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2.3 – The Terminated,  
Lossless Transmission Line 

 
Reading Assignment: pp. 56-63 

 
We now know that a lossless transmission line is completely 
characterized by real constants 0Z  and β . 
 
Likewise, the 2 waves propagating on a transmission line are 
completely characterized by complex constants 0V   and 0V  . 
 
Q:  0Z  and β  are determined from L, C, and ω .  How do we 
find  0V   and 0V   ? 
 
A:  Apply Boundary Conditions! 
 
Every transmission line has 2 “boundaries” 
 

1)     At one end of the transmission line. 
2)    At the other end of the trans line! 

 
Typically, there is a source at one end of the line, and a load 
at the other. 
 

 The purpose of the transmission line is to get power 
from the source, to the load! 

 
Let’s apply the load boundary condition! 
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HO:  THE TERMINATED, LOSSLESS TRANSMISSION LINE 
 
Q:  So, the purpose of the transmission line is to transfer 
E.M. energy from the source to the load.  Exactly how much 
power is flowing in the transmission line, and how much is 
delivered to the load? 
 
A:  HO: INCIDENT, REFLECTED, AND ABSORBED POWER 
 
Let’s look at several “special” values of load impedance, as well 
as the interesting transmission line behavior they create. 
 
HO:  SPECIAL VALUES OF LOAD IMPEDANCE 
 
Q: So the line impedance at the end of a line must be load 
impedance ZL  (i.e.,  L LZ z z Z  );  what is the line impedance 
at the beginning of the line (i.e.,  LZ z z ?   )? 
 
A: The input impedance ! 
 
HO:  TRANSMISSION LINE INPUT IMPEDANCE 
 
EXAMPLE: INPUT IMPEDANCE 
 
Q:  For a given ZL we can determine an equivalent L .  Is 
there an equivalent in for each Zin ? 
 
A:  HO: THE REFLECTION COEFFICIENT TRANSFORMATION 
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Note that we can specify a load with its impedance ZL  or 
equivalently, its reflection coefficient L . 
 
Q:  But these are both complex values.  Isn’t there a way of 
specifying a load with a real value? 
 
A:  Yes (sort of)!  The two most common methods are Return 
Loss and VSWR. 
 
HO: RETURN LOSS AND VSWR 
 
Q: What happens if our transmission line is terminated by 
something other than a load?  Is our transmission line theory 
still valid? 
 
A:  As long as a transmission line is connected to linear 
devices our theory is valid.  However, we must be careful to 
properly apply the boundary conditions associated with each 
linear device! 
 
EXAMPLE:  THE TRANSMISSION COEFFICIENT 
 
EXAMPLE:  APPLYING BOUNDARY CONDITIONS 
 
EXAMPLE:  ANOTHER BOUNDARY CONDITION PROBLEM 
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The Terminated, Lossless 
Transmission Line 

 
Now let’s attach something to our transmission line. Consider a lossless line, length , 
terminated with a load ZL. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Q:  What is the current and voltage at each and every point on the transmission line (i.e., 
what is ( )I z  and ( )V z  for all points z where 0z− ≤ ≤  ?)? 
 
A:  To find out, we must apply boundary conditions! 
 
In other words, at the end of the transmission line ( 0z = )—where the load is attached—
we have many requirements that all must be satisfied!  

z 

I(z) 

0,Z β  
+ 

V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  
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The first two requirements 
 

Requirement 1. To begin with, the voltage and current ( ( )0I z =  and ( )0V z = ) must 
be consistent with a valid transmission line solution (i.e., satisfy the telegraphers 
equations): 
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Requirement 2.  Likewise, the load voltage and current must be 
related by Ohm’s law: 

L L LV Z I=  
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Now for Kirchoff 
 

Requirement 3.  Most importantly, we recognize that the values ( )0I z = , ( )0V z =  
and IL, VL are not independent, but in fact are strictly related by Kirchoff’s Laws! 
 
 
 
 
   
 
 
 
 
 

 
From KVL and KCL we find these requirements: 
 

( ) ( )0 and 0L LV z V I z I= = = =  
 
These are our boundary conditions! 

