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EECS 723-Microwave 
Engineering 

 
Teacher: “Bart, do you even know your multiplication tables?” 
 
Bart: “ Well, I know of them”. 
 
Like Bart and his multiplication tables, many electrical 
engineers know of the concepts of microwave engineering.   
 
Concepts such as characteristic impedance, scattering 
parameters, Smith Charts and the like are familiar, but often 
we find that a complete, thorough and unambiguous 
understanding of these concepts can be somewhat lacking.   
 
Thus, the goals of this class are for you to: 
 
1.  Obtain a complete, thorough, and unambiguous 
understanding of the fundamental concepts on microwave 
engineering. 
 
2.  Apply these concepts to the design and analysis of useful 
microwave devices. 
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2.1 -The Lumped Element Circuit 
Model for Transmission Lines 

 
Reading Assignment:  pp. 1-5, 48-51 
 
The most important fact about microwave devices is that they 
are connected together using transmission lines.  
 
Q:  So just what is a transmission line? 
 
A:  A passive, linear, two port device that allows bounded E. 
M. energy to flow from one device to another. 
 
  Sort of an “electromagnetic pipe” ! 

 
Q:  Oh, so it’s simply a conducting wire, right? 
 
A:  NO!  At high frequencies, things get much more 
complicated! 
 
HO: THE TELEGRAPHERS EQUATIONS 
 
HO: TIME-HARMONIC SOLUTIONS FOR TRANSMISSION LINES 
 
Q:  So, what complex functions  I(z) and V(z) do satisfy both 
telegrapher equations? 
 
A:  The solutions to the transmission line wave equations! 
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HO: THE TRANSMISSION LINE WAVE EQUATIONS 
 
Q:  Are the solutions for I(z) and V(z) completely 
independent, or are they related in any way ? 
 
A:  The two solutions are related by the transmission line 
characteristic impedance. 
 
HO: THE TRANSMISSION LINE CHARACTERISTIC IMPEDANCE 
 
Q:  So what is the significance of the complex constant ? 
What does it tell us? 
 
A:   It describes the propagation of each wave along the 
transmission line.

HO: THE COMPLEX PROPAGATION CONSTANT 
 
Q:  Now, you said earlier that characteristic impedance Z0 is 
a complex value.  But I recall engineers referring to a 
transmission line as simply a “50 Ohm line”, or a “300 Ohm 
line”.  But these are real values; are they not referring to 
characteristic impedance Z0 ?? 
 
A:  These real values are in fact some standard Z0 values.  
They are real values because the transmission line is lossless 
(or nearly so!). 
 
HO:  THE LOSSLESS TRANSMISSION LINE 
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Q:   Is characteristic impedance Z0 the same as the concept 
of impedance I learned about in circuits class? 
 
A: NO!  The Z0 is a wave impedance.  However, we can also 
define line impedance, which is the same as that used in 
circuits. 
 
HO: LINE IMPEDANCE 
 
Q:  These wave functions  V z  and  V z  seem to be 
important.  How are they related? 
 
A:  They are in fact very important!  They are related by a 
function called the reflection coefficient. 
 
HO:  THE REFLECTION COEFFICIENT 
 
Q: Does this mean I can describe transmission line activity in 
terms of (complex) voltage, current, and impedance, or 
alternatively in terms of an incident wave, reflected wave, and 
reflection coefficient? 
 
A: Absolutely! A microwave engineer has a choice to make 
when describing transmission line activity. 
 
HO:  V, I, Z OR V+, V-,  ? 
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The Telegrapher Equations 
 
Consider a section of “wire”: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A:  Way.  The structure above actually exhibits some non-zero value of 
inductance, capacitance, conductance, and admittance!  

 

 ,i z t  

 ,v z t



 

z  

 ,v z z t


 


 

 ,i z z t   Where: 
 
   

   

, ,

, ,

i z t i z z t

v z t v z z t

  

  

 

Q: No way! Kirchoff’s Laws tells me that: 
   
   

, ,
, ,

i z t i z z t
v z t v z z t

  

  
 

How can the voltage/current at the end of the line 
(at z z  ) be different than the voltage/current at 
the beginning of the line (at z)??  
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An Accurate Model 
 
A more accurate transmission line model is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Now evaluating KVL, we find: 
 

( , )( , ) ( , ) ( , ) 0i z tv z z t v z t R z i z t L z
t


        


 

 
and from KCL: 

( , )( , ) ( , ) ( , ) 0v z ti z z t i z t G z v z t C z
t


        


     

Where: 
 

R = resistance/unit length 
L = inductance/unit length 
C = capacitance/unit length 
G = conductance/unit length 

 
 resistance of wire length z  

is Rz 

R z L z 

G z 
C z 

z 

 ,i z t  

 ,v z t



  ,v z z t



 


 

 ,i z z t   
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The Telegrapher’s Equations 
 
Dividing these equations by z, and then taking the limit as 0z  , we find a 
set of differential equations that describe the voltage ( , )v z t  and current ( , )i z t  
along a transmission line: 

 
 

( , ) ( , )( , )v z t i z tR i z t L
z t

 
  

 
 

 
( , ) ( , )( , )i z t v z tG v z t C
z t

 
  

 
 

 
 
 
These equations are known as the telegrapher’s equations.  

 
Derived by Oliver Heavyside, the telegrapher’s equations are 
essentially the Maxwell’s equations of transmission lines.    
 
Although mathematically the functions ( , )v z t  and current 

( , )i z t  can take any form, they can physically exist only if they 
satisfy the both of the differential equations shown above! 
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Time-Harmonic Solutions 
for Transmission Lines 

 
 
There are an unaccountably infinite number of solutions ( ),v z t  and ( ),i z t  for 
the telegrapher’s equations!   
 
However, we can simplify the problem by assuming that the function of time is 
time harmonic (i.e., sinusoidal), oscillating at some radial frequencyω  
(e.g.,cosωt ). 
 
Q:  Why on earth would we assume a sinusoidal 
function of time?  
 
Why not a square wave, or triangle wave, or a 
“sawtooth” function? 
 
A:   We assume sinusoids because they have a very 
special property!   
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Eigen Functions 
 
Sinusoidal time functions—and only a sinusoidal time functions—are the eigen 
functions of linear, time-invariant systems. 
 

  If a sinusoidal voltage source with frequency ω  is used to excite a linear, 
time-invariant circuit (and a transmission line is both linear and time 
invariant!), then the voltage at each and every point with the circuit will 
likewise vary sinusoidally—at the same frequency ω ! 

 
 
Q:  So, the sinusoidal function at every point in the circuit is exactly the same as 
the input sinusoid? 
 
A:  Not quite exactly the same.   
 
Although at every point within the circuit the voltage will be precisely sinusoidal 
(with frequencyω ), the magnitude and relative phase of the sinusoid will 
generally be different at each and every point within the circuit. 
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Eigen Functions and Transmission Lines 
 
Thus, the voltage along a transmission line—when excited by a sinusoidal source—
must have the form:  

( ) ( ) ( )( ), cosv z t v z φωt z= +  
 
 

 
 
 
 
 
 
 
In other words, at some arbitrary location z  along the transmission line, we must 
find a time-harmonic oscillation of magnitude ( )v z  and relative phase ( )φ z . 
 
 

For a given frequencyω , the two functions ( )v z  and ( )φ z  (functions of 
position z only!) completely describe the oscillating voltage at each and 
every point along the transmission line. 
 

z

 Sv t   ,v z t




 

 ,i z t



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A Complex Representation of v (z,t)  
 
Q: I just thought of something!   
 
Our sinusoidal oscillations are described by a magnitude ( ( )v z ) and a phase 
( ( )φ z )—but a complex value is also defined by its magnitude and phase (i.e., 

cjφc c e= ).   
 
Is there a connection between our oscillations and a complex value? 
 
A: Absolutely! A connection made by Euler’s Identity  
 

cos sinjψe ψ j ψ= +  
 
From this it is apparent that: 

{ }Re cosjψe ψ=  

 
 
and so we conclude that the real voltage on a transmission line can be expressed 
as: 

( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( ){ }, cos Re Reφ z φ zj ωt j jωtv z t ωt ev z v z v ez eφ z + += + = =  

 

I hope I 
got this 
right… 
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The Complex Function V(z) 
 
It is apparent that we can specify the time-harmonic voltage at each an every 
location z along a transmission line with the complex function ( )V z : 
 

( ) ( ) ( )jφ zezV z v -=  
So that: 
 

( ) ( ) ( )( ) ( ) ( ){ } ( ){ }, cos Re Rej jφ z ωt jωtv z v zφ V zv z t ωt e e ez += + = =  

 
where the magnitude of the 
complex function is the 
magnitude of the sinusoid: 
 

( ) ( )v z V z=  
 

and the phase of the complex 
function is the relative phase 
of the sinusoid : 
 

( ) ( ){ }argφ z V z=  

z

SV   V z




 

 I z




SZ

LZ
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All we need to determine is V(z) 
 

 
Note then that only unknown is the complex function ( )V z .   
 
Once we determine ( )V z , we can always (if we so desire) “recover” the real 
function ( ),v z t  as: 
 
 

( ) ( ){ } ( ) ( )( ), Re cosjωt v zv z t e φV z zωt= = +  

 
 
 

 
Thus, if we assume a time-harmonic source, finding the 
transmission line solution ( ),v z t  reduces to solving for the 
complex function ( )V z ! 
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Make this make sense to you 
 

Microwave engineers almost always describe the activity of a transmission line (if 
excited by time harmonic sources) in terms of complex functions of position z —
and only in terms of complex functions of position z !! 
 

As a result, it is unfathomably important that you understand 
what these complex functions mean.   
 
You must understand what these complex functions are telling you 
about the currents, voltages, etc. along a transmission line. 

  

z

 
SV  V z





 

 I z




SZ

LZ
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The Complex Function V(z) and You 
 

 
Perhaps it’s helpful to think about these functions as sort of a 
compression algorithm, with the important information 
“embedded” in the complex values.   
 
 
To recover the information, we simply take the magnitude and 
phase of these complex values. 
 
 

    ( ) ( )v z V z=  
 

( )V z                                       ( ) ( ) ( )( ), cosv z t v z φωt z= +  
 

( ) ( ){ }argφ z V z=  
 
 
Note that the complex function ( )V z  is a function of position z only! 
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Why we Love our Eigen Functions 
 
 
Q:  Hey wait a minute! What happened to the time-harmonic function jωte ?? 
 
A:  There really is no reason to explicitly write the complex function jωte , since 
we know in fact (being the eigen function of linear systems and all) that if this is 
the time function at any one location (such as the excitation source) then this 
must be time function at all transmission line locations z . 
 
The only unknown is the complex function ( )V z !   
 
Once we determine ( )V z , we can always (if we so desire) “recover” the real 
function ( ),v z t  as: 
 

( ){ } ( ) ( ) ( )( )Re , cosjωte v z tV ωv zz φz t= = +  
 
Thus, if we assume a time-harmonic source, finding the transmission line solution 
( ),v z t  reduces to solving for the complex function ( )V z !!! 
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A Quiz !! 
 
 
See if you can determine what these complex values tell you about the voltage at 
different points z along a transmission line: 
 
 

( )

( )

( )

( )

( )

( )

4

4

0 3

1

2

3 2

4 2 2

5 3

π

π

j

j

V z

V z j

V z e

V z

V z j

V z e-

= =

= =

= =

= = -

= = +

= =                                  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0, cos

1, cos

2, cos

3, cos

4, cos

5, cos

v z t ωt

v z t ωt

v z t ωt

v z t ωt

v z t ωt

v z t ωt

= = +

= = +

= = +

= = +

= = +

= = +
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The Transmission Line 
Wave Equations 

 
So let’s assume that  ( , ) and ( , )v z t i z t  each have the time-harmonic form: 
 

{ }( , ) Re ( ) jωtv z t V z e=         and        { }( , ) Re ( ) jωti z t I z e=  

 
The time-derivative of these eigen functions are easily determined. E.G., : 
 

( ) ( ){ }( , ) Re Re
jωt

jωtv z t eV z jωV z e
t t

ì üï ï¶ ¶ï ï= =í ýï ï¶ ¶ï ïî þ
       

 
From this we can show that the telegrapher equations relate ( )I z  and ( )V z  as: 

 
 

( )
( ) ( )

( )
( ) ( )

V z I z
I z V zR jωL G jωCz z

¶ ¶
= - = -+ +

¶ ¶
 

 
 
These are the complex form of the telegrapher equations. 
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What’s your quest? 
 
Note that these complex differential equations are not a function of 
time t ! 

 
*  The functions ( )I z  and ( )V z  are complex, where 
the magnitude and phase of the complex functions 
describe the magnitude and phase of the sinusoidal 
time function jωte . 
 
*  Thus, ( )I z  and ( )V z  describe the current and 
voltage along the transmission line, as a function as 
position z. 
 
*  Remember, not just any function ( )I z  and ( )V z  can 
exist on a transmission line, but rather only those 
functions that satisfy the telegraphers equations. 

 
 
 
 
 

Our quest, therefore, is to solve the 
telegrapher equations and find all 
solutions ( )I z  and ( )V z ! 
 

 

 

( )
( ) ( )

( )
( ) ( )

V z
I zR jωLz

I z
V zG jωCz

¶
= - +

¶

¶
= - +

¶
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The Transmission Line Wave Equations 
 
Q: So, what functions ( )I z  and ( )V z  do satisfy both telegrapher’s equations?? 
 
A: The complex telegrapher’s equations are a pair of coupled differential 
equations.  
 
With a little mathematical elbow grease, we can decouple the telegrapher’s 
equations, such that we now have two equations involving one function only: 
 
 

 

                         

2
2

2

2
2

2

( ) ( )

( ) ( )

V z V z
z

I z I z
z

γ

γ

¶
=

¶

¶
=

¶

            where               

 
 

 
These equations are known as the transmission line wave equations.  Since they 
each involve only one unknown function they are easily solved!     

