The Reflection Coefficient

Transformation

The load at the end of some length of a transmission line (with
characteristic impedance Z,) can be specified in ferms of its
impedance Z; or its reflection coefficient I.

Note both values are complex, and either one completely
specifies the load—if you know one, you know the other!
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Recall that we determined how a length of fransmission line
transformed the load impedance into an input impedance of a
(generally) different value:
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Q: Say we know the load in terms of its reflection
coefficient (call this T, ) How can we express the input

impedance in terms its reflection coefficient (call this
1—‘/'/7 ) ?
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A: Well, we could execute these three steps:

1. Convert I, to Z:
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2. Transform Z; down the line to Z,:
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3. Convert Z, to T',,:
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Q:  Yikes! This is a ton of complex arithmetic—isn‘t
there an easier way?

A: Actually, there is!

Recall in an earlier handout that the input impedance of a
transmission line length ¢, terminated with a load T, , is:
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Note this directly relates I, to 2, (steps 1 and 2 combined!).

If we directly insert this equation into:
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we get an equation directly relating T', to T, :



" Zy(eV+T, et )+(eV T, e
Lt e’
o gtift

L ~J2p!
=T, e

Recall that T, is a complex value. As such, we can express it in
terms of its real and imaginary components, or by its magnitude
I',| and phase 6, , i.e. :
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Note then that the input reflection coefficient is related to the
load as:
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Thus, the reflection coefficient at the beginning of a
transmission line (T',,) is simply the same as that at the end of

the line (T',), only phase-shifted by a value of -3¢ radians.

In other words, the magnitude is the same as [T, |!
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If we think about this, it makes perfect sense!

Recall that the power absorbed by the load T";, would be:
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Recall, however, that a lossless transmission line can absorb no
power! By adding a length of transmission line to load I'; , we
have added only reactance. Therefore, the power absorbed by
load T, is equal o the power absorbed by I';:
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Thus, we can conclude from conservation of energy that:
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Which of course is exactly the result we reached earlier!

Finally, the phase shift associated with transforming the load
', down a transmission line can be attributed to the phase shift
associated with the wave propagating a length ¢ down the line,
reflecting from load I'; , and then propagating a length ¢ back up
the line:
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To emphasize this wave interpretation, we note that we can
write I',, as:



Where we have defined V" (z) as the function describing the
wave propagating away from the load, and V" (z) the wave
propagating toward it:

V(z)=V, e
Vi(z)=V e’
We can therefore define a general reflection coefficient

function, describing the line impedance Z{z) in ferms of the
reflection coefficient I" at an arbitrary line location z:

I'(z)= =T, e/’

where I', =T'(z=0).



