Even and Odd Mode Analysis

Consider a matched Wilkinson power divider, with a source at port 2:

Q: How do we analyze this circuit?

A: Use Even-Odd mode analysis!

Even-Odd mode analysis uses two important principles:

- a) superposition
- b) circuit symmetry

To see how we apply these principles, let's first rewrite the circuit with four voltage sources:

And then determine all even mode voltages and currents:

And thus the voltages and currents within the circuit is simply the sum of the two modes:

Q: Yikes! Why in the world would we want to analyze a circuit this way? This "odd-even mode" analysis seems to just make things much harder!

A: Be patient! We have yet to apply our second principle—circuit symmetry.

Note that we can rewrite the circuit with a perfect plane of circuit symmetry:

Consider now this symmetry with respect to the **odd** mode. It is evident that at **every** point along this symmetry plane, the **voltage** must be **zero**!

We call this odd mode symmetry plane a virtual short, as the voltage along this plane must be zero. As a result, we can divide the odd mode circuit into two pieces:

Likewise, when we apply the **even mode** analysis, we find that at **every** point along this symmetry plane, the **current** crossing it must be **zero**!

We call this even mode symmetry plane a virtual open, as the current along this plane must be zero. As a result, we can divide the even mode circuit into two pieces:

Again, we know how to analyze each of these circuits!

Applying superposition, we can find the total voltages and currents by simply adding the results of each mode:

And from these results we can determine the following scattering parameters:

$$V_{2}^{2} = V_{2}^{2}$$

$$V_{3}^{2} = V_{2}^{2}$$

$$V_{3}^{2} = V_{2}^{2}$$

$$V_{4}^{2} = V_{2}^{2}$$

$$V_{5}^{2} = V_{2}^{2}$$

And from circuit symmetry and reciprocity, we can conclude: