎡ ⎤= − = − Γ⎣ ⎦

 

 
Likewise, we know that the source must satisfy: 
 

g i g iV V Z I= +  
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To relate these three expressions, we need to apply boundary 
conditions at z = − : 
 
 
 
 
 
 
 
 
 
 
From KVL we find: 

( )iV V z= = −  
 

And from KCL: 
( )iI I z= = −  

 
Combining these equations, we find: 
 

0
0

0

g i g i

j j j j
g L g L

V V Z I
VV V e e Z e e
Z

β β β β
+

+ − + −+

= +

⎡ ⎤ ⎡ ⎤= + Γ + − Γ⎣ ⎦ ⎣ ⎦
 

 
One equation  one unknown ( 0V + )!! 

 
Solving, we find the value of 0V + : 
 
 
 

+ 
- 

Vg  iV
+

−
 

Ii 

LZ  
 

z = −  0z =  

0Z  
gZ  

 

  

( )V z
+

= −
−

 

  

( )I z = −  

 



9/1/2006 A Transmission Line Connecting Source 5/5 

Jim Stiles The Univ. of Kansas  Dept. of EECS  

 

( ) ( )
0

0
0 1 1

j
g

in g in

ZV V e
Z Z

β−+ =
+ Γ + − Γ

 

 
 
where: 

( ) 2j
in Lz e β−Γ = Γ = − = Γ  

 
There is one very important point that must be made about the 
result: 

( ) ( )
0

0
0 1 1

j
g

in g in

ZV V e
Z Z

β−+ =
+ Γ + − Γ

 

 
And that is—the wave ( )0V z+  incident on the load ZL is actually 
dependent on the value of load ZL !!!!! 
 
Remember: 

( ) 2j
in Lz e β−Γ = Γ = − = Γ  

 
We tend to think of the incident wave ( )0V z+  being “caused” by 
the source, and it is certainly true that ( )0V z+  depends on the 
source—after all, ( )0 0V z+ =  if 0gV = .  However, we find from 
the equation above that it likewise depends on the value of the 
load! 
 
Thus we cannot—in general—consider the incident wave to be 
the “cause” and the reflected wave the “effect”.  Instead, each 
wave must obtain the proper amplitude (e.g., 0 0,V V+ − ) so that the 
boundary conditions are satisfied at both the beginning and end 
of the transmission line. 
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Delivered Power 
 
Q:  If the purpose of a transmission line is to transfer power 
from a source to a load, then exactly how much power is 
delivered to ZL for the circuit shown below ?? 
 
 
 
 
 
 
 
 
 
A:  We of course could determine 0 0 and V V+ − , and then 
determine the power absorbed by the load (Pabs) as: 
 

( ) ( ){ }1 Re 0 0
2absP V z I z∗= = =  

 
However, if the transmission line is lossless, then we know that 
the power delivered to the load must be equal to the power 
“delivered” to the input (Pin)  of the transmission line: 
 

( ) ( ){ }1 Re
2inabsP P V z I z∗= = = − = −  

 

+ 
- 

Vg ( )V z
+

−
 

( )I z  

LZ  
 

z = −  0z =  

0Z  
gZ  

 Zin 
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However, we can determine this power without having to solve 
for 0 0 and V V+ −  (i.e., ( ) ( ) and  V z I z ).  We can simply use our 
knowledge of circuit theory! 
 
We can transform load ZL to  the beginning of the transmission 
line,  so that we can replace the transmission line with its input 
impedance Zin : 
 
 
 
 
 
 
 
 
 
Note by voltage division we can determine: 
 

( ) in
g

g in

ZV z V
Z Z

= − =
+

 

 
And from Ohm’s Law we conclude: 
 

( ) g

g in

V
I z

Z Z
= − =

+
 

 
And thus, the power Pin  delivered to Zin  (and thus the power 
Pabs delivered to the load ZL) is: 
 

+ 
- 

Vg ( )V z
+

= −
−

 

( )I z = −  

( )inZ Z z= = −  
 

gZ  
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( ) ( ){ }

( )

{ }

{ }

2

2

2
2

2

1 Re
2

1 Re
2

1 Re
2

1 Re
2

inabs

gin
g

g in g in

g
in

g in

in
g in

g in

P P V z I z

VZV
Z Z Z Z

V
Z

Z Z

ZV Y
Z Z

∗

∗

∗

= = = − = −

⎧ ⎫
⎪ ⎪= ⎨ ⎬

+ +⎪ ⎪⎩ ⎭

=
+

=
+

 

 
Note that we could also determine Pabs from our earlier 
expression: 
 

( )
2

20

0

1
2abs L

V
P

Z

+

= − Γ  

 
But we would of course have to first determine 0V + (! ): 
 

( ) ( )
0

0
0 1 1

j
g

in g in

ZV V e
Z Z

β−+ =
+ Γ + − Γ
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Special Cases of Source 
and Load Impedance 

 
Let’s look at specific cases of Zg and ZL, and determine how 
they affect 0V +  and  Pabs. 
 
 
 

0gZ Z=  
 
 
For this case, we find that 0V +  simplifies greatly: 
 

( ) ( )

( ) ( )

0
0

0

0

0 0

1 1

1 1
1

1 1
1
2

j
g

in g in

j
g

in in

j
g

in in

j
g

ZV V e
Z Z

ZV e
Z Z

V e

V e

β

β

β

β

−+

−

−

−

=
+ Γ + − Γ

=
+ Γ + − Γ

=
+ Γ + − Γ

=

 

 
Look at what this says! 
 
It says that the incident wave in this case is independent of 
the load attached at the other end! 
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Thus, for the one case 0gZ Z= , we in fact can consider ( )V z+  
as being the source wave, and then the reflected wave ( )V z−  
as being the result of this stimulus. 
 
Remember, the complex value 0V +  is the value of the incident 
wave evaluated at the end of the transmission line 
( ( )0 0V V z+ += = ). We can likewise determine the value of the 
incident wave at the beginning of the transmission line (i.e., 

( )V z+ = − ).  For this case, where 0gZ Z= , we find that this 
value can be very simply stated (!): 
 

( ) ( )
0

1
2

2

j z

j j
g

g

V z V e

V e e

V

β

β β

− =−+ +

− +

= − =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

 
Likewise, we find that the delivered power for this case can 
be simply stated as: 
 

( )

( )

2
20

0
2

2

0

1
2

1
8

abs L

g
L

V
P

Z

V
Z

+

= − Γ

= − Γ
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in gZ Z ∗=  

 
 
For this case, we find ZL takes on whatever value required to 
make in gZ Z ∗= .  This is a very important case! 
 
First, using the fact that: 
 

00

0 0

gin
in

in g

Z ZZ Z
Z Z Z Z

∗

∗

−−
Γ = =

+ +
 

 
We can show that (trust me!): 
 

{ }
0

0 4Re
gj

g
g

Z Z
V V e

Z
β

∗
−+ +

=  

 
Not a particularly interesting result, but let’s look at the 
absorbed power. 
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{ }

{ }

{ }
{ }

{ }

2

2

2

2

2

2

2

1 Re
2

1 Re
2

1 Re
2 2Re

1 1
2 4Re

g
inabs

g in

g
g

g g

g
g

g

g avl
g

V
P Z

Z Z

V
Z

Z Z

V
Z

Z

V P
Z

∗

∗

∗

∗

∗

=
+

=
+

=

= =

 

 
Although this result does not look particularly interesting 
either, we find the result is very important! 
 