( ) ( )R jω L G jω Cγ = + +
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The (one and only) solution 
to the Wave Equations 

 
The solutions to these wave equations are: 
 
 
 

( ) ( )0 0 0 0
z z z zγ γ γ γV z V e V e I z I e I e+ - + -- + - += + = +  

 
 
where 0 0 0 0, , , and V V I I+ - + - are complex constants. 
 
 

 It is unfathomably important that you understand what this result 
means!  

 
It means that the functions ( )V z  and ( )I z , describing the 
current and voltage at all points z  along a transmission line, can 
always be completely specified with just four complex 
constants ( 0 0 0 0, , ,V V I I+ - + -)!! 
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The wave interpretation  
 
We can alternatively write these solutions as: 
 

( ) ( ) ( ) ( ) ( ) ( )V z V z V z I z I z I z+ - + -= + = +  
 

where:  
( ) ( )

( ) ( )

0 0

0 0

γz γz

γz γz

V z V e V z V e

I z I e I z I e

+ + - - - +

+ + - - - +

 

 

 

 
Q:  Just what do the two functions ( )V z+  and ( )V z-  tell us? Do they have any 
physical meaning? 
 
A:  An incredibly important physical meaning! 
 
Function ( )V z+  describes a 
wave propagating in the 
direction of increasing z, and 

( )V z-  describes a wave in the 
opposite direction. 
 

( ) 0
γzV z V e- - +

+

=

-

 

z 

( ) 0
γzV z V e+ + -

+

=

-
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Complex amplitudes 
 
Q:  So just what are the complex values 0 0 0 0, , ,V V I I+ - + - ? 
 
A: They are called the complex amplitudes of each propagating wave. 
 
Q:  Do they have any physical meaning? 
 
A: Consider the wave solutions at one specific point on the transmission line—the 
point  where 0z = .  We find that the complex value of the wave at that point is: 
 

( )
( )

( )

( 0)
0

0
0

0

0

0

1

γ zV z V e
V e
V
V

- =+ +

-+

+

+

= =

=

=

=

          likewise:                  

( )

( )

( )

0

0

0

0

0

0

V V z

I I z

I I z

- -

+ +

- -

= =

= =

= =

 

 
So, the complex wave amplitude 0V +  is simply the complex value of the wave 
function ( )0V z+ =  at the point 0z =  on the transmission line (that’s what the 
subscript 0  means—the value at 0z = )! 
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Determining the 4 complex wave amplitudes 
 
Again, the four complex values 0 0 0 0, , ,V I V I+ + - -  are all that is 
needed to determine the voltage and current at any and all points 
on the transmission line!  

 
More specifically, each of these four complex constants completely specifies one 
of the four transmission line wave functions ( )V z+ , ( )I z+ , ( )V z- , ( )I z- . 
 
 
 
 
 
 
 
A:  As you might expect, the voltage and current on a transmission line is 
determined by the devices attached to it on either end (e.g., active sources 
and/or passive loads)! 
 
The precise values of 0 0 0 0, , ,V I V I+ + - -  are therefore determined by satisfying 
the boundary conditions applied at each end of the transmission line—much 
more on this later! 

Q:  But what determines these wave 
functions?  How do we find the values 
of constants  0 0 0 0V , I , V , I   ? 
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The Characteristic Impedance 
of a Transmission Line 

 
So, from the telegrapher’s differential equations, we know that the complex 
current ( )I z  and voltage ( )V z  must have the form: 
 

( ) ( )0 0 0 0
γz γz γz γzV z V e V e I z I e I e+ - - + + - - += + = +  

 
Let’s insert the expression for ( )V z  into the first telegrapher’s equation, and 
see what happens! 
 

( )
( ) ( )0 0

γz γzd V z
V e V e R jωL I z

dz
γ γ+ - - += - + = - +  

 
 
Therefore, rearranging, current ( )I z  must be: 
 

( ) ( )0 0
γz γzγI z V e V e

R jωL
+ - - += -

+
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I thought we knew this?! 
 
 

 
 

 
 
 
 

 
 
 
 
A:  Easy ! Both expressions for current are equal to each other. 
 

( ) ( )0 0 0 0
γz γz γz γzI z I e I e V e V e

R jωL
γ+ - - + + - - += + = -

+
 

 
For the above equation to be true for all z, 0 0 and I V  must be related as: 
 

0 0 0 0      and        γz γz γz γzI e V e I e V e
R jωL R jωL

γ γ+ - + - - + - +æ ö æ ö÷ ÷ç ç= =÷ ÷ç ç÷ ÷÷ ÷ç ç+ +è ø è ø
-  

 

Q: But wait !  I thought we already knew 
current  I z .  
 