I(z=0) 

0,Z β  

        + 
 
V (z=0) 
 
        - 

+ 
 
VL 
 
- 

 
ZL 
 

IL 

z = −  0z =   
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The boundary condition 
 

Combining the mathematical results of these three requirements, we find 
that the boundary condition is summarized as: 
 
 
 

( )0 LZ z Z= =  
 

 
 
In other words, the line impedance at the end of the transmission line (i.e., 
at z = 0) must be equal to the load impedance attached to that end! 
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Out with the old; in with the new 
 
Q: But the result above is useful for the “old” ( ) ( ) ( )V z ,I z ,Z z  description of 
transmission line activity.   
 
What does the boundary condition enforce with respect to our “new” wave viewpoint (i.e., 

( ) ( ) ( )V z ,V z , z+ − Γ ?? 
 
A: The three requirements lead us to this relationship: 
 

( ) ( )

( ) ( ) ( ) ( )( )
0

0 0

0 0 0 0

L L L

L

L

V Z I

V z Z I z

ZV z V z V z V z
Z
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=
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Rearranging, we can conclude: 
 

( )
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ZL or ΓL; either one works!  
 
This value on the right side of the previous equation is of fundamental importance for the 
terminated transmission line problem, so we provide it with its own special symbol ( LΓ ) ! 
 
 
 

0

0

L
L

L

Z Z
Z Z

−
Γ

+
 

 
 

 
Note that there is a one-to-one mapping between a (finite) load impedance LZ  and load 
reflection LΓ .  
 
 

 We can completely and uniquely express a load as either LZ  ( for ( ) ( ) ( )V z ,I z ,Z z ) 
or as LΓ  (for ( ) ( ) ( )V z ,V z , z+ − Γ )! 
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Now let’s consider the reflection coefficient 
 
Q:  Hey wait as second!  
 
We earlier defined ( ) ( )V z V z− +  as reflection coefficient ( )zΓ .  How does this relate to 
the expression above? 
 
A: Recall that ( )zΓ  is a function of transmission line position z.   
 
The value ( ) ( )0 0V z V z− += =  is simply the value of function ( )zΓ  evaluated at 0z =  (i.e., 
evaluated at the end of the line): 
 

( )
( ) ( )

0
0

0
V z

z
V z

−

+

=
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=
 

 
Thus we conclude: 
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Two ways to express  
the same boundary condition 

 
From these results, we find an alternative (i.e., ( ) ( ) ( )V z ,V z , z+ − Γ viewpoint) expression 
for our boundary condition: 

 
 

( )0 LzΓ = = Γ  
 

 
 

In other words, the reflection coefficient function at the end of the transmission line 
(i.e., at z = 0) must be equal to the LΓ  of the load attached to that end! 
 
This is precisely equivalent to the statement: 
 
 

( )0 LZ z Z= =  
 
 

which is the boundary condition for the ( ) ( ) ( )V z ,I z ,Z z  viewpoint. 
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What does this all mean? 
 
 
 
 
 
A: We are trying to find line impedance ( ) ( ) ( )Z z V z I z= when a lossless 
transmission line is terminated by a load ZL! 
 
We can now determine the value of 0V −  in terms of 0V + . Since: 
 

( )
( )

0

0

0
0L

V z V
VV z

− −

++

=
Γ = =

=
 

 
We rearrange and find: 

0 0LV V− += Γ  
  
And thus the “minus” propagating wave is: 
 

( ) ( )0 0
j z j z

LV z V e V e+ +− − += = Γβ β  

 
 

Q:  I’m confused! Just what are were we trying to accomplish ? 

 



 
  

 

9/12/2011 The Terminated Lossless Line present 10/12 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Bottom Line 
 
And so finally, the voltage and current along the terminated transmission line can be 
expressed in terms of load reflection coefficient LΓ : 
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Note the above expressions are accurate ONLY if the load LZ  is located at position 0z = . 
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Two waves and a gamma 
 
We can alternatively express the solutions as: 
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What about V0
+ ?? 

 
Q:  But, how do we determine 0V +  ?? 
 