It can be shown that—for a given gV  and gZ  —the value of 
input impedance Zin  that will absorb the largest possible 
amount of power is the value in gZ Z ∗= . 
 
This case is known as the conjugate match, and is essentially  
the goal of every transmission line problem—to deliver the 
largest possible power to Zin

 , and thus to ZL as well!  
 
This maximum delivered power is known as the available 
power (Pavl)of the source. 
 
There are two very important things to understand about this 
result! 
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       Very Important Thing #1 
 
            Consider again the terminated transmission line: 
 
 
 
 
 
 
 
 
 
Recall that if 0LZ Z= , the reflected wave will be zero, and 
the absorbed power will be: 
 

2

0
2

0
2
g

abs
g

V ZP
Z Z

=
+

 

 
But note if 0LZ Z= , the input impedance 0inZ Z= —but then 

*
in gZ Z≠  (generally)!  In other words, 0LZ Z=  does not 

(generally) result in a conjugate match, and thus setting 
0LZ Z=  does not result in maximum power absorption! 

 
Q:  Huh!? This makes no sense! A load value of  0LZ Z=  will 
minimize the reflected wave ( 0P − = )—all of the incident 
power will be absorbed.  Any other value of 0LZ Z=  will result 
in some of the incident wave being reflected—how in the 
world could this increase absorbed power?   

+ 
- 

Vg 
LZ  

 

z = −  0z =  

0Z  
gZ  

 Zin 
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After all, just look at the expression for absorbed power: 
 

( )
2

20

0

1
2abs L

V
P

Z

+

= − Γ  

 
Clearly, this value is maximized when 0LΓ =  (i.e., when 

0LZ Z= )!!! 
 
A:  You are forgetting one very important fact!  Although it is 
true that the load impedance LZ  affects the reflected wave 
powerP − , the value of LZ —as we have shown in this handout—
likewise helps determine the value of the incident wave (i.e., 
the value of  P + ) as well. 
 
Thus, the value of LZ  that minimizes P −  will not generally 
maximize P + , nor will the value of LZ  that maximizes P +  
likewise minimize P − . 
 
Instead, the value of LZ  that maximizes the absorbed power 
is, by definition, the value that maximizes the difference 
P P+ −− . 
 
We find that this value of LZ  is  the value that makes inZ  as 
“close” as possible to the ideal case of in gZ Z ∗= . 
 
Q:  Yes, but what about the case where 0gZ Z= ?  For that 
case, we determined that the incident wave is independent of 

LZ .  Thus, it would seem that at least for that case, the 
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delivered power would be maximized when the reflected 
power was minimized (i.e., 0LZ Z= ). 
 
A:  True!  But think about what the input impedance would be 
in that case— 0inZ Z= .  Oh by the way, that provides a 
conjugate match ( 0in gZ Z Z ∗= = )! 
 
Thus, in some ways, the case 0g LZ Z Z= =  (i.e., both source 
and load impedances are numerically equal to Z0) is ideal.  A 
conjugate match occurs, the incident wave is independent of 

LZ , there is no reflected wave, and all the math simplifies 
quite nicely: 
 

0
1
2

j
gV V e β−+ =                       

2

08
g

abs

V
P

Z
=  

 
        Very Important Thing #2 
 
             Note the conjugate match criteria says:  
 
Given gV  and gZ , maximum power transfer occurs when 

in gZ Z ∗= .  
 
It does NOT say: 
 
 Given gV  and inZ , maximum power transfer occurs when 

g inZ Z∗ = . 
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This last statement is in fact false! 
 
A factual statement is this: 
 
Given gV  and inZ , maximum power transfer occurs when 

0gZ = . 
 
A fact that is evident when observing the expression for 
available power: 
 

{ }

2
21 1

2 84Re
g

gavailable
gg

V
P V

RZ ∗
= =  

 
In other words, given a choice, use a source with the smallest 
possible output resistance (given that gV  remains constant).  
This will maximize the available power from your source! 
 
 



9/6/2006 Matching Networks 1/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Matching Networks 
 
Consider again the problem where a passive load is attached 
to an active source: 
 
 
 
 
 
 
 
The load will absorb power—power that is delivered to it by 
the source. 
 

{ }

{ }2

2

2

2

1
2

1
2

1
2

1
2

L L L

gL
g

g L g L

L
g

g L

L
g

g L

P Re V I

VZRe V
Z Z Z Z

Re Z
V

Z Z
RV

Z Z

∗

∗

=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟+ +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

=
+

=
+

 

 
Recall that the power delivered to the load will be maximized 
(for a given gV  and gZ ) if the load impedance is equal to the 
complex conjugate of the source impedance ( L gZ Z ∗= ).  

Vg 

gZ  

L L LZ R jX= +  
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We call this maximum power the available power avlP  of the 
source—it is, after all, the largest amount of power that the 
source can ever deliver! 
 

2

8
gmax

L avl
g

V
P P

R
=  

 
* Note the available power of the source is dependent on 

source parameters only (i.e., gV  and gR ). This makes sense! 
Do you see why? 

 
* Thus, we can say that to “take full advantage” of all the 

available power of the source, we must to make the load 
impedance the complex conjugate of the source 
impedance.   

 
* Otherwise, the power delivered to the load will be less 

than power made available by the source!  In other 
“words”: 

L avlP P≤  
 
 
 
 
 
 
 
 
 

Q: But, you said that the load impedance 
typically models the input impedance of 
some useful device.  We don’t typically get 
to “select” or adjust this impedance—it is 
what it is.  Must we then simply accept the 
fact that the delivered power will be less 
than the available power? 
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A:  NO!  We can in fact modify our circuit such that all 
available source power is delivered to the load—without in any 
way altering the impedance value of that load! 
 
To accomplish this, we must insert a matching network 
between the source and the load: 
 
 
 
 
 
 
 
 
 
 
The sole purpose of this matching network is to “transform” 
the load impedance into an input impedance that is conjugate 
matched to the source! I.E.: 

*in
in g

in

VZ Z
I

= =  

 
 
 
 
 
 
 
 
 

L L LZ R jX= +  Vg 

g g gZ R jX= +  

Matching 
Network inV

+

−
 

inI  
LV
+

−
 

inI  

L L LZ R jX= +  
Matching 
Network 

*
in gZ Z=  
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Because of this, all available source power is delivered to the 
input of the matching network (i.e., delivered to inZ ): 
 

in avlP P=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  True! To ensure that the available power delivered to the 
input of the matching network is entirely delivered to the 
load, we must construct our matching network such that it 
cannot absorb any power—the matching network must be 
lossless! 
 

We must construct our matching network entirely 
with reactive elements! 
 

Examples of reactive elements include inductors, capacitors, 
transformers, as well as lengths of lossless transmission 
lines. 

