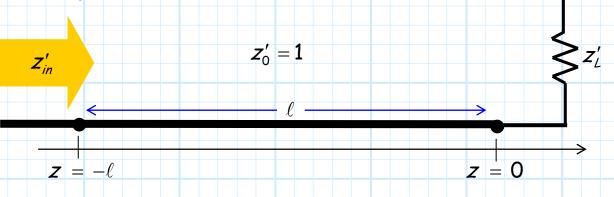
Zin Calculations using the Smith Chart



The normalized input impedance z_{in}' of a transmission line length ℓ , when terminated in normalized load z_{ℓ}' , can be determined as:

Q: Evaluating this
unattractive expression
looks not the least bit
pleasant. Isn't there a less
disagreeable method to
determine z'_{in}?

$$Z'_{in} = \frac{Z_{in}}{Z_0}$$

$$= \frac{1}{Z_0} Z_0 \left(\frac{Z_L + j Z_0 \tan \beta \ell}{Z_0 + j Z_L \tan \beta \ell} \right)$$

$$= \frac{Z_L/Z_0 + j \tan \beta \ell}{1 + j Z_L/Z_0 \tan \beta \ell}$$

$$= \frac{Z'_L + j \tan \beta \ell}{1 + j z'_L \tan \beta \ell}$$

$$= \frac{Z'_L + j \tan \beta \ell}{1 + j z'_L \tan \beta \ell}$$

A: Yes there is! Instead, we could determine this normalized input impedance by following these three steps:

1. Convert z'_i to Γ_i , using the equation:

$$\Gamma_{L} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} = \frac{Z_{L}/Z_{0} - 1}{Z_{L}/Z_{0} + 1} = \frac{z'_{L} - 1}{z'_{L} + 1}$$

2. Convert Γ_{L} to Γ_{in} , using the equation:

$$\Gamma_{\it in} = \Gamma_{\it L} \, {\it e}^{-j2eta\,\ell}$$

3. Convert Γ_{in} to z'_{in} , using the equation:

$$Z'_{in} = \frac{Z_{in}}{Z_0} = \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}}$$

Q: But performing these **three** calculations would be even **more** difficult than the **single** step you described earlier. What short of dimwit would ever use (or recommend) this approach?

A: The benefit in this last approach is that each of the three steps can be executed using a Smith Chart—no complex calculations are required!

1. Convert z'_{L} to Γ_{L}

Find the point z'_{ℓ} from the impedance mappings on your Smith Chart. Place you pencil at that point—you have now located the correct Γ_{ℓ} on your complex Γ plane!

For **example**, say $z'_{\ell} = 0.6 - j1.4$. We find on the Smith Chart the circle for r = 0.6 and the circle for x = -1.4. The **intersection** of these two circles is the point on the complex Γ plane corresponding to normalized impedance $z'_{\ell} = 0.6 - j1.4$.

This point is a **distance** of 0.685 units from the origin, and is located at **angle** of -65 degrees. Thus the value of Γ , is:

$$\Gamma_L = 0.685 e^{-j65^{\circ}}$$

2. Convert Γ_{L} to Γ_{in}

Since we have correctly located the point Γ_{ℓ} on the complex Γ plane, we merely need to **rotate** that point **clockwise** around a circle ($|\Gamma| = 0.685$) by an angle $2\beta\ell$.