Isn’t it: 
 

( ) 0 0
γz γzI z I e I e+ - - += +   ?? 

 
How can both expressions for ( )I z  be true?? 
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A startling conclusion   
 
Or—recalling that ( )0

γzV e V z+ - +=   (etc.)—we can express this in terms of the 
two propagating waves: 
 

( ) ( ) ( ) ( )      and        I z V z I z V z
R jωL R jωL

γ γ+ + - -æ ö æ ö÷ ÷ç ç= =÷ ÷ç ç÷ ÷÷ ÷ç ç+ +è ø è ø
+ -  

 
 Now, we note that since: 

( )( ) γ R jωL G jωC= + +  
 
We find that: 

( )( ) R jωL G jωC G jωC
R jωL R jωL R jωL

γ + + +
= =

+ + +
 

 
Thus, we come to the startling conclusion that: 
 

 
( )
( )

( )
( )

      and      
V VR jωL R jωL

G jωC G jωCI I

z z
z z

+ -

+ -

-+ +
= =

+ +
 

 
 



 

1/20/2012 Characteristic Impedance present 4/5 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Characteristic Impedance 
 
Q:  What’s so startling about this conclusion? 
 
A:  Note that although each propagating wave is a function of transmission line 
position z (e.g., ( )V z+  and ( )I z+ ), the ratio of the voltage and current of each 
wave is independent of position—a  constant with respect to position z ! 
 
Although 0 0 and V I   are determined by boundary conditions (i.e., what’s 
connected to either end of the transmission line), the ratio 0 0V I  is determined 
by the parameters of the transmission line only (i.e., R, L, G, C). 
 
 

 This ratio is an important characteristic of a transmission line, 
called its Characteristic Impedance Z0. 
 

 
 

( )
( )

( )
( )

0
0

0
 

R jωL
G jωC

V z V z
Z

I z I z

+ -

+ -

+

+

-
= =  
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An alternative transmission line description 
 
We can therefore describe the current and voltage along a transmission line as: 
 
 

( )

( )

0 0

0 0

0 0

γz γz

γz γz

V z V e V e

V VI z e e
Z Z

+ - - +

+ -
- +

= +

= -

 

 
or equivalently: 
 
 

( )

( )

0 0 0 0

0 0

γz γz

γz γz

V z Z I e Z I e

I z I e I e

+ - - +

+ - - +

= -

= +

 

 

 Note that instead of characterizing a transmission line with real parameters 
R, G, L, and C, we can (and typically do!) describe a transmission line using complex 
parameters 0Z  and γ . 
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Complex Propagation Constant  
 
Recall that the activity along a transmission line can be expressed in terms of two 
functions, functions that we have described as wave functions: 
 
 

 
 
 
where  is a complex constant that describe the properties of a transmission 
line.  Since is complex, we can consider both its real and imaginary components. 
 
 

( )( )R jωL C βG jω jγ + + += a  
 

 
where { } { }Re  and Imβγ γ= =a .  Therefore, we can write:  
 

( ) ( )
0 0 0

j β z j zγz βzzV V e V e V e e++ + + +- -- -= = =a a  

  0
zV z V e     

z 

  0
zV z V e     
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The value   
 

Q:  What are these constants and ?  What do they physically represent? 
 
A:  Remember, a complex value can be expressed in terms of its magnitude and 
phase.  
 
For example: 

0
0 0

jφV V e ++ +=  

 
Likewise: 

( ) ( ) ( )j φ zV z V z e
++ +=    

 
And since: 

( )

( )

0

0

0

0

0

φ βz

j zz

jφ z

β

z

jβz

j

zV V e e
V e e

V

e

ee
+

+

+ +

+

+ --

--

--

=

=

= a

a

a  

 
we find: 

( ) ( )0 0
zV z V e φ z φ βz+ ++ + -= = -a  
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The value specifies attenuation  
 

It is thus evident that ze-a alone determines the magnitude of wave 
( ) 0

γzV z V e+ + -=  as a function of position z. 
 
 
 
 
 
 
 

 
 
 
 
 
Therefore, expresses the attenuation of the signal due to the loss in the 
transmission line.   
 
The  larger the value of the greater the exponential attenuation. 
 
Q:  So just why does the wave attenuate as it propagates down the transmission 
line? 
 
A:  

z 

 V z  


0V  

0 

0
zV e    
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The value  
 
Q:  So what is the constant ? What does it physically mean?  
 
A:  Recall the function; 

( ) 0φ z φ βz+ += -  
 

represents the relative phase of wave ( )V z+ ; a function of transmission line 
position z.   
 
Since phase φ  is expressed in radians, and z is distance (in meters), the value 
must have units of: 

radians     
meter

φβ
z

=  

 
 
Thus, if the value  is small, we will need to move a significant distance ∆z  down 
the transmission line in order to observe a change in the relative phase of the 
oscillation. 
 