 

Q:  Wait just one second! The 
matching network ensures that all 
available power is delivered to the 
input of the matching network, but 
that does not mean (necessarily) 
that this power will be delivered to 
the load LZ .  The power delivered 
to the load could still be much less 
than the available power! 
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Thus, constructing a proper lossless matching network will 
lead to the happy condition where: 
 

L in avlP P P= =  
 

* Note that the design and construction of this lossless 
network will depend on both the value of source 
impedance gZ and load impedance LZ .   

 
* However, the matching network does not physically alter 

the values of either of these two quantities—the source 
and load are left physically unchanged! 

 
Now, let’s consider the matching network from a different 
perspective.  Instead of defining it in terms of its input 
impedance when attached the load, let’s describe it in terms 
of its output impedance when attached to the source: 
 
 
 

 
 
 
 
 
 
 
 
 

outV
+

−
 Vg 

g g gZ R jX= +  

Matching 
Network 

outI  
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This “new” source (i.e., the original source with the matching 
network attached) can be expressed in terms of its 
Thevenin’s equivalent circuit: 
 
 
  
 
 
 
 
This equivalent circuit can be determined by first evaluating 
(or measuring) the open-circuit output voltage oc

outV : 
 
 
 
 
 
 
 
 
 
And likewise evaluating (or measuring) the short-circuit 
output current sc

outI : 
 
 
 
 
 
 
 

Vs 

out out outZ R jX= +  

oc
outV

+

−

 Vg 

g g gZ R jX= +  

Matching 
Network 

0outI =  

0outV

+

−

=  Vg 

g g gZ R jX= +  

Matching 
Network 

sc
outI  
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From these two values (  and oc sc
out outV I ) we can determine the 

Thevenin’s equivalent source: 
 

oc
oc out

s out out oc
out

VV V Z
I

= =  

 
Note that in general that s gV V≠  and out gZ Z≠ —the matching 
network “transforms” both the values of both the impedance 
and the voltage source. 
 
 
 
 
 
 
 
 
 
A:  Nope. If the matching network is lossless, the available 
power of this equivalent source is identical to the available 
power of the original source—the lossless matching network 
does not alter the available power! 
 

2 2

8 8
g s

avl
g out

V VP
R R

= =  

 
 
 

Q:  Arrrgg! Doesn’t that 
mean that the available 
power of this “transformed” 
source will be different 
from the original? 
 

 



9/6/2006 Matching Networks 8/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Now, for a properly designed, lossless matching network, it 
turns out that (as you might have expected!) the output 
impedance outZ  is equal to the complex conjugate of the load 
impedance.  I.E.: 

out LZ Z ∗=  
 

The source and load are again matched! 
 
Thus, we can look at the matching network in two equivalent 
ways:  
 
 
 
 
  
 
 
 
 
1.  As a network attached to a load, one that “transforms” its 
impedance to Zin—a value matched to the source impedance 
Zg: 
 
 
 
 
 
 
 
 

L L LZ R jX= +  Vg 

g g gZ R jX= +  

Matching 
Network 

ZL in gZ Z ∗=  Vg 

gZ  
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2.  Or, as network attached to a source, one that 
“transforms” its impedance to Zout —a value matched to the 
load impedance ZL: 
 
 
 
 
 
 
 
 
 
 
Either way, the source and load impedance are conjugate 
matched—all the available power is delivered to the load! 
 
 
Recall that a primary purpose of a transmission line is to allow 
the transfer of power from a source to a load. 
 
 
 
 
 
 
 
 
 
 
 

Vg 

Zg 

Vs 

out LZ Z ∗=  

LZ  

0Z  

 

Vg 

gZ  

LZ  
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Recall that the efficacy of this power transfer depends on:  
 
1.  the source impedance gZ .  
 
2.  load impedance LZ .  
 
3.  the transmission line characteristic impedance 0Z .  
 
4.  the transmission line length . 
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Matching Networks and 
Transmission Lines 

 
Recall that a primary purpose of a transmission line is to allow 
the transfer of power from a source to a load. 
 
 
 
 
 
 
 
 
 
Q:  So, say we directly connect an arbitrary source to an 
arbitrary load via a length of transmission line.  Will the 
power delivered to the load be equal to the available power of 
the source?  
 
A:  Not likely! Remember we determined earlier that the 
efficacy of power transfer depends on:  

 
1.  the source impedance gZ .  
 
2.  load impedance LZ .  
 
3.  the transmission line characteristic impedance 0Z .  

0Z  

 

Vg 

gZ  

LZ  Zin 
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4.  the transmission line length . 

 
Recall that maximum power transfer occurred only when 
these four parameters resulted in the input impedance of the 
transmission line being equal to the complex conjugate of the 
source impedance (i.e., in gZ Z∗ = ).   
 
It is of course unlikely that the very specific conditions of a 
conjugate match will occur if we simply connect a length of 
transmission line between an arbitrary source and load,  and 
thus the power delivered to the load will generally  be less 
than the available power of the source. 
 
Q:  Is there any way to use a matching network to fix this 
problem?  Can the power delivered to the load be increased to 
equal the available power of the source if there is a 
transmission line connecting them? 
 
A:  There sure is! We can likewise construct a matching 
network for the case where the source and load are 
connected by a transmission line. 
 
For example, we can construct a network to transform the 
input impedance of the transmission line into the complex 
conjugate of the source impedance. 
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Q:  But, do we have to place the matching network between 
the source and the transmission line? 
 
A:  Nope! We could also place a (different) matching network 
between the transmission line and the load. 
 
 
 
 
 
 
 
 
 
 
In either case, we find that at any and all points along this 
matched circuit, the output impedance of the equivalent 
source (i.e., looking left) will be equal to the complex 
conjugate of the input impedance (i.e., looking right). 
 
 

Vg 

gZ  

0Z  

 

LZ  
Matching 
Network 

gZ ∗  

LZ  
Matching 
Network Vg 

gZ  

0Z  

 

gZ ∗  



9/6/2006 Matching Networks and Transmission Lines 4/7 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
 
 
 
 
 
 
 
 
Q:  So which method should we chose? Do engineers typically 
place the matching network between the source and the 
transmission line, or place it between the transmission line and 
the load? 
 
A:  Actually, the typical solution is to do both! 
 
We find that often there is a matching network between the 
a source and the transmission line, and between the line and 
the load.   
 
 
 
  
 
 
 
 
 
 
 

ZL Vg 

Zg 

Vs 

out inZ Z ∗=  

in outZ Z ∗=  

LZ  Vg 

gZ  

0Z  

 

Matching 
Network 

Matching 
Network 
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The first network matches the source to the transmission 
line—in other words, it transforms the output impedance of 
the equivalent source to a value numerically equal to 
characteristic impedance 0Z : 
 
 
 
 
 
 
 
 
 
 
The second network matches the load to the transmission 
line—in other words it transforms the load impedance to a 
value numerically equal to characteristic impedance 0Z : 
 
 
 
 
 
 
 
 
 
 
Q:  Yikes! Why would we want to build two separate matching 
networks, instead of just one? 
 

Vg 

Zg 

Vs 

0outZ Z=  

0Z  

0Z  0inZ Z=  ZL 
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A: By using two separate matching networks, we can decouple 
the design problem.  Recall again that the design of a single 
matching network solution would depend on four separate 
parameters:  
 

1.  the source impedance gZ .  
 