 

 
 
 
 
 
 
 
 

 
 
 

A: We require a second boundary 
condition to determine 0V + .  The only 
boundary left is at the other end of the 
transmission line.  Typically, a source of 
some sort is located there.  This makes 
physical sense, as something must 
generate the incident wave ! 
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Incident, Reflected, 
and Absorbed Power 

 
We have discovered that two waves propagate along a transmission line, one in 
each direction (     and  V z V z  ).   
 
 
 
 
 
 
 
 
 
 
 
 
The result is that electromagnetic energy flows along the transmission line at a 
given rate (i.e., power).  
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The Powers that Be 
 

 
Q: At what rate does energy flow along a transmission line, and where does 

that power go? 
 
A: We can answer that question by determining the power absorbed by the 

load! 
 
 
You of course recall that the time-averaged power (a real value!) absorbed by a 
complex impedance ZL is: 
 

   
2 2

1 1Re Re Re
2 2 2

L L
abs L L L

L

V I
P V I Z

Z




     
  

 

 
Of course, the load voltage and current is simply the voltage an current at the 
end of the transmission line (at 0z  ).   
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This happy result 
 
 
A happy result is that we can then use our transmission line theory to determine 
this absorbed power: 
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Incident Power 
 
The significance of this result can be seen by rewriting the expression as: 
 
 

 
2 2 2

20 0 0

0 0

2
0

0

2
0

00 2
1

2 22 2
L

abs L

V V V
P

Z Z Z
V

Z
V

Z

    
        

 
 

The two terms in above expression have a very definite physical meaning.   
 
The first term is the time-averaged power of the wave propagating along the 
transmission line toward the load. 
 
We say that this wave is incident on the load: 
 
 
 

2
0

02inc

V
P P

Z
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Reflected Power 
 
 
Likewise, the second term of the Pabs equation describes the power of the wave 
moving in the other direction (away from the load).   
 
We refer to this as the wave reflected from the load: 
 
 
 
 

2 22
20 0

0 02 2
L

L incref

V V
P P P

Z Z

 



      

 
 
  

 
 
 



 

1/27/2012 Incident Reflected and Absorbed Power present 6/12 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Energy is Conserved 
 
Thus, the power absorbed by the load (i.e., the power delivered to the load) is 
simply: 
 

incab refsP P P   
 

or, rearranging, we find: 
absin refcP P P   

 
This equation is simply an expression of the conservation of energy !   
 
It says that power flowing toward the load (Pinc) is either absorbed by the load 
(Pabs) or reflected back from the load (Pref). 
 
 
 
 
 
 
 
 
Now let’s consider some special cases, and the power that results. 

 
ZL 
 

Pabs 

Pinc Pref 
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Special Case #1: ||2=1 
 
For this case, we find that the load absorbs no power! 
 

   21 1 1 0abs inc L incP P P       

 
Likewise, we find that the reflected power is equal to the incident: 
 

 2 1L inc inc increfP P P P     
 
Note these two results are completely consistent—by conservation of energy, if 
one is true the other must also be: 
 

0inc abs ref ref refP P P P P      
 
In this case, no power is absorbed by the load.  All of the incident power is 
reflected, so that the reflected power is equal to that of the incident. 
 
 
 
 
 

 
1L   

0absP   

Pinc increfP P  



 

1/27/2012 Incident Reflected and Absorbed Power present 8/12 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Special Case #2: ||2=0 
 
For this case, we find that there is no reflected power!  
 

 2 0 0L inc increfP P P     
 
Likewise, we find that the absorbed power is equal to the incident: 
 

   21 1 0abs inc L inc incP P P P       

 
Note these two results are completely consistent—by conservation of energy, if 
one is true the other must also be: 
 

0inc abs abs absrefP P P P P      
 
In this case, all the incident power is absorbed by the load.  None of the incident 
power is reflected, so that the absorbed power is equal to that of the incident. 
 
 
 
 
 

 
0L   

abs incP P  

Pinc 0refP   
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Case #3: 0<||2<1 
 
For this case, we find that the reflected power is greater than zero, but less 
than the incident power.  

20 L inc increfP P P     
 
Likewise, we find that the absorbed power is also greater than zero, but less 
than the incident power. 