 Conversely, if the value  is large, a significant change in relative phase can be 
observed if traveling a short distance 2∆ πz  down the transmission line.  
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The Wavelength  
 
Q:  How far must we move along a transmission line in order to observe a change 
in relative phase of 2 radians? 
 
A: We can easily determine this distance ( 2∆ πz , say) from the transmission line 
characteristic  

( ) ( ) 222 ∆∆ πππ φ φ β zz z z= - =+  
 
 
or,  rearranging: 

2
2

2 2∆
∆π

π

π πz β
β z

=  =  

 
 
The distance 2∆ πz over which the relative phase changes by 2π  radians, is more 
specifically known as the  wavelength λ  of the propagating wave (i.e., 2∆ πλ z ):  
 
 

2 2π πλ β
β λ

=  =  
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 is Spatial Frequency 
 
The value β  is thus essentially a spatial frequency, in the same way that ω  is a 
temporal frequency: 

2πω
T

=  

 
 
Note T  is the time required for the phase of the oscillating signal to change by a 
value of 2π  radians, i.e.: 

2ωT π=  
 

 
And the period of a sinewave, and related to its frequency in Hertz 
(cycles/second) as: 
 

2 1πT
ω f

= =  

 
Compare these results to: 
 

2 22π πβ π βλ λ
λ β

= = =  
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Propagation Velocity 
 
Q:  So, just how fast does this wave propagate down a transmission line? 
 
A: We describe wave velocity in terms of its phase velocity—in other words, how 
fast does a specific value of absolute phase φ  seem to propagate down the 
transmission line. 
 
It can be shown that this velocity is: 
 

p
ωdzv

dt β
= =  

 
From this  we can conclude: 
 

pv fλ=  
 

 
as well as: 

p

ωβ
v

=  
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The Lossless 
Transmission Line 

 
Say a transmission line is lossless (i.e., 0R G  ). 
 
Thus, this lossless transmission line is a purely reactive two port device—it 
exhibits only capacitance and inductance!!!  
 
 
 
 
 
 
 
 
 
 
 
As a result, the transmission line equations are then significantly simplified! 
 

L z 

C z 

z 

 ,i z t  

 ,v z t



  ,v z z t



 


 

 ,i z z t   
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The characteristic impedance 
of the lossless transmission line 

 
 
For example, the characteristic impedance of a lossless lines simply becomes: 
 
 
 
 

0
R jωL jωLZ
G jωC jω CC

L
  


 

 
 
 
 

Ironically, the characteristic impedance of a lossless (i.e., purely reactive) 
transmission line is—purely real! 
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The propagation constant 
 

Moreover, the propagation constant of a lossless line is purely imagingary: 
 

        2R jωL G jωC jωL ω jj Cγ ω LC ω LC       

 
In other words, for a lossless transmission line: 
 

0     and     β ω LC a  
 

Note that since 0a , neither propagating wave is attenuated as they travel 
down the line—a wave at the end of the line is as large as it was at the beginning! 
 

 And this makes sense! 
 
Wave attenuation occurs when energy is extracted from the propagating wave 
and turned into heat.   
 
This can only occur if resistance and/or conductance are present in the line.   
 
If 0R G  , then no attenuation occurs—that why we call the line lossless. 
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Velocity and Wavelength 
 

The complex functions describing the magnitude and phase of the 
voltage/current at every location z along a transmission line are for a lossless 
line are: 
 

 

 

0 0

0 0

0 0

jβz jβz

jβz jβz

V z V e V e

V VI z e e
Z Z

  

 
 

 

 

 

 
 
We can now explicitly write the wavelength and propagation velocity of the two 
transmission line waves in terms of transmission line parameters L and C: 
 
 

2 1πλ
β f LC

                    1
p

ωv
β LC

   
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The  low-loss approximation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Unless otherwise indicated, we will use the lossless equations to approximate 
the behavior of a low-loss transmission line. 
 
The lone exception is when determining the attenuation of a long transmission 
line.  For that case we will use the approximation: 
 

0
0

1
2

R GZ
Z

 
  

 
a  

where 0Z L C . 
 

 

Q: Oh please, continue 
wasting my valuable time.   
 
We both know that a 
perfectly lossless 
transmission line is a 
physical impossibility. 

A:  True!  However, a low-loss 
line is possible—in fact, it is 
typical!  
 
 If R ωL  and G ωC , we 
find that the lossless 
transmission line equations are 
excellent approximations!  
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Line Impedance 
 
Now let’s define line impedance  Z z , a complex function which is simply the 
ratio of the complex line voltage and complex line current: 
 
 

   
 

V zZ z
I z

  

 
 
 

 
 
 
 
 
 
A: NO!  The line impedance  Z z  is (generally speaking) NOT the transmission 
line characteristic impedance Z0 !!! 
 