2.  load impedance LZ .  
 
3.  the transmission line characteristic impedance 0Z .  
 
4.  the transmission line length . 
 

Alternatively, the design of the network matching the source 
and transmission line depends on only: 
 

1.  the source impedance gZ .  
 
2.  the transmission line characteristic impedance 0Z . 
 

Whereas, the design of the network matching the load and 
transmission line depends on only: 
 

1.  the source impedance LZ .  
 
2.  the transmission line characteristic impedance 0Z . 

 
Note that neither design depends on the transmission line 
length ! 
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Q:  How is that possible? 
 
A: Remember the case where 0g LZ Z Z= = .  For that special 
case, we found that a conjugate match was the result—
regardless of the transmission line length.   
 
Thus, by matching the source to line impedance 0Z  and 
likewise matching the load to the line impedance, a conjugate 
match is assured—but the length of the transmission line does 
not matter! 
 
In fact, the typically problem for microwave engineers is to 
match a load (e.g., device input impedance) to a standard 
transmission line impedance (typically 0 50ΩZ = ); or to 
independently match a source (e.g., device output impedance) 
to a standard line impedance. 
 
A conjugate match is thus obtained by connecting the two 
with a transmission line of any length! 
 
 
 

0Z  

 

0Z  Vs 

0Z  



09/06/06 The Impedance Matrix 1/7 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Impedance Matrix 
 
Consider the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note in this example, there are four identical transmission lines 
connected to the same “box”.  Inside this box there may be a 
very simple linear device/circuit, or it might contain a very large 
and complex linear microwave system. 
 

( )4 4I z  

( )2 2I z  

port 1 

( )1 1V z
+

−
 

( )4 4V z

+ −
 

( )2 2V z

+ −
 

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 
3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  

( )3 3V z
+

−
 

( )3 3I z  ( )1 1I z  
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 Either way, the “box” can be fully characterized by its 
impedance matrix! 
 
First, note that each transmission line has a specific location 
that effectively defines the input to the device  (i.e., z1P, z2P, 
z3P, z4P). These often arbitrary positions are known as the port 
locations, or port planes of the device. 
 
Thus, the voltage and current at port n is: 
 

( )n n nPV z z=                 ( )n n nPI z z=  
 

We can simplify this cumbersome notation by simply defining 
port n current and voltage as In and Vn : 
 

( )n n n nPV V z z= =                 ( )n n n nPI I z z= =  
 
For example, the current at port 3 would be ( )3 3 3 3PI I z z= = . 
 
Now, say there exists a non-zero current at port 1 (i.e., 1 0I ≠ ), 
while the current at all other ports are known to be zero (i.e., 

2 3 4 0I I I= = = ).   
 
Say we measure/determine the current at port 1 (i.e., 
determine 1I ),  and we then measure/determine the voltage at 
the port 2 plane (i.e., determine 2V ).   
 
 
 



09/06/06 The Impedance Matrix 3/7 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The complex ratio between 2 1 and V I  is know as the trans-
impedance parameter Z21: 
 

2
21

1

VZ
I

=  

 
Likewise, the trans-impedance parameters Z31 and Z41 are: 
 

3 4
31 41

1 1

         and           VVZ Z
I I

= =  

 
We of course could also define, say, trans-impedance parameter 
Z34 as the ratio between the complex values 4I  (the current 
into port 4) and 3V (the voltage at port 3), given that the 
current at all other ports (1, 2, and 3) are zero. 
 
Thus, more generally, the ratio of the current into port n  and 
the voltage at port m is: 
 
 

        (given that   0  for all )m
mn k

n

VZ I k n
I

= = ≠  
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A:  Place an open circuit at those ports! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Placing an open at a port (and it must be at the port!) enforces 
the condition that 0I = . 

 
 

 

1I  

4 0I =  

3V
+

−
 

2 0I =  

1V
+

−
 

4V+ −  

3 0I =  

2V+ −  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

 

Q:  But how do we ensure 
that all but one port 
current is zero ? 
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Now, we can thus equivalently state the definition of trans-
impedance as:  
 
 

        (given that all ports  are )m
mn

n

VZ k n
I

= ≠ open  

 
 
 
 
 
 
 
 
 
 
 
 
 
A:  OK, say that none of our ports are open-circuited, such 
that we have currents simultaneously on each of the four ports 
of our device.   

 
Since the device is linear, the voltage at any one port due to all 
the port currents is simply the coherent sum of the voltage at 
that port due to each of the currents! 
 
For example, the voltage at port 3 can be determined by: 
 

3 33 3 32 2 31 134 4V Z I Z I Z I Z I= + + +  
 

Q: As impossible as it sounds, 
this handout is even more 
boring and pointless than any 
of your previous efforts.  Why 
are we studying this? After all, 
what is the likelihood that a 
device will have an open circuit 
on all but one of its ports?!    
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More generally, the voltage at port m of an N-port device is: 
 
 

1

N

m mn n
n

V Z I
=

= ∑  

 
 
This expression can be written in matrix form as: 
 

=V Z I  
 
Where I is the vector: 
 

[ ]1 2 3
T

NI ,I ,I , ,I=I "  
 
and V  is the vector: 
 

1 2 3
T

NV ,V ,V , ,V⎡ ⎤= ⎣ ⎦V …  
 

And the matrix  Z  is called the impedance matrix: 
 

11 1

1

n

m mn

Z Z

Z Z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
…

# % #
"

 

 
The impedance matrix is a N  by N  matrix that completely 
characterizes a linear, N -port device.  Effectively, the 
impedance matrix describes a multi-port device the way that LZ  
describes a single-port device (e.g., a load)! 
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But beware! The values of the impedance matrix for a 
particular device or network, just like LZ , are frequency 
dependent!  Thus, it may be more instructive to explicitly 
write: 

 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

Z Z

Z Z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
…

# % #
"

ω ω
ω

ω ω
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Example: Using the 
Impedance Matrix 

 
Consider the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where the 3-port device is characterized by the impedance 
matrix: 
 

2 1 2
1 1 4
2 4 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z  

 
Let’s now determine all port voltages  1 2 3V ,V ,V  and all currents 

1 2 3I ,I ,I . 

1I  

3I  

2V
+

−
 1V

+

−
 

3V+ −  

2I  

Z  + 
- 

1 

16 

1 
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A:  We don’t need to know what’s inside that box!  We know 
its impedance matrix, and that completely characterizes the 
device (or, at least, characterizes it at one frequency). 
 
Thus, we have enough information to solve this problem.  From 
the impedance matrix we know: 
 

1 1 2 3

2 1 2 3

3 1 2 3

2 2

4

2 4

V I I I

V I I I

V I I I

= + +

= + +

= + +

 

 
 
 
 
 
 
 
A:  True!  The impedance matrix describes the device in the 
box, but it does not describe the devices attached to it.  We 
require more equations to describe them. 

 

Q: How can we do that—we 
don’t know what the device 
is made of!  What’s inside 
that box? 

 

Q: Wait! There are 
only 3 equations 
here, yet there are 
6 unknowns!? 
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1.  The source at port 1 is described by the equation: 
 

( )1 116 0 1V . I= −  
 

2.  The short circuit on port 2 means that: 
 

2 0V =  
 

3.  While the load on port 3 leads to: 
 
                                            ( )3 31V I= −    (note the minus sign!) 

