The Matched, Lossless. Reciprocal Network

Often, we describe a network as matched, lossless, or reciprocal.

Q: What do these three terms mean??

A: Let's explain each of them one at a time!

Matched

A matched device is another way of saying that the input impedance at each port is equal to Z_{0} when all other ports are terminated in matched loads. As a result, the reflection coefficient of each port is zero-no signal will be come out of a port if a signal is incident on that port (and only that port).

In other words, we want:

$$
V_{m}^{-}=S_{m m} V_{m}^{+}=0 \quad \text { for all } m
$$

a result that occurs when:

$$
S_{m m}=0 \quad \text { for all } m
$$

We find therefore that a matched device will exhibit a scattering matrix where all diagonal elements are zero.

Therefore:

$$
\overline{\overline{\mathbf{s}}}=\left[\begin{array}{ccc}
0 & 0.1 & j 0.2 \\
0.1 & 0 & 0.3 \\
j 0.2 & 0.3 & 0
\end{array}\right]
$$

is an example of a scattering matrix for a matched, three port device.

Lossless

For a lossless device, all of the power that delivered to each device port must eventually finds its way out!

In other words, power is not absorbed by the network-no power to be converted to heat!

Consider, for example, a four-port device. Say a signal is incident on port 1, and that all other ports are terminated. The power incident on port 1 is therefore:

$$
p_{1}^{+}=\frac{\left|V_{1}^{+}\right|^{2}}{2 Z_{0}}
$$

while the power leaving the device at each port is:

$$
P_{m}^{-}=\frac{\left|V_{m}^{-}\right|^{2}}{2 Z_{0}}=\frac{\left|S_{m 1} V_{1}^{-}\right|^{2}}{2 Z_{0}}=\left|S_{m 1}\right|^{2} P_{1}^{+}
$$

The total power leaving the device is therefore:

$$
\begin{aligned}
P_{\text {out }} & =P_{1}^{-}+P_{2}^{-}+P_{3}^{-}+p_{4}^{-} \\
& =\left|S_{11}\right|^{2} P_{1}^{+}+\left|S_{21}\right|^{2} P_{1}^{+}+\left|S_{31}\right|^{2} p_{1}^{+}+\left|S_{41}\right|^{2} P_{1}^{+} \\
& =\left(\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}+\left|S_{41}\right|^{2}\right) p_{1}^{+}
\end{aligned}
$$

Note therefore that if the device is lossless, the output power will be equal to the input power, i.e., $P_{\text {out }}=P_{1}^{+}$. This is true only if:

$$
\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}+\left|S_{41}\right|^{2}=1
$$

If the device is lossless, this will likewise be true for each of the other ports:

$$
\begin{aligned}
& \left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}+\left|S_{32}\right|^{2}+\left|S_{42}\right|^{2}=1 \\
& \left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}+\left|S_{33}\right|^{2}+\left|S_{43}\right|^{2}=1 \\
& \left|S_{14}\right|^{2}+\left|S_{24}\right|^{2}+\left|S_{34}\right|^{2}+\left|S_{44}\right|^{2}=1
\end{aligned}
$$

We can state in general then:

$$
\sum_{m=1}^{N}\left|S_{m n}\right|^{2}=1 \text { for all } n
$$

In fact, it can be shown that a lossless device will have a unitary scattering matrix, i.e.:

$$
\overline{\overline{\mathbf{s}}} H \overline{\overline{\mathbf{s}}}=\overline{\overline{\mathbf{I}}}
$$

where Hindicates conjugate transpose and $\overline{\bar{I}}$ is the identity matrix.

The columns of a unitary matrix form an orthonormal set-that is, the magnitude of each column is 1 (as shown above) and dissimilar column vector are mutually orthogonal. I.E.:

$$
S_{1 m} S_{1 n}^{*}+S_{2 m} S_{2 n}^{*}+\cdots+S_{N m} S_{N n}^{*}=0 \quad \text { for all } m \neq n
$$

Reciprocal

Receiprocity results when we build a passive (i.e., unpowered) device with simple materials.

For a reciprocal network, we find that the elements of the scattering matrix are related as:

$$
S_{m n}=S_{n m}
$$

For example, a reciprocal device will have $S_{21}=S_{12}$ or $S_{32}=S_{23}$. We can write reciprocity in matrix form as:

$$
\overline{\overline{\mathbf{S}}}^{T}=\overline{\overline{\mathbf{S}}}
$$

where Tindicates (non-conjugate) transpose.