 20 1abs inc L incP P P      

 
Note these two results are completely consistent—by conservation of energy, if 
one is true the other must also be: 
 

0 inc abs increfP P P P          and      0 abs inc increfP P P P     
 
In this case, the incident power is divided.  Some of the incident power is 
absorbed by the load, while the remainder is reflected from the load.   
 
 
 
 
 

 
20 L  

 

abs incP P  

Pinc increfP P  
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Case #4: ||2>1 
 
For this case, we find that the reflected power is greater than the incident 
power.  

20 L inc increfP P P     
 
Q:  Yikes! What’s up with that?  
 
This result does not seem at all consistent with your conservation of energy 
argument.  
 
How can the reflected power be larger than the incident? 
 
A: Quite insightful!   
 
It is indeed a result quite askew with our conservation of energy analysis.   
 
To see why, let’s determine the absorbed power for this case. 
 

 21 0abs inc LP P     

 
The power absorbed by the load is negative! 
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Case #4 – the load cannot be passive 
 
 
This result actually has a physical interpretation. 
 
 A negative absorbed power indicates that the load is not absorbing power at all—
it is instead producing power!   
 
This makes sense if you think about it.   
 
The power flowing away from the load (the reflected power) can be larger than 
the power flowing toward the load (the incident power) only if the load itself is 
creating this extra power.   
 
The load in this case would not be a power sink, it would be a power source. 
 
Q: But how could a passive load be a power source?   
 
A:  It can’t.   
 
A passive device cannot produce power.   
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Passive loads 
 
Thus, we have come to an important conclusion!  
 
 The reflection coefficient of any and all passive loads must have a magnitude 
that is less than one. 
 
 

1L     for all passive loads 
 
 
Q: Can L  every be greater than one? 
 
A:  Sure, if the “load” is an active device.   
 
In other words, the load must have some external power source connected to it. 

 
Q:  What about the case where 0L  , shouldn’t we examine 
that situation as well? 
 
A: That would be just plain silly; do you see why? 
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Special Values of Load Impedance 
 
It’s interesting to note that the load ZL enforces a boundary condition that explicitly 
determines neither  V z  nor  I z —but completely specifies line impedance  Z z ! 
 

  0
0 0

0

cos sin
cos sin

jβz jβz
L L

jβz jβz
LL

e e Z βz j Z βzZ z Z Z
Z βz j Z βze e

 

 

 
 



G

G
 

 
Likewise, the load boundary condition leaves  V z  and  V z  undetermined, but 
completely determines reflection coefficient function  zG ! 

  2 20

0

j βz j βzL
L

L

Z Zz e e
Z Z

 
 


G G  

Let’s look at some specific 
values of load impedance 

L L LZ R j X   and see what 
functions  Z z  and  zG  
result!   
 
We assume that the load is 
located at 0z   
( 0L G G ). 

0,Z β  

  

 

L

L L

Z
R j X




 

 

z    0z   
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  The matched case 
 
In this case 0LZ Z —the load impedance is numerically equal to the characteristic 
impedance of the transmission line.   Assuming the line is lossless, then Z0 is real, and 
thus: 

0LR Z       and       0LX   
 
It is evident that the resulting load reflection coefficient is zero: 
 

0 0 0

0 0 0

0L
L

L

Z Z Z Z
Z Z Z Z

 
  

 
G  

 
As  a result, we find that the reflected wave is zero, as is the reflection coefficient 
function: 

  0
jβzV z V e               0V z                 0z G  

 
Thus, the total voltage and current along the transmission line is simply voltage and 
current of the incident wave, and the line impedance is simply 0Z  at all z : 
 

    0
jβzV z V z V e                   0

0

jβzVI z I z e
Z


               

  0

V z
Z z Z

I z
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Power flow in the matched condition 
 
Note from these results we can conclude that out boundary conditions are satisfied: 
 

   0 00 and 0 0LZ z Z Z z     G G   !!! 
 

Note that since 0L G , this is a case where the reflected power is zero, and all the 
incident power is absorbed by the load: 

 
 

 
 
 
 
Q: Is there any other load for which this is true? 
 