 
Now we have 6 equations and 6 unknowns! Combining equations, 
we find: 
 

1 1 1 2 3

1 2 3

16 2 2
16 3 2

V I I I I
I I I

= − = + +

∴ = + +
 

 
2 1 2 3

1 2 3

0 4
0 4

V I I I
I I I

= = + +

∴ = + +
 

 
3 3 1 2 3

1 2 3

2 4
0 2 4 2

V I I I I
I I I

= − = + +

∴ = + +
 

 
Solving, we find (I’ll let you do the algebraic details!): 
 

1 7 0I .=             2 3 0I .= −           3 1 0I .= −  
 

1 9 0V .=                2 0 0V .=              3 1 0V .=  
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The Scattering Matrix 
 
At “low” frequencies, we can completely characterize a linear 
device or network using an impedance matrix, which relates the 
currents and voltages at each device terminal to the currents 
and voltages at all other terminals. 
 
 
 

But, at microwave frequencies, it 
is difficult to measure total 
currents and voltages!  

 
 
 
*  Instead, we can measure the magnitude and phase of each of 
the two transmission line waves ( ) and ( )V z V z+ − . 
 
*  In other words, we can determine the relationship between 
the incident and reflected wave at each device terminal to the 
incident and reflected waves at all other terminals. 
 
These relationships are completely represented by the 
scattering matrix.  It completely describes the behavior of a 
linear, multi-port device at a given frequency ω . 
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Consider the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note in this example, there are four identical transmission lines 
connected to the same “box”.  Inside this box there may be a 
very simple linear device/circuit, or it might contain a very large 
and complex linear microwave system. 
 

 Either way, the “box” can be fully characterized by its 
scattering parameters! 
 
 

( )1 1V z+  

( )4 4V z+  

( )3 3V z+  

( )2 2V z+  

port 1 

( )1 1V z−  

( )4 4V z−  

( )3 3V z−  

( )2 2V z−  

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  
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First, note that each transmission line has a specific location 
that effectively defines the input to the device  (i.e., z1P, z2P, 
z3P, z4P). These often arbitrary positions are known as the port 
locations, or port planes of the device. 
 
Say there exists an incident wave on port 1 (i.e., ( )1 1 0V z+ ≠ ), 
while the incident waves on all other ports are known to be zero 
(i.e., ( ) ( ) ( )2 2 3 3 4 4 0V z V z V z+ + += = = ).   
 
Say we measure/determine the voltage of the wave flowing into  
port 1, at the port 1 plane (i.e., determine ( )1 1 1PV z z+ = ).   
Say we then measure/determine the voltage of the wave flowing 
out of port 2, at the port 2 plane (i.e., determine ( )2 2 2PV z z− = ).   
 
The complex ratio between 1 1 1 2 2 2( ) and ( )P PV z z V z z+ −= =  is know 
as the scattering parameter S21: 
 
 

( )
2

2 1

1

02 022 2
21

1 1 01 01

( )
( )

P
P P

P

j z
j z z

j z
V e VV z zS e

V z z V e V

β
β

β

+− −−
+ +

−+ + +

=
= = =

=
 

 
 
Likewise, the scattering parameters S31 and S41 are: 
 
 

3 3 3 4 4 4
31 41

1 1 1 1 1 1

( )( )           and            
( ) ( )

P P

P P

V z zV z zS S
V z z V z z

−−

+ +

==
= =

= =
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We of course could also define, say, scattering parameter S34 
as the ratio between the complex values 4 4 4( )PV z z+ =  (the wave 
into port 4) and 3 3 3( )PV z z− =  (the wave out of port 3), given 
that the input to all other ports (1,2, and 3) are zero. 
Thus, more generally, the ratio of the wave incident on port n to 
the wave emerging from port m is: 
 
 

( )( )         (given that   0  for all )
( )

m m mP
mn k k

n n nP

V z zS V z k n
V z z

−
+

+

=
= = ≠

=
 

 
 
 
Note that frequently the port positions are assigned a zero 
value (e.g., 1 20, 0P Pz z= = ).  This of course simplifies the 
scattering parameter calculation: 
 
 

0
0 0

0
00

( 0)       
( 0)

j
mm m m

mn j
n n nn

V eV z VS
V z VV e

β

β

+−− −

−+ ++

=
= = =

=
 

 
 
 
We will generally assume that the port 
locations are defined as 0nPz = , and thus use 
the above notation.  But remember where this 
expression came from! 

 
 
 

 



09/06/06 The Scattering Matrix 5/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

  
 
 
 
 
 
 
 
A:  Terminate all other ports with a matched load! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )1 1V z+  

( )3 3 0V z+ =  

( )3 3 0V z+ =  

( )2 2 0V z+ =  

( )1 1V z−  

( )4 4V z−  

( )3 3V z−  

( )2 2V z−  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

4 0LΓ =  

3 0LΓ =  

2 0LΓ =  
 

Q:  But how do we ensure 
that only one incident wave 
is non-zero ? 
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Note that if the ports are terminated in a matched load (i.e., 
0LZ Z= ), then 0nLΓ =  and therefore: 

 
   ( ) 0n nV z+ =  

 
In other words, terminating a port ensures 
that there will be no signal incident on 
that port!  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: Actually, both statements are correct! You must be careful 
to understand the physical definitions of the plus and minus 
directions—in other words, the propagation directions of waves 
( )n nV z+   and  ( )n nV z− !  

 

 

 
Q: Just between you and me, I think you’ve messed this up!  In all 
previous handouts you said that if 0LΓ = , the wave in the minus 
direction would be zero: 
 

( ) 0    if    0LV z− = Γ =  
 
but just now you said that the wave in the positive direction would 
be zero:  

( ) 0    if    0LV z+ = Γ =  
 
Of course, there is no way that both statements can be correct!  
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( ) 0     if    0LV z− = Γ =  

For example, we originally analyzed this case: 
 
 
 
 
 
 
 
  
 
In this original case, the wave incident on the load is ( )V z+  
(plus direction), while the reflected wave is ( )V z−  (minus 
direction).  
 
Contrast this with the case we are now considering: 
 
 
 
 
 
 
 
 
 
For this current case, the situation is reversed.  The wave 
incident on the load is now denoted as ( )n nV z−  (coming out of 
port n), while the wave reflected off the load is now denoted as 
( )n nV z+  (going into port n ). 

 
As a result, ( ) 0n nV z+ =  when 0nLΓ = ! 

LΓ  

( )V z−  

( )V z+  

Z0 

nLΓ  

( )n nV z+  

( )n nV z−  

Z0 

port n 

N-port 
Microwave 
Network 
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Perhaps we could more generally state that: 
 
 

( ) ( )reflected incident
L L LV z z V z z= = Γ =  

 
 
 
 
 
 
 
 
 
 
 
 
Now, back to our discussion of S-parameters. We found that if 

0nPz =  for all ports n, the scattering parameters could be 
directly written in terms of wave amplitudes 0nV +  and 0mV − . 
 