 It is unfathomably important that you understand this!!!!    
 

 

Q:  Hey! I know what this is!  
 
The ratio of the voltage to current is simply the 
characteristic impedance Z0, right ??? 
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Why Line Impedance is not Z0 
 
To see why line impedance  Z z  is different than characteristic impedance Z0 , 
recall that: 
 

     V z V z V z         and that           
0

V z V zI z
Z

 
  

 
Therefore, line impedance is: 
 
 
 

   
 

   
   0 0

V z V z V zZ z Z Z
I z V z V z

 

 

 
    

 

 
 
 
Or, more specifically, we can write: 
 

  0 0
0

0 0

j z j z

j z j z
V e V eZ z Z
V e V e

  

  

 
   

 

   
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What then is Z0 ? 
 

 
 
 
 
A:  Yes! That is true! The ratio of the voltage to current for each of the two 
propagating waves is 0Z .   
 
However, the ratio of the sum of the two voltages, to the sum of the two 
currents, is not equal to Z0  (generally speaking)! 
 

  This is actually confirmed by the expression of  Z z  above.   
 

Say that   0V z  , so that only one wave (  V z ) is propagating on the line. 
 
In this case, the ratio of the total voltage to the total current is simply the ratio 
of the voltage and current of the one remaining wave—the characteristic 
impedance Z0 ! 
 

   
 

 
 

 
 

 0 0 (when 0)V z V zV zZ z Z Z V z
I z V z I z

 


 

 
     

 
 

 

Q:  I’m confused!  Isn’t: 
 

    0V z I z Z    ??? 
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Let’s Summarize!! 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
A:  Exactly!   
 
Moreover, note that characteristic impedance Z0 is simply a number, whereas line 
impedance  Z z  is a function of position (z )  on the transmission line. 
 

Q:  So, it appears to me that characteristic 
impedance Z0 is a transmission line parameter, 
depending only on the transmission line values L 
and C. 
 
Whereas line impedance is  Z z  depends the 
magnitude and phase of the two propagating 
waves  V z  and  V z —values that depend not 
only on the transmission line, but also on the two 
things attached to either end of the 
transmission line!   
 
Right !? 
 

 
EECS 
723 
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The Reflection Coefficient 
 
So, we know that the transmission line voltage  V z and the transmission line 
current  I z  can be related by the line impedance  Z z : 
 

     V z Z z I z             or equivalently              
 

V z
I z

Z z
  

 
 
 
 
 
 

 
 
 
Expressing the “activity” on a transmission line in terms of voltage, current and 
impedance is of course perfectly valid. 
 

  However, there is an alternative (and much simpler!) way to describe 
transmission line activity !!!! 

 

Q:  Piece of cake! I fully understand the 
concepts of voltage, current and impedance 
from my circuits classes.  
  
Let’s move on to something more important 
(or, at the very least, more interesting). 
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  0
jβzV z V e  







   0
jβzV z V e  







 

Wave Functions V+(z) and V-(z) Describe All! 
 
Look closely at the expressions for voltage, current, and impedance: 
 

     V z V z V z                   
0

V z V z
I z

Z

 
               

   0

V z V z
Z z Z

V z V z

 

 

 
 
  

     

 
It is evident that we can alternatively express all “activity” on the transmission 
line in terms of the two transmission line waves  V z  and  V z .  
 
 
 
 
 
 
 
 
 

 

 

Q: I know  V z  and  I z  are related by line 
impedance  Z z : 

   
 

V z
Z z

I z
  

 

But how are  V z  and  V z  related? 
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The Reflection Coefficient Function 
 
A: Similar to line impedance, we can define a new parameter—the reflection 
coefficient  zG —as the ratio of the two quantities: 
 
 

   
       

V z
z V z z V z

V z


 


G G  

 
  

More specifically, we can express  zG  as: 
 

  0 20

00

jβz
j

jβz
βzV e Vz e

VV e

 


 
 G  

 
 
Note then, the value of the reflection coefficient at z = 0 is: 
 

   
 

 2 0 0

00

0
0

0
j βV z Vz e

VV z

 





  


G  
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The Value 0 
 
 

We define this value as 0G , where:                          0
0

0

0
Vz
V




 G G  

 
 

 
Note then that we can alternatively write  zG  as:                   2

0
j βzz e G G  

 
 

So we have two different, but equivalent ways, to describe transmission line 
activity! 

 
We can use (total) voltage and current, related by line impedance: 
 
 

   
       

V z
Z z V z Z z I z

I z
                  

 
Or, … 
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Based on your circuits experience, you might well be 
tempted to always use the first relationship.  
 