A:  Nope, 0LZ Z  is the only one! 
 

 
We call this condition (when 0LZ Z ) the matched condition, and the 
load 0LZ Z  a matched load. 

 

 
0LZ Z  

abs incP P  

Pinc 0refP   
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A short-circuit load 
 
A device with no impedance ( 0LZ  ) is called a short circuit!  I.E.: 
 

0LR      and     0LX   
 
 
In this case, the voltage across the load—and thus the voltage at the end of the 
transmission line—is zero: 
 

0L L LV Z I          and        0 0V z    
 

 
Note that this does not mean that the current is zero! 
 

 0 0LI I z    
 

 
For a short, the resulting load reflection coefficient is therefore: 
 

0 0

0 0

0
1

0
jπL

L
L

Z Z Z e
Z Z Z

 
    

 
G  



 

1/27/2012 Special Values of Load Impedance present 5/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A reactive result! 
  
As a result, the reflected wave is equal in magnitude to the incident wave.  The 
reflection coefficient function thus has a magnitude of 1! 

 

  0
jβzV z V e                     0

jβzV z V e                   
 

 22 j βz πj βzV z
z e e

V z





   G  

 
The reflected wave is just as big as the incident wave! 
 
The total voltage and current along a shorted transmission line take an interesting 
form: 

       0
0

0

2
2 sin cos

VV z j V βz I z βz
Z


    

 
Meaning that the line impedance can likewise be written in terms of a trigonometric 
function: 

   
   0 tan

V z
Z z jZ βz

I z
    

 
Note that this impedance is purely reactive! 
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Boundary conditions are confirmed 
 
From these results we can conclude that out boundary conditions are satisfied: 
 

    00 tan 0 0Z z j Z     
 
Just as we expected—a short circuit! 
 
This is likewise confirmed by evaluating the voltage and current at the end of the line 
(i.e., Lz 0z   ): 

       0 0
0

0 0

2 2
0 2 sin 0 0 0 cos 0

V VV z j V I z
Z Z

 
        

 
As expected, the voltage is zero at the end of the transmission line (i.e. the voltage 
across the short).   
 
Also, the current at the end of the line (i.e., the current through the short) is at a 
maximum!  Additionally, the reflection coefficient at the load is: 
 

   2 00 1j β jπ
Lz e e      G G  

 
Again confirming that the boundary conditions are satisfied! 
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A short cannot absorb energy 
 
Finally, let’s determine the power flow associated with this short-circuit load.  
 
Since 1L G , this is a case where the absorbed power is zero, and all the incident 
power is  reflected by the load: 
 
 

0 andabs ref incP P P   
 

 
 
 
 
 
 
 
 
 
 
 
 

 
1L   

0absP   

Pinc increfP P  
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An open-circuit load 
 
A device with infinite impedance ( LZ  )  is called an open circuit!  I.E.: 
 

LR       and/or     LX    
 
In this case, the current through the load—and thus the current at the end of the 
transmission line—is zero: 
 

0L
L

L

VI
Z

          and         0LI z z   

 
Note that this does not mean that the voltage is zero! 
 

  0L LV V z z    
 
For an open, the resulting load reflection coefficient is: 
 

00

0

lim lim 1
L L

jL L
L Z Z

L L

Z Z Z e
Z Z Z 


   


G  

 



 

1/27/2012 Special Values of Load Impedance present 9/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A reactive result! 
  
As a result, the reflected wave is equal in magnitude to the incident wave. The 
reflection coefficient function thus has a magnitude of 1! 

 

  0
jβzV z V e                     0

jβzV z V e                  
 

2j βzV z
z e

V z





 G  

 
The reflected wave is just as big as the incident wave! 

 
The total voltage and current along the transmission line is simply (assuming Lz 0 ): 
 

       0
0

0

2
2 cos sin

VV z V βz I z j βz
Z


    

 
Meaning that the line impedance can likewise be written in terms of trigonometric 
function: 

   
   0 cot

V z
Z z j Z βz

I z
   

 
Again note that this impedance is purely reactive—V(z) and I(z) are again 90  out of 
phase! 
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Boundary conditions are confirmed 
 

Note from these results we can conclude that out boundary conditions are satisfied: 
 

    00 cot 0Z z j Z     
 
Just as we expected—an open circuit! 
 
