Consider again the voltage along a terminated transmission line, as a function of position z:

$$V(z) = V_0^+ [e^{-j\beta z} + \Gamma e^{+j\beta z}]$$

Recall this is a complex function, the magnitude of which expresses the magnitude of the sinusoidal signal at position z, while the phase of the complex value represents the relative phase of the sinusoidal signal.

Let's look at the magnitude only:

$$|V(z)| = |V_0^+||e^{-j\beta z} + \Gamma e^{+j\beta z}|$$

$$= |V_0^+||e^{-j\beta z}||1 + \Gamma e^{+j\beta z}|$$

$$= |V_0^+||1 + \Gamma e^{+j\beta z}|$$

ICBST the largest value of $|V(z)|$ occurs at the location z where:

$$\Gamma e^{+j\beta z} = |\Gamma| + j0$$

while the smallest value of $|V(z)|$ occurs at the location z where:

$$\Gamma e^{+j\beta z} = -|\Gamma| + j0$$
As a result we can conclude that:

\[|V(z)|_{\text{max}} = |V_0^+| (1 + |\Gamma|) \]

\[|V(z)|_{\text{min}} = |V_0^+| (1 - |\Gamma|) \]

The ratio of \(|V(z)|_{\text{max}} \) to \(|V(z)|_{\text{min}} \) is known as the \textbf{Voltage Standing Wave Ratio (VSWR)}:

\[\text{VSWR} = \frac{|V(z)|_{\text{max}}}{|V(z)|_{\text{min}}} = \frac{1 + |\Gamma|}{1 - |\Gamma|} \quad \therefore \quad 1 \leq \text{VSWR} \leq \infty \]

Note if \(|\Gamma| = 0 \) (i.e., \(Z_L = Z_0 \)), then \(\text{VSWR} = 1 \). We find for this case:

\[|V(z)|_{\text{max}} = |V(z)|_{\text{min}} = |V_0^+| \]

In other words, the voltage magnitude is a \textbf{constant} with respect to position \(z \).

Conversely, if \(|\Gamma| = 1 \) (i.e., \(Z_L = jX \)), then \(\text{VSWR} = \infty \). We find for this case:

\[|V(z)|_{\text{min}} = 0 \quad \text{and} \quad |V(z)|_{\text{max}} = 2|V_0^+| \]

In other words, the voltage magnitude varies \textbf{greatly} with respect to position \(z \).
As with return loss, VSWR is dependent on the magnitude of Γ (i.e., $|\Gamma|$) only!