When we stop, we are located at the point on the complex Γ plane where $\Gamma = \Gamma_m!$

For **example**, if the length of the transmission line terminated in $z'_{\ell} = 0.6 - j1.4$ is $\ell = 0.307 \lambda$, we should rotate around the Smith Chart a total of $2\beta \ell = 1.228\pi$ radians, or 221°. We are now at the point on the complex Γ plane:

$$\Gamma = 0.685 e^{+j74}$$

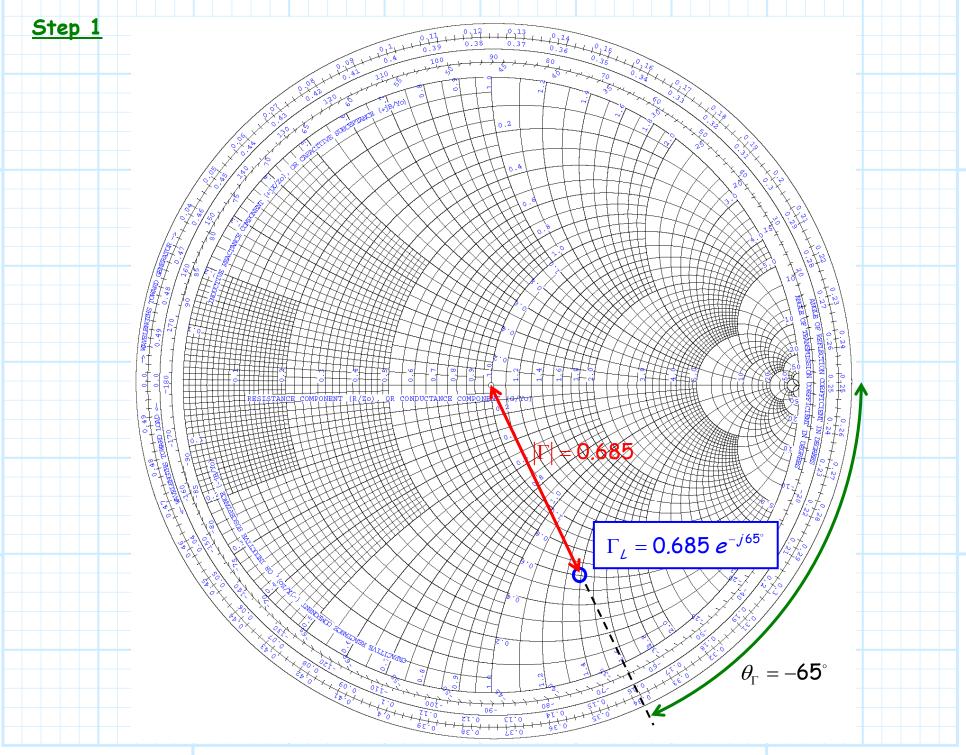
This is the value of Γ_{in} !

3. Convert Γ_{in} to z'_{in}

When you get finished rotating, and your pencil is located at the point $\Gamma = \Gamma_m$, simply lift your pencil and determine the values r and x to which the point corresponds!

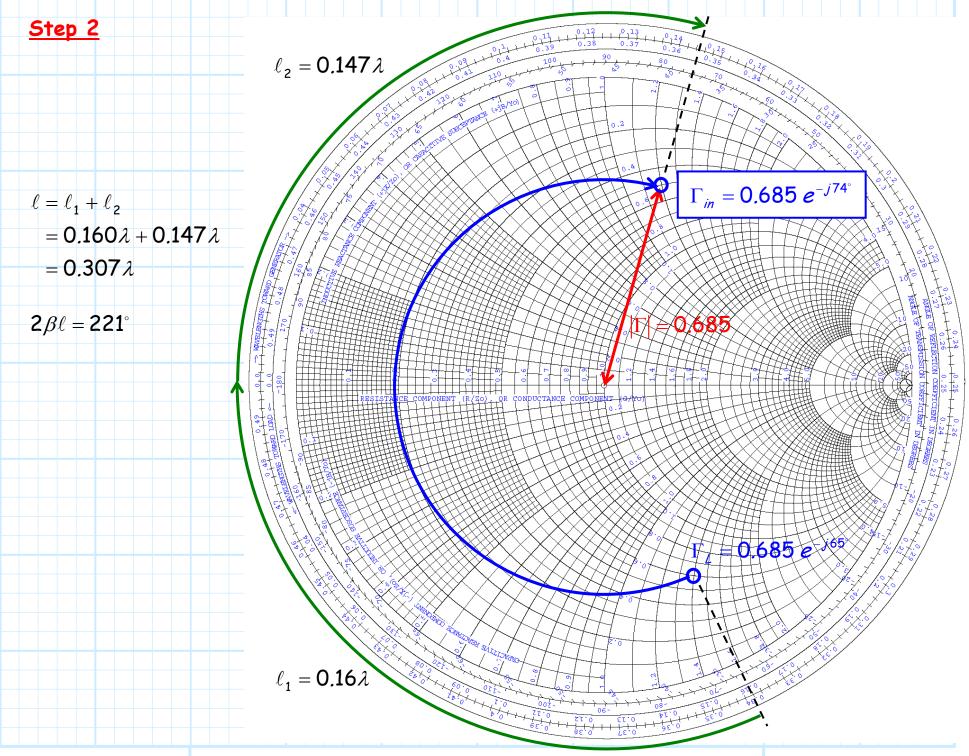
For **example**, we can determine directly from the Smith Chart that the point $\Gamma_{in} = 0.685 e^{+j74^{\circ}}$ is located at the **intersection** of circles r = 0.5 and x = 1.2. In other words:

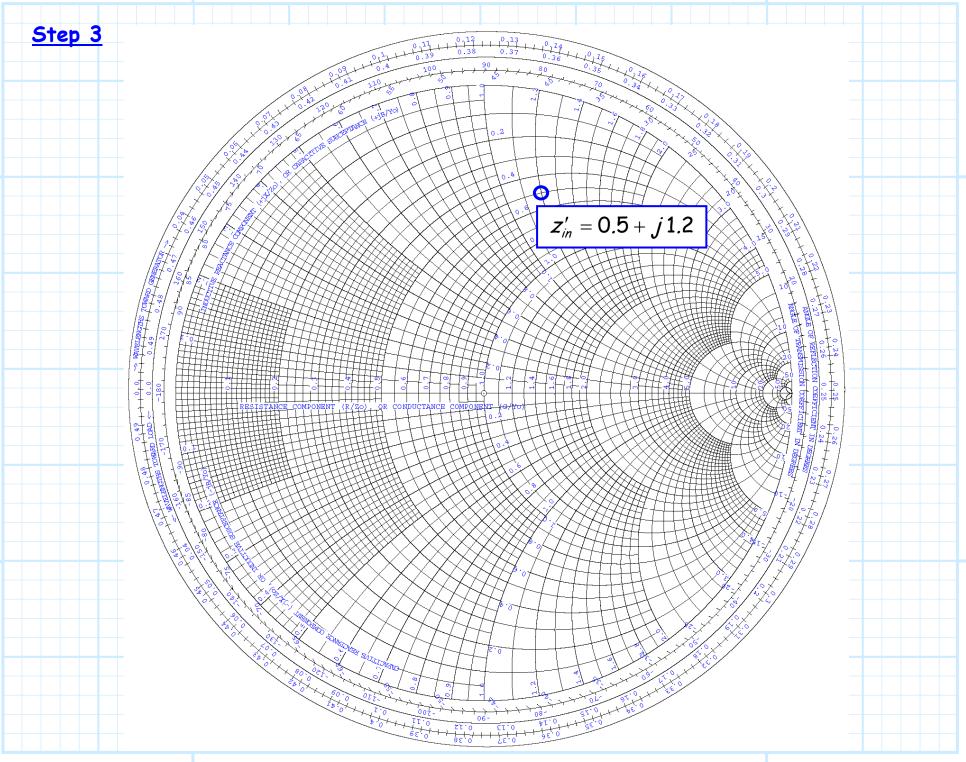
$$z'_{in} = 0.5 + j1.2$$



Jim Stiles The Univ. of Kansas

Dept. of EECS





Jim Stiles The Univ. of Kansas Dept. of EECS