This is likewise confirmed by evaluating the voltage and current at the end of the line 
(i.e., 0Lz z  ): 

       0 0
0

0 0

2 2
0 2 cos 0 0 sin 0 0

V VV z V I z j
Z Z

 
        

 
As expected, the current is zero at the end of the transmission line (i.e. the current 
through the open).  Likewise, the voltage at the end of the line (i.e., the voltage across 
the open) is at a maximum! 
 
Additionally, the reflection coefficient at the load is: 
 

   2 0 00 1j β j
Lz e e    G G  

 
Again confirming that the boundary conditions are satisfied! 
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An open cannot absorb energy 
 
Finally, let’s determine the power flow associated with this open circuit load.   
 
Since Γ 1L  , this is again a case where the absorbed power is zero, and all the 
incident power is  reflected by the load: 
 
 

0 andabs ref incP P P   
 

 
 
 
 
 
 
 
 
 
 
 

1L 
 

0absP   

Pinc increfP P  
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A purely reactive load 
 
For this case, the load impedance is purely reactive L LZ j X  (e.g. a capacitor of 
inductor), and thus the resistive portion is zero: 
 

0LR   
 
Thus, both the current through the load, and voltage across the load, are non-zero:  
 

  0L LI I z z                       0L LV V z z    
 

The resulting load reflection coefficient is: 
 

0 0

0 0

L L
L

L L

Z Z jX Z
Z Z jX Z

 
 

 
G  

 
Given that Z0 is real (i.e., the line is lossless), we find that this load reflection 
coefficient is a complex number.   
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V+, V- and  
 

However, we find that the magnitude of this (reactive) load reflection coefficient is: 
 

2 2 2
2 0 0

2 2 2
00

1L L
L

LL

jX Z X Z
X ZjX Z

 
  


G  

 
Its magnitude is one!  
 
Thus, we find that for reactive loads, the reflection coefficient can be simply 
expressed as: 

Γjθ
L eG            where    1 0

Γ 2 2
0

2
tan L

L

Z Xθ
X Z


 

  
  

 

 
 We can therefore conclude that Γ

0 0
jθV e V  , and so for a reactive load, : 

 

  0
jβzV z V e                     Γ

0
jθ jβzV z e V e                  

 
2j βzV z

z e
V z





 G  

 
The reflected wave is again just as big as the incident wave! 
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I, V, and Z 
 
The total voltage and current along the transmission line are complex (assuming 

0Lz  ): 
 

   Γ 2
0 Γ2 cos 2jθV z V e βz θ                 20

0

2
sin 2Ljθ

L
VI z j e βz θ
Z


    

 
 
Meaning that the line impedance can again be written in terms of trigonometric 
function: 

 

   
   0 Γcot 2

V z
Z z j Z βz θ

I z
    

 
Again note that this impedance is purely reactive—V(z) and I(z) are once again 90  
out of phase! 
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Boundary Conditions! 
 
Note at the end of the line (i.e., 0Lz z  ), we find that 
 

       0
0 Γ Γ

0

2
0 2 cos 2 0 sin 2

VV z V θ I z j θ
Z


      

 
As expected, neither the current nor voltage at the end of the line is zero.  
 
We also note that the line impedance at the end of the transmission line is: 
 

   0 Γ0 cot 2Z z j Z θ   
 

With a little trigonometry, we can show (trust me!) that: 
 

 Γ
0

cot 2 LXθ
Z

  

and therefore: 
 

   0 Γ0 cot 2 L LZ z j Z θ j X Z     
 
Just as we expected! 
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Déjà vu All Over Again  
 
Q:  Gee, a reactive load leads to results very similar to that of an open or short 
circuit.  Is this just coincidence? 
 
A:  Hardly!  An open and short are in fact reactive loads—they cannot absorb power 
(think about this!). 
 