( )0

0

      (given that   0  for all )m
mn k k

n

VS V z k n
V

−
+

+= = ≠  

 
 

Which we can now equivalently state as: 
 

0

0

      (given that all ports, except port , are )m
mn

n

VS n
V

−

+= matched  

 
 

For each case, you must be able to 
correctly identify the mathematical 
statement describing the wave incident on, 
and reflected from, some passive load.  
 
Like most equations in engineering, the 
variable names can change, but the physics 
described by the mathematics will not!  

 



09/06/06 The Scattering Matrix 9/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
 
 
 
 
 
 
 
 
 
A:  OK, say that our ports are not matched, such that we have 
waves simultaneously incident on each of the four ports of our 
device.   

 
Since the device is linear, the output at any port due to 
all the incident waves is simply the coherent sum of the 
output at that port due to each input wave! 
 
For example, the output wave at port 3 can be 
determined by (assuming 0nPz = ): 
 

03 33 03 32 02 31 0134 04V S V S V S V S V− + + + += + + +  
 
More generally, the output wave voltage at port m of an 
N-port device is: 
 

( )0 0
1

0
N

m mn n nP
n

V S V z− +

=

= =∑  

 
 
 

 

Q: As impossible as it sounds, this 
handout is even more boring and pointless 
than any of your previous efforts.  Why 
are we studying this? After all, what is 
the likelihood that a microwave network 
will have only one incident wave—that all 
of the ports will be matched?!   



09/06/06 The Scattering Matrix 10/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

This expression can be written in matrix form as: 
 

− +=V S V  
Where −V is the vector: 
 

01 02 03 0
T

NV ,V ,V , ,V− − − − −⎡ ⎤= ⎣ ⎦V …  
 
and +V  is the vector: 
 

01 02 03 0
T

NV ,V ,V , ,V+ + + + +⎡ ⎤= ⎣ ⎦V …  
 

Therefore S  is the scattering matrix: 
 

11 1

1

n

m mn

S S

S S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S
…

# % #
"

 

 
The scattering matrix is a N  by N  matrix that completely 
characterizes a linear, N-port device.  Effectively, the 
scattering matrix describes a multi-port device the way that LΓ  
describes a single-port device (e.g., a load)! 
 
But beware! The values of the scattering matrix for a particular 
device or network, just like LΓ , are frequency dependent!  Thus, 
it may be more instructive to explicitly write: 
 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

S S

S S

ω ω
ω

ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S
…

# % #
"
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Example: The  
Scattering Matrix 

 
Say we have a 3-port network that is completely characterized 
at some frequency ω  by the scattering matrix: 
 

0.0 0.2 0.5
0.5 0.0 0.2
0.5 0.5 0.0

S
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
A matched load is attached to port 2, while a short circuit has 
been placed at port 3: 
 
 
 
 
 
 

 

1 (z)V +  

3 (z)V +  

2 (z)V +  

port 1 

1 (z)V −  

3 (z)V −  

2 (z)V −  

port 3 

port 
2 

3-port 
microwave 

device 
Z0 Z0 

Z0 

3 0Pz =  

2 0Pz =  

1 0Pz =  

0Z Z=  

0Z =  
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Because of the matched load at port 2 (i.e., 0LΓ = ), we know 
that: 

022 2

2 2 02

( 0) 0
( 0)

VV z
V z V

++

− −

=
= =

=
 

 
and therefore: 

02 0V + =  
 
 
 
 
 
 

 
 
 
 
NO!! Remember, the signal 2 ( )V z−  is incident on the matched 
load, and 2 ( )V z+  is the reflected wave from the load (i.e., 2 ( )V z+  
is incident on port 2).  Therefore, 02 0V + =  is correct! 
 
Likewise, because of the short circuit at port 3 ( 1LΓ = − ): 
 

3 3 03

3 3 03

( 0) 1
( 0)

V z V
V z V

+ +

− −

=
= = −

=
 

 
and therefore: 
 

03 03V V+ −= −  

 

You’ve made a terrible mistake! 
Fortunately, I was here to 
correct it for you—since 0LΓ = , 
the constant 02V −  (not 02V + ) is 
equal to zero. 
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Problem: 
 
a)  Find the reflection coefficient at port 1, i.e.: 
 

01
1

01

V
V

−

+Γ  

 
b)  Find the transmission coefficient from port 1 to port 2, i.e.,  
 

02
21

01

VT
V

−

+  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
NO!!!  The above statement is not correct! 
 

Remember, 01 01 11V V S− + =  only if ports 2 and 3 are 
terminated in matched loads!  In this problem port 3 
is terminated with a short circuit. 

 

I am amused by the trivial 
problems that you apparently 
find so difficult.  I know that: 
 

01
1 11

01

0.0V S
V

−

+Γ = = =  

and 
 

02
21 21

01

0.5VT S
V

−

+= = =  

 



9/6/2006 Example The Scattering Matrix 4/6 

Jim Stiles The Univ. of Kansas Dept. of EECS  

Therefore: 
01

1 11
01

V S
V

−

+Γ = ≠  

and similarly: 
 

02
21 21

01

VT S
V

−

+= ≠  

 
To determine the values 21T  and 1Γ , we must start with the 
three equations provided by the scattering matrix: 
 

01 02 03

02 01 03

03 01 02

0 2 0 5

0 5 0 2

0 5 0 5

V . V . V

V . V . V

V . V . V

− + +

− + +

− + +

= +

= +

= +

 

 
and the two equations provided by the attached loads: 
 

02

03 03

0V

V V

+

+ −

=

= −
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We can divide all of these equations by 01V + , resulting in: 
 

01 02 03
1

01 01 01

02 03
21

01 01

03 02

01 01

02

01

03 03

01 01

0 2 0 5

0 5 0 2

0 5 0 5

0

V V V. .
V V V

V VT . .
V V

V V. .
V V

V
V

V V
V V

− + +

+ + +

− +

+ +

− +

+ +

+

+

+ −

+ +

= +

= = +

= +

=

= −

Γ =

 

 
Look what we have—5  equations and 5 unknowns!  Inserting 
equations 4 and 5 into equations 1 through 3, we get: 
 

01 03
1

01 01

02 03
21

01 01

03

01

0 5

0 5 0 2

0 5

V V.
V V

V VT . .
V V

V .
V

− +

+ +

− +

+ +

−

+

= −

= = −

=

Γ =
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Solving, we find: 
 

( )

( )

1

21

0 5 0 5 0 25

0 5 0 2 0 5 0 4

. . .

T . . . .

= − = −

= − =

Γ
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Example: Scattering 
Parameters 

 
Consider a two-port device with a scattering matrix (at some 
specific frequency 0ω ): 
 

( )0

0 1 0 7
0 7 0 2
. j .

j . .ω ω
⎡ ⎤

= = ⎢ ⎥−⎣ ⎦
S  

 
and 0 50Z = Ω . 

 
Say that the transmission line connected to port 2 of this 
device is terminated in a matched load, and that the wave 
incident on port 1 is: 
 

( ) 1
1 1 2 j zV z j e β−+ = −  

 
where 1 2 0P Pz z= = . 
 
Determine: 
 
 1.  the port voltages ( )1 1 1PV z z=  and ( )2 2 2PV z z= . 
  
 2.  the port currents ( )1 1 1PI z z=  and ( )2 2 2PI z z= . 
 

