Transmission Line Input Impedance

Consider a lossless line, length ℓ, terminated with a load Z_{L}.

What is the input impedance of this line?
Q: Just what do you mean by input impedance?
A: The line impedance seen at the beginning $(z=-\ell)$ of the transmission line, i.e.:

$$
Z_{\text {in }}=Z(z=-\ell)=\frac{V(z=-\ell)}{I(z=-\ell)}
$$

Note $Z_{\text {in }}$ equal to neither the load impedance Z_{L} nor the characteristic impedance Z_{0} !

$$
Z_{\text {in }} \neq Z_{L} \quad \text { and } \quad Z_{\text {in }} \neq Z_{0}
$$

To determine exactly what $Z_{\text {in }}$ is, we first must determine the voltage and current at the beginning of the transmission line ($z=-\ell$).

$$
\begin{aligned}
& V(z=-\ell)=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma e^{-j \beta \ell}\right] \\
& I(z=-\ell)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma e^{-j \beta \ell}\right]
\end{aligned}
$$

Therefore:

$$
Z_{i n}=\frac{V(z=-\ell)}{I(z=-\ell)}=Z_{0}\left(\frac{e^{+j \beta \ell}+\Gamma e^{-j \beta \ell}}{e^{+j \beta \ell}-\Gamma e^{-j \beta \ell}}\right)
$$

We can explicitly write $Z_{\text {in }}$ in terms of load Z_{L} using the relationship:

$$
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Combining these two expressions, we get:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0} \frac{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}+\left(Z_{L}-Z_{0}\right) e^{-j \beta t}}{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}-\left(Z_{L}-Z_{0}\right) e^{-j \beta t}} \\
& =Z_{0}\left(\frac{Z_{L}\left(e^{+j \beta t}+e^{-j \beta \ell}\right)+Z_{0}\left(e^{+j \beta t}-e^{-j \beta \ell}\right)}{Z_{L}\left(e^{+j \beta t}+e^{-j \beta \ell}\right)-Z_{0}\left(e^{+j \beta t}-e^{-j \beta \ell}\right)}\right)
\end{aligned}
$$

Now, recall Euler's equations:

$$
\begin{aligned}
& e^{+j \beta \ell}=\cos \beta \ell+j \sin \beta \ell \\
& e^{-j \beta \ell}=\cos \beta \ell-j \sin \beta \ell
\end{aligned}
$$

Using Euler's relationships, we can likewise write the input impedance without the complex exponentials:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Note that depending on the values of β, Z_{0} and ℓ, the input impedance can be radically different from the load impedance Z_{L} !

Special Cases

1. $\ell=\lambda / 2$

If the length of the transmission line is exactly one-half wavelength $(\ell=\lambda / 2)$, we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \frac{\lambda}{2}=\pi
$$

meaning that:

$$
\cos \beta \ell=\cos \pi=-1 \quad \text { and } \quad \sin \beta \ell=\sin \pi=0
$$

and therefore:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(-1)+j Z_{L}(0)}{Z_{0}(-1)+j Z_{L}(0)}\right) \\
& =Z_{L}
\end{aligned}
$$

In other words, if the transmission line is precisely onehalf wavelength long, the input impedance is equal to the load impedance, regardless of Z_{0} or β.
$Z_{\text {in }}=Z_{L}$
Z_{0}, β

0

2. $\quad \ell=\lambda / 4$

If the length of the transmission line is exactly onequarter wavelength $(\ell=\lambda / 4)$, we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2}
$$

meaning that:

$$
\cos \beta \ell=\cos \pi / 2=0 \quad \text { and } \quad \sin \beta \ell=\sin \pi / 2=1
$$

and therefore:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(0)+j Z_{0}(1)}{Z_{0}(0)+j Z_{L}(1)}\right) \\
& =\frac{\left(Z_{0}\right)^{2}}{Z_{L}}
\end{aligned}
$$

In other words, if the transmission line is precisely onequarter wavelength long, the input impedance is inversely proportional to the load impedance.

Think about what this means! Say the load impedance is a short circuit, such that $Z_{L}=0$. The input impedance at beginning of the $\lambda / 4$ transmission line is therefore:

$$
Z_{\text {in }}=\frac{\left(Z_{0}\right)^{2}}{Z_{L}}=\frac{\left(Z_{0}\right)^{2}}{0}=\infty
$$

$Z_{\text {in }}=\infty$! This is an open circuit! The quarter-wave transmission line transforms a short-circuit into an open-circuit-and vice versa!

3. $Z_{L}=Z_{0}$

If the load is numerically equal to the characteristic impedance of the transmission line (a real value), we find that the input impedance becomes:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{0} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{0} \sin \beta \ell}\right) \\
& =Z_{0}
\end{aligned}
$$

In other words, if the load impedance is equal to the transmission line characteristic impedance, the input impedance will be likewise be equal to Z_{0} regardless of the transmission line length ℓ.

4. $Z_{L}=j X_{L}$

If the load is purely reactive (i.e., the resistive component is zero), the input impedance is:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{j X_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j^{2} X_{L} \sin \beta \ell}\right) \\
& =j Z_{0}\left(\frac{X_{L} \cos \beta \ell+Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell-X_{L} \sin \beta \ell}\right)
\end{aligned}
$$

In other words, if the load is purely reactive, then the input impedance will likewise be purely reactive, regardless of the line length ℓ.

Note that the opposite is not true: even if the load is purely resistive ($Z_{L}=R$), the input impedance will be complex (both resistive and reactive components).

Q: Why is this?
5. $\ell \ll \lambda$

If the transmission line is electrically small-its length ℓ is small with respect to signal wavelength λ--we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \ell=2 \pi \frac{\ell}{\lambda} \approx 0
$$

and thus:

$$
\cos \beta \ell=\cos 0=1 \quad \text { and } \quad \sin \beta \ell=\sin 0=0
$$

so that the input impedance is:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(1)+j Z_{L}(0)}{Z_{0}(1)+j Z_{L}(0)}\right) \\
& =Z_{L}
\end{aligned}
$$

In other words, if the transmission line length is much smaller than a wavelength, the input impedance $Z_{\text {in }}$ will always be equal to the load impedance Z_{L}.

This is the assumption we used in all previous circuits courses (e.g., EECS 211, 212, 312, 412)! In those courses, we assumed that the signal frequency ω is relatively low, such that the signal wavelength λ is very large $(\lambda \gg \ell)$.

Note also for this case (the electrically short transmission line), the voltage and current at each end of the transmission line are approximately the same!

$$
V(z=-\ell) \approx V(z=0) \text { and } I(z=-\ell) \approx I(z=0) \text { if } \ell \ll \lambda
$$

If $\ell \ll \lambda$, our "wire" behaves exactly as it did in EECS 211 !

