The Complex Propagation
Constant γ
Recall that the current and voltage along a transmission line have the form:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-\gamma z}-\frac{V_{0}^{-}}{Z_{0}} e^{+\gamma z}
\end{aligned}
$$

where Z_{0} and γ are complex constants that describe the properties of a transmission line. Since γ is complex, we can consider both its real and imaginary components.

$$
\begin{aligned}
\gamma & =\sqrt{(R+j \omega L)(G+j \omega C)} \\
& =\alpha+j \beta
\end{aligned}
$$

where $\alpha=\operatorname{Re}\{\gamma\}$ and $\beta=\operatorname{Im}\{\gamma\}$. Therefore, we can write:

$$
e^{-\gamma z}=e^{-(\alpha+j \beta) z}=e^{-\alpha z} e^{-j B z}
$$

Since $\left|e^{-j \beta z}\right|=1$, then $e^{-\alpha z}$ alone determines the magnitude of $e^{-\gamma z}$.
I.E., $\left|e^{-\gamma z}\right|=e^{-\alpha z}$.

Therefore, α expresses the attenuation of the signal due to the loss in the transmission line.

Since $e^{-\alpha z}$ is a real function, it expresses the magnitude of $e^{-\gamma z}$ only. The relative phase $\phi(z)$ of $e^{-\gamma z}$ is therefore determined by $e^{-j \beta z}=e^{-j \phi(z)}$ only (recall $\left|e^{-j \beta z}\right|=1$).

From Euler's equation:

$$
e^{j \phi(z)}=e^{j \beta z}=\cos (\beta z)+j \sin (\beta z)
$$

Therefore, βz represents the relative phase $\phi(z)$ of the oscillating signal, as a function of transmission line position z. Since phase $\phi(z)$ is expressed in radians, and z is distance (in meters), the value β must have units of:

$$
\beta=\frac{\phi}{z} \quad \frac{\text { radians }}{\text { meter }}
$$

The wavelength λ of the signal is the distance $\Delta z_{2 \pi}$ over which the relative phase changes by 2π radians. So:

$$
2 \pi=\phi\left(z+\Delta z_{2 \pi}\right)-\phi(z)=\beta \Delta z_{2 \pi}=\beta \lambda
$$

or, rearranging:

$$
\beta=\frac{2 \pi}{\lambda}
$$

Since the signal is oscillating in time at rate $\omega \mathrm{rad} / \mathrm{sec}$, the propagation velocity of the wave is:

$$
v_{p}=\frac{\omega}{\beta}=\frac{\omega \lambda}{2 \pi}=f \lambda \quad\left(\frac{m}{\sec }=\frac{\mathrm{rad}}{\mathrm{sec}} \frac{\mathrm{~m}}{\mathrm{rad}}\right)
$$

where f is frequency in cycles/sec.

Recall we originally considered the transmission line current and voltage as a function of time and position (i.e., $v(z, t)$ and $i(z, t)$). We assumed the time function was sinusoidal, oscillating with frequency ω :

$$
\begin{aligned}
& v(z, t)=\operatorname{Re}\left\{V(z) e^{j \omega t}\right\} \\
& i(z, t)=\operatorname{Re}\left\{I(z) e^{j \omega t}\right\}
\end{aligned}
$$

Now that we know $V(z)$ and $I(z)$, we can write the original functions as:

$$
\begin{aligned}
& v(z, t)=\operatorname{Re}\left\{V_{0}^{+} e^{-\alpha z} e^{-j(\beta z-\omega t)}+V_{0}^{-} e^{\alpha z} e^{j(\beta z-\omega t)}\right\} \\
& i(z, t)=\operatorname{Re}\left\{\frac{V_{0}^{+}}{Z_{0}} e^{-\alpha z} e^{-j(\beta z-\omega t)}-\frac{V_{0}^{+}}{Z_{0}} e^{\alpha z} e^{j(\beta z-\omega t)}\right\}
\end{aligned}
$$

The first term in each equation describes a wave propagating in the $+\boldsymbol{z}$ direction, while the second describes a wave propagating in the opposite $(-z)$ direction.

Each wave has wavelength:

$$
\lambda=\frac{2 \pi}{\beta}
$$

And velocity:

$$
v_{p}=\frac{\omega}{\beta}
$$