Specifically, for an open, we find Γ 0θ  , so that:            Γ 1jθ
L e G  

 
Likewise, for a short, we find that Γθ π , so that:          Γ 1jθ

L e  G  
 
The power flow associated with a reactive load is the same as for an 
open or short.  
 
Since 1L G , it is again a case where the absorbed power is zero, and all 
the incident power is  reflected by the load: 
 

 
 

 

 

 
1L   

0absP   

Pinc increfP P  
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Resistive Load 
 
For this case L LZ R , so the load impedance is purely real (e.g. a resistor), meaning its 
reactive portion is zero: 

0LX   
 
 
The resulting load reflection coefficient is: 
 

0 0

0 0

L
L

L

Z Z R Z
Z Z R Z

 
 

 
G  

 
 
Given that Z0 is real (i.e., the line is lossless), we find that this load reflection 
coefficient must be a purely real value!   
 
In other words: 

  0

0

Re L
R Z
R Z





G              Im 0L G  
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Phase difference is either 0 or  
 
The magnitude is thus: 

0

0
L

R Z
R Z





G       

 
whereas the phase Γθ  can take on one of two values: 
 
 

          
 

 

0

Γ

0

0 Re 0   (i.e., if )
  

Re 0   (i.e., if )

L L

L L

if R Z
θ

π if R Z

  
 
  

G

G

 

 
 
For this case, the impedance at the end of the line must be real (  L LZ z z R  ).   
 
Thus, the current and the voltage at this point are precisely in phase, or precisely 180 
degrees out of phase! 
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The load is real; why isn’t the line impedance? 
 
However, even though the load impedance is real, the line impedance at all other 
points on the line is generally complex! 
 
Moreover, the general current and voltage expressions, as well as reflection 
coefficient function, cannot be further simplified for the case where L LZ R . 
 
Q:  Why is that?   
 
When the load was purely imaginary (reactive), we where able to simply our general 
expressions, and likewise deduce all sorts of interesting results! 
 
A:  True! And here’s why.   
 
Remember, a lossless transmission line has series inductance and shunt capacitance 
only.   
 
In other words, a length of lossless transmission line is a purely reactive device (it 
absorbs no energy!). 
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Remember, a lossless line is purely reactive! 
 
 
 

* If we attach a purely reactive load at the end of the transmission line, we still 
have a completely reactive system (load and transmission line).  

 
* Because this system has no resistive (i.e., real) component, the general 

expressions for line impedance, line voltage, etc. can be significantly simplified. 
 

* However, if we attach a purely real load to our reactive transmission line, we now 
have a complex system, with both real and imaginary (i.e., resistive and reactive) 
components.   

 
* This complex case is exactly what our general expressions already describes—no 

further simplification is possible! 
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The “General” Load  
 

Now, let’s look at the general case L L LZ R jX  , where the load 
has both a real (resistive) and imaginary (reactive) component. 
 
Q:  Haven’t we already determined all the general expressions 
(e.g.,        , , , ,L V z I z Z z zG G ) for this general case?   
 
Is there anything else left to be determined? 
 
A: There is one last thing we need to discuss.   
 
It seems trivial, but its ramifications are very important! 
 
For you see, the “general” case is not, in reality, quite so general.   
 
Although the reactive component of the load can be either positive or negative 
( LX    ), the resistive component of a passive load must be positive ( 0LR  )—
there’s no such thing as a (passive) negative resistor! 
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Complex arithmetic—is there anything funer? 
 
This leads to one very important and very useful result.   
 
Consider the load reflection coefficient: 
 

 
 

 
 

0 00

0 0 0

L L L LL
L

L L L L L

R jX Z R Z jXZ Z
Z Z R jX Z R Z jX

   
  

    
G  

 
Now let’s look at the magnitude of this value: 
 

 
 
 
 
 
 
 
 

2
2 0

0

2 2
0

2 2
0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2

2

2

2

L L
L

L L

L L

L L

L L L

L L L

L L L

L L L

R Z jX
R Z jX

R Z X

R Z X
R R Z Z X
R R Z Z X

R Z X R Z
R Z X R Z

 


 

 


 

  


  

  


  

G

 



 

1/27/2012 Special Values of Load Impedance present 23/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A passive load? Then ||<1! 
 
It is apparent that since both LR  and 0Z  are positive, the numerator of the above 
expression must be less than (or equal to) the denominator of the above expression. 
 

 In other words, the magnitude of the load reflection coefficient is always less 
than or equal to one! 
 
 

 
1L G     (for 0LR  ) 

 
 
 
Moreover, we find that this means the reflection coefficient function likewise always 
has a magnitude less than or equal to one, for all values of position z. 
 

  1z G     (for all  z) 
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A passive load? Then the reflected wave will 
always be less than the incident! 

 
 
Which means, of course, that the reflected wave will always have a magnitude less 
than that of the incident wave magnitude: 
 
 
 
 

   V z V z           (for all  z) 

 
 

 
 
Recall this result is consistent with conservation of energy—the reflected wave from 
a passive load cannot be larger than the wave incident on it. 
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Transmission Line 
Input Impedance 

 
Consider a lossless line, length  , terminated with a load ZL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Let’s determine the input impedance of this line! 
 

( ) ( ) ( )I z I z I z+ -= +

LV
+

-


0z =

   

( ) ( ) ( )V z V z V z+ -=

+

+

-

 

 
ZL 
 

IL 

z    
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It’s not ZL and it’s not Z0  
 
Q:  Just what do you mean by input impedance? 
 
A:  The input impedance is simply the line impedance at the beginning (at 
z = - ) of the transmission line, i.e.: 
 

( )
( )
( )in

V z
Z Z z

I z
= -

= = - =
= -





 

Note Zin is equal to neither the load impedance ZL, nor the  characteristic 
impedance Z0 !  

 
0     and      in L inZ Z Z Z¹ ¹  

( )I z

LV
+

-


0z =

   

( )V z
+

-

 

     

 
ZL 
 

IL 

z    

( )inZ Z z= =- 
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There’s more on the next page… 
 
To determine exactly what Zin is, we first must determine the voltage and 
current at the beginning of the transmission line (z = - ). 
 

( )

( )

0 0

0
0

0

jβ jβ

jβ jβ

V z V e e

VI z e e
Z

+ -+

+
+ -

é ù= - = +ê úë û

é ù= - = -ê úë û

 

 









 

 
Therefore: 
 

( )
( )

0
0

0

jβ jβ

in jβ jβ
V z e eZ Z
I z e e

+ -

+ -

æ ö= - + ÷ç ÷ç= = ÷ç ÷÷= - ç -è ø

 

 







 

 
 
We can explicitly write inZ  in terms of load ZL using the previously determined 
relationship: 

0
0

0

L
L

L

Z Z
Z Z

-
= =

+
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…Zin can be WAY different than ZL 
 
Combining these two expressions, we get: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0
0

0 0

0
0

0

jβ jβ
L L

in jβ jβ
L L

jβ jβ jβ jβ
L

jβ jβ jβ jβ
L

Z Z e Z Z e
Z Z

Z Z e Z Z e
Z e e Z e e

Z
Z e e Z e e

+ -

+ -

+ - + -

+ - + -

+ + -
=

+ - -
æ ö+ + - ÷ç ÷ç ÷= ç ÷ç ÷+ - -ç ÷è ø

 

 

   

   

 

 
Now, recall Euler’s equations: 
 

cos sin and cos sinjβ jβe β j β e β j β+ -= + = -      
 
Using Euler’s relationships, we can likewise write the input impedance without the 
complex exponentials: 
 

0 0
0 0

0 0

cos sin tan
cos sin tan

L L
in

L L

Z β j Z β Z j Z βZ Z Z
Z β j Z β Z j Z β

æ ö æ ö+ +÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷+ +è ø è ø

  
  

 

 
Note that depending on the values of 0,  and β Z  , the input impedance can be 
radically different from the load impedance ZL ! 
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Your brain should be big enough 
 
 
Now let’s look at the Zin for some important load impedances and line lengths. 
 
 
 
 
 
 You should commit these results to memory! 
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1. Line Length is one-half a wavelength 
 
If the length of the transmission line is exactly one-half wavelength ( 2λ= ), 