3.  the net power flowing into port 1  
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1.  Since the incident wave on port 1 is: 
 

( ) 1
1 1 2 j zV z j e β−+ = −  

 
we can conclude (since 1 0Pz = ): 
 

( )
( )

1
1 1 1

0

2

2
2

Pj z
P

j

V z z j e
j e
j

β

β

−+

−

= = −

= −

= −

 

 
and since port 2 is matched (and only because its matched!), 
we find: 
 

( ) ( )
( )

1 1 1 11 1 1 1

0 1 2
0 2

P PV z z S V z z
. j
j .

− += = =

= −

= −

 

The voltage at port 1 is thus: 
 

( ) ( ) ( )1 1 1 1 1 1 1 1 1

2

2 0 0 2
2 2

2 2

P P P

j

V z z V z z V z z
j . j .
j .

. e π

+ −

−

= = = + =

= − −

= −

=

 

Likewise, since port 2 is matched: 
 

( )2 2 2 0PV z z+ = =  
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And also:  
 

( ) ( )
( )

2 2 2 21 1 1 1

0 7 2
1 4

P PV z z S V z z
j . j
.

− += = =

= −

=

 

Therefore: 
 

( ) ( ) ( )2 2 2 2 2 2 2 2 2

0

0 1 4
1 4
1 4

P P P

j

V z z V z z V z z
.

.

. e

+ −

−

= = = + =

= +

=

=

 

  
2.  The port currents can be easily determined from the 
results of the previous section.   
 

( ) ( ) ( )
( ) ( )

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

0 0

2

2 0 0 2
50 50
1 8
50
0 036

0 036

P P P

P P

j

I z z I z z I z z
V z z V z z

Z Z
. .j j

.j

j .

. e π

+ −

+ −

−

= = = − =

= =
= −

= − +

= −

= −

=

 

 
and: 
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( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

0 0

0 1 4
50 50
0 028

0 028

P P P

P P

j

I z z I z z I z z
V z z V z z

Z Z
.

.
. e π

+ −

+ −

+

= = = − =

= =
= −

= −

= −

=

 

 
3.  The net power flowing into port 1 is: 
 

( ) ( )
( )

1 1 1
2 2

01 01

0 0
2 2

2 2

2 0 2
2 50

0 0396

P P P

V V
Z Z

.

. Watts

+ −

+ −

∆ = −

= −

−
=

=
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Matched, Lossless, 
Reciprocal Devices 

 
Often, we describe a device or network as matched, lossless, or 
reciprocal. 
 

Q:  What do these three terms mean?? 
 
A:  Let’s explain each of them one at a time! 
 

Matched 
 
A matched device is another way of saying that the input 
impedance at each port is numerically equal to Z0 when all 
other ports are terminated in matched loads.  As a result, the 
input reflection coefficient of each port is zero—no signal will 
come out of a port when a signal is incident on that port (and 
only that port !). 
 
In other words, we want: 
 

0 0 0    for all m mm mV S V m− += =  
 

a result that occurs when: 
 

 0  for all  if  .mmS m matched=  
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We find therefore that a matched device will exhibit a 
scattering matrix where all diagonal elements are zero. 
 
Therefore: 

0 0.1 0.2
0.1 0 0.3
0.2 0.3 0

j

j

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  

 
is an example of a scattering matrix for a matched, three port 
device. 
 
Lossless 
 
For a lossless device, all of the power that delivered to each 
device port must eventually find its way out! 
 
In other words, power is not absorbed by the network—no  
power to be converted to heat! 
 
Recall the power incident on some port m is related to the 
amplitude of the incident wave ( 0mV + ) as: 
 

2
0

02
m

m
V

P Z

+
+ =  

 
While power of the wave exiting the port is: 
 

2
0

02
m

m
V

P Z

−
− =  
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Thus, the power delivered to that port is the difference of the 
two: 

2 2
00

0 02 2
mm

m m m
V V

P P P Z Z

+ −
+ −∆ = − = −  

 
Thus, the total power incident on an N-port device is: 
 

2
0

01 1

1
2

N N

m m
m m

P P VZ
+ + +

= =
= =∑ ∑  

 
Note that:  

2
0

1

N H
m

m
V + +V V+

=
=∑  

 
where operator H  indicates the conjugate transpose (i.e., 

Hermetian transpose) operation, so that 
H

+ +V V  is the inner 
product (i.e., dot product, or scalar product) of complex vector 

+V  with itself.  
 

Thus, we can write the total power incident on the device as: 
 

2
0

0 01

1
2 2

HN

m
m

P VZ Z
+ +V V+ +

=
= =∑  

 
Similarly, we can express the total power of the waves exiting 
our M-port network to be: 

2
0

0 01

1
2 2

HN

m
m

P VZ Z
V V− −

− −

=
= =∑  
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Now, recalling that the incident and exiting wave amplitudes are 
related by the scattering matrix of the device: 
 

− +=V S V  
 
Thus we find: 

0 02 2

HHH

P Z Z
V S S VV V + +− −

− = =  

 
Now, the total power delivered to the network is: 
 

1

M

m
P P P P+ −

=
∆ = ∆ = −∑  

Or explicitly:  

0 0

0

2 2
1

2

HHH

HH

P P P

Z Z

Z

V S S VV V

V I S S V

+ −

+ ++ +

+ +

∆ = −

= −

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠

 

 
where I  is the identity matrix. 
 
Q:  Is there actually some point to this long, rambling, complex 
presentation? 
 
A: Absolutely!  If our M-port device is lossless then the total 
power exiting the device must always be equal to the total 
power incident on it.  
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If network is  then   . P P lossless, + −=  
 

Or stated another way, the total power delivered to the device 
(i.e., the power absorbed by the device) must always be zero if 
the device is lossless! 
 

If network is  then  0P lossless, ∆ =  
 

Thus, we can conclude from our math that for a lossless device: 
 

0

1 0       for all 2
HH

P Z V I S S V V+ + +⎛ ⎞⎟⎜∆ = − =⎟⎜ ⎟⎜⎝ ⎠
 

 
 
This is true only if: 
 

0
H H

I S S S S I− = ⇒ =  
 

Thus, we can conclude that the scattering matrix of a lossless 
device has the characteristic: 
 

If a network is , then   
H

lossless S S I=  
 
Q: Huh? What exactly is this supposed to tell us? 
 

A:  A matrix that satisfies  
H

S S I=  is a special kind of matrix 
known as a unitary matrix. 
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If a network is , then its scattering matrix   is .lossless S unitary
 
 
Q:  How do I recognize a unitary matrix if I see one? 
 
A:  The columns of a unitary matrix form an orthonormal set! 
 

12

22

33

4

13

23

33

43

14

22

11

21

31

41

3

2

3

44

S
S
S

S S
S
S

S

S

S

S
S

S

S

S
S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=S  

 
 
 
 
In other words, each column of the scattering matrix will have 
a magnitude equal to one: 
 

2

1
1 for all 

N

mn
m

S n
=

=∑  

 
while the inner product (i.e., dot product) of dissimilar columns 
must be zero. 
 