However, we will find it useful (as well as simple) 
indeed to describe activity on a transmission line in 
terms of the second relationship—in terms of the two 
propagating transmission line waves! 

The Wave Description  
of Transmission Line Activity 

 
…….we can use the two propagating voltage waves, related by the reflection 
coefficient: 
 

   
       

V z
z V z z V z

V z


 


  G G  

 
 

These are equivalent relationships—we can use 
either when describing a transmission line.   
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V,I,Z or V+,V-,? 
 
 
 
 
 
 
 
A:  Remember, the two relationships are equivalent.   
 
There is no explicitly wrong or right choice—both will provide 
you with precisely the same correct answer! 
 
For example, we know that the total voltage and current can be determined from 
knowledge wave representation: 
 
 

     
    

     

    
0

0

1 1

V z V z
I zV z V z V z Z

V z z V z z
Z

 

 

 


 

  


G G
 

 

Q: How do I choose which relationship to use when 
describing/analyzing transmission line activity?  What if I make 
the wrong choice?  How will I know if my analysis is correct? 
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A direct mapping from Z to  
 
 
More importantly, we find that line impedance      Z z V z I z  can be 
expressed as: 
 
 
  

     
   

 
 

0

0

1
1

V z V z
Z z Z

V z V z
z

Z
z

 

 






 
 
  

G

G

 

 
 
 
 Look  what happened—the line impedance can be completely and unambiguously 
expressed in terms of reflection coefficient  zG !  
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And a mapping from to Z 
 
With a little algebra, we find likewise that the wave functions can be determined 
from      ,  and V z I z Z z : 
 
 
 

     

 
 

 
     

 
 

 

0 0

0 0

2 2

2 2

V z I z Z V z I z Z
V z V z

V z Z z Z V z Z z Z
Z z Z z

 
 

 

    
    
   
   

 

 
 
 
From this result we easily find that the reflection coefficient  Γ z can likewise 
be written directly in terms of line impedance: 
 
 

   
 

0

0

Z Zzz
Z Zz





G  
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The two representations are equivalent! 
 
Thus, the values  zG  and  Z z  are equivalent parameters—if we know one, then 
we can directly determine the other—each is dependent on transmission line 
parameters (L,C,R,G) only! 
 
 
 
 

 
 
 

 
 
A:  Perhaps I can convince you of the value of the wave 
representation.  

 
Remember, the time-harmonic solution to the telegraphers equation simply boils 
down to two complex constants— 0V  and 0V .   
 
Once these complex values have been determined, we can describe completely 
the activity all points along our transmission line. 
 

 

Q:  So, if they are equivalent, why wouldn’t I always use 
the current, voltage, line impedance representation?   
 
After all, I am more familiar and more confident those 
quantities.  
 
The wave representation sort of scares me! 
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Look how simple this is!  
 
For the wave representation we find: 
 

      20
0 0

0

jβz jβz j β zVV z V e V z V e z e
V


     


  G  

 
 
Note that the magnitudes of the complex functions are in fact constants (with 
respect to position z): 
 

      0
0 0

0

VV z V V z V z
V


   


  G  

 
 
While the relative phase of these complex functions are expressed as a simple 
linear relationship with respect to z : 
 
 

        arg arg arg 2V z βz V z βz z β z      G  
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Yuck! 
 
Now, contrast this with the complex current, voltage, impedance functions: 
 

 

 

 

0 0

0 0

0

0 0
0

0 0

jβz jβz

jβz jβz

jβz jβz

jβz jβz

V z V e V e

V e V eI z
Z

V e V eZ z Z
V e V e

  

  

  

  

 









 

With magnitudes: 
 

 

 

 

0 0

0 0

0

0 0
0

0 0

??

??

??

jβz jβz

jβz jβz

jβz jβz

jβz jβz

V z V e V e

V e V e
I z

Z

V e V e
Z z Z

V e V e

  

  

  

  

  


 


 


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V+, V-,  is much simpler 
 
And likewise phase: 

    

    

    
 

0 0

0 0

0 0

0 0

??

??

??

jβz jβz

jβz jβz

jβz jβz

jβz jβz

V z V e V e

I z V e V e

Z z V e V e

V e V e

  

  

  

  

  

  

 

 



arg arg

arg arg

arg arg

arg

 

 
 
 
 
 
 

 
A:  That’s right! However, this does not mean that we never determine  V z , 

 I z , or  Z z ; these quantities are still fundamental and very important—
particularly at each end of the transmission line! 

 

Q: It appears to me that when attempting to describe the 
activity along a transmission line—as a function of position 
z—it is much easier and more straightforward to use the 
wave representation(nyuck, nyuck, nyuck).  
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