The Telegrapher Equations

Consider a section of "wire":

Q: Huh ?! Current i and voltage v are a function of position z ?? Shouldn't $i(z, t)=i(\boldsymbol{z}+\Delta \boldsymbol{z}, t)$ and $v(\boldsymbol{z}, t)=v(\boldsymbol{z}+\Delta \boldsymbol{z}, t)$?

A: NO! Because a wire is never a perfect conductor.
A "wire" will have:

1) Inductance
2) Resistance
3) Capacitance
4) Conductance
i.e.,

Where:
$R=$ resistance/unit length
L = inductance/unit length
$C=$ capacitance/unit length
G = conductance/unit length
$\therefore \quad$ resistance of wire length Δz is $\mathrm{R} \Delta z$.

Using KVL, we find:

$$
v(z+\Delta z, t)-v(z, t)=-R \Delta z i(z, t)-L \Delta z \frac{\partial i(z, t)}{\partial t}
$$

and from KCL:

$$
i(z+\Delta z, t)-i(z, t)=-G \Delta z v(z, t)-C \Delta z \frac{\partial v(z, t)}{\partial t}
$$

Dividing the first equation by Δz, and then taking the limit as $\Delta z \rightarrow 0$:

$$
\lim _{\Delta z \rightarrow 0} \frac{v(z+\Delta z, t)-v(z, t)}{\Delta z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t}
$$

which, by definition of the derivative, becomes:

$$
\frac{\partial v(z, t)}{\partial z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t}
$$

Similarly, the KCL equation becomes:

$$
\frac{\partial i(z, t)}{\partial z}=-G v(z, t)-C \frac{\partial v(z, t)}{\partial t}
$$

If $v(z, t)$ and $i(z, t)$ have the form:

$$
v(z, t)=\operatorname{Re}\left\{V(z) e^{j \omega t}\right\} \quad \text { and } \quad i(z, t)=\operatorname{Re}\left\{I(z) e^{j \omega t}\right\}
$$

then these equations become:

$$
\begin{aligned}
& \frac{\partial V(z)}{\partial z}=-(R+j \omega L) I(z) \\
& \frac{\partial I(z)}{\partial z}=-(G+j \omega C) V(z)
\end{aligned}
$$

These equations are known as the telegrapher's equations!

* The functions $I(z)$ and $V(z)$ are complex, where the magnitude and phase of the complex functions describe the magnitude and phase of the sinusoidal time function $e^{j \omega t}$.
* Thus, $I(z)$ and $V(z)$ describe the current and voltage along the transmission line, as a function as position z.
* Remember, not just any function $I(z)$ and $V(z)$ can exist on a transmission line, but rather only those functions that satisfy the telegraphers equations.

Our task, therefore, is to solve the telegrapher equations and find all solutions $I(z)$ and $V(z)$!