1 1 2 2
1

0 for all 
N

ni nj i j i j Ni Nj
n

S S S S S S S S i j∗ ∗ ∗ ∗

=

= + + + = ≠∑  

 
In other words, dissimilar columns are orthogonal. 
 

matrix 
columns 
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Consider, for example, a lossless three-port device.  Say a 
signal is incident on port 1, and that all other ports are 
terminated.  The power incident on port 1 is therefore: 
 

2
01

1
02

V
P Z

+
+ =  

 
while the power exiting the device at each port is: 
 

2 2
0 1 01 2

1 1
0 02 2

m m
m m

V S V
P S PZ Z

− −
− += = =  

 
The total power exiting the device is therefore: 
 

( )

1 2 3
2 2 2

11 21 311 1 1
2 2 2

11 21 31 1

P P P P
S P S P S P
S S S P

− − − −

+ + +

+

= + +

= + +

= + +

 

 
Since this device is lossless, then the incident power (only on 
port 1) is equal to exiting power (i.e, 1P P− += ).  This is true only 
if:  

2 2 2
11 21 31 1S S S+ + =  

 
Of course, this will likewise be true if the incident wave is 
placed on any of the other ports of this lossless device: 

 
222 2

12 22 32 42
22 2 2

13 23 33 43
2 2 2 2

14 24 34 44

1

1

1

S S S S
S S S S
S S S S

+ + + =

+ + + =

+ + + =
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We can state in general then that: 
 

3 2

1
1 for all mn

m
S n

=

=∑  

 
In other words, the columns of the scattering matrix must have 
unit magnitude (a requirement of all unitary matrices).  It is 
apparent that this must be true for energy to be conserved. 
 
An example of a (unitary) scattering matrix for a lossless 
device is: 
 
 
 
 
 
 
 
Reciprocal 
 
 
Reciprocity results when we build a  passive (i.e., unpowered) 
device with simple materials.  
 
For a reciprocal network, we find that the elements of the 
scattering matrix are related as: 
 

mn nmS S=  
 
 

1 3
2 2

31
2 2
3 1

2 2
3 12 2

0 0
0 0
0 0

0 0

j
j

j
j

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  
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For example,  a reciprocal device will have 21 12S S=  or 
32 23S S= .  We can write reciprocity in matrix form as: 

 
 

     if TS S reciprocal=  
 

 
where T  indicates (non-conjugate) transpose. 
 
 
An example of a scattering matrix describing a reciprocal, but 
lossy and non-matched device is: 
 
 
 
 

0.10 0.20 0.050.40
0.40 0 0.100.20
0.20 0.10 0.30 0.120

0.05 0.12 00.10

j
jj

j j
j

−−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

S  
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Coaxial Transmission Lines 
 
The most common type of transmission line! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The electric field (        )points in 
the direction âρ  . 
 
The magnetic field (        )points 
in the direction âφ . 
 
E. M. Power flows in the direction  

ẑa . 
 
 A TEM wave! 

ε

b 

a 

+ 
   V0 
         - 

Outer 
Conductor 

Inner 
Conductor 

Coax Cross-Section 
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Recall from EECS 220 that the capacitance per/unit length of a 
coaxial transmission line is:  
 

2  farads        
ln b/a meter

C π ⎡ ⎤= ⎢ ⎥⎡ ⎤ ⎣ ⎦⎣ ⎦

ε  

 
And that the inductance per unit length is : 
 

0 Henriesln          
2 m

bL
a

µ
π

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 
Where of course the characteristic impedance is: 
 

01 ln  
2

 

o
LZ
C

b
a

µ
π

=

⎡ ⎤= ⎢ ⎥⎣ ⎦ε
 

and: 
0LCβ ω ω µ ε= =  

 
Therefore the propagation velocity of each TEM wave within a 
coaxial transmission line is: 
 

0 0 0

1 1 1 1
p

r r
v cω

β µ ε µ ε ε ε
= = = =  

 
where 0rε ε ε=  is the relative dielectric constant, and c is the 
“speed of light” ( 83 10c m / s= × ).
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Note then that we can likewise express β  in terms rε : 
 

0 0 0 r rc
ωβ ω µ ε ω µ ε ε ε= = =  

 
Now, the size of the coaxial line (a and b) determines more than 
simply 0Z  and β  (L and C) of the transmission line.  Additionally, 
the line radius determines the weight and bulk of the line, as 
well as its power handling capabilities.   
 
Unfortunately, these two characteristics conflict with each 
other! 
 
1.  Obviously, to minimize the weight and bulk of a coaxial 
transmission line, we should make a and b as small as possible. 
 
2.  However, for a given line voltage, reducing a and b causes 
the electric field within the coaxial line to increase (recall the 
units of electric field are V/m).   
 
A higher electric field causes two problems: first, it results in 
greater line attenuation (larger α); second, it can result in 
dielectric breakdown. 
 
Dielectric breakdown results when the electric field within the 
transmission line becomes so large that the dielectric material 
is ionized.  Suddenly, the dielectric becomes a conductor, and 
the value G gets very large! 
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This generally results in the destruction of the coax line, and 
thus must be avoided.  Thus, large coaxial lines are required 
when extremely low-loss is required (i.e., line length  is large), 
or the delivered power is large. 
 
Otherwise, we try to keep our coax lines as small as possible! 
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Coaxial Connectors 
 
There are many types of connectors that are used to connect 
coaxial lines to RF/microwave devices.  They include: 
 

SMA 
The workhorse microwave connector. 
Small size, but works well to > 20 GHz.  
By microwave standards, moderately 
priced. 

 
 

 
BNC  
The workhorse RF connector. Relatively 
small and cheap, and easy to connect. 
Don’t use this connector past 2 GHz! 
 
 
 
F  
A poorman’s BNC.  The RF connector 
used on most consumer products such as 
TVs.  Cheap, but difficult to connect 
and not reliable. 
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N 
The original microwave connector. Good 
performance (up to 18GHz), and 
moderate cost, but large (about 2 cm in 
diameter) ! However, can handle greater 
power than SMA. 
 
 
UHF 
The poorman’s N. About the same size, 
although reduced reliability and 
performance. 
 
 
RCA 
Not really an RF connector. Used 
primarily in consumer application for 
video and audio signals (i.e., <20 MHz). 
Cheap and easy to connect. 
 
APC-7 and APC-3.5 
The top of the line connector.  Best 
performance, but cost big $$$.  Used 
primarily in test equipment (e.g., 
network analyzers). 3.5 can work to 
nearly 40 GHz. 
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Printed Circuit Board 
Transmission Lines 

 
Microstrip 
Probably most popular PCB 
transmission line. Easy fabrication 
and connection, yet is slightly 
dispersive, lossy, and difficult to 
analyze. 
 
Stripline 
Better than microstrip in that it is 
not dispersive, and is more easily 
analyzed. However, fabrication and 
connection is more difficult. 
 
Coplanar Waveguide 
The newest technology. Perhaps 
easiest to fabricate and connect 
components, as both ground and 
conductor are on one side of the 
board. 
 
Slotline 
Essentially, a dual wire tranmission 
line. Best for “balanced” 
applications.  Not used much. 

εr 

εr 

εr 

εr εr 
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An antenna array feed, constructed using microstrip 
transmission lines and circuits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A wideband microstrip coupler. 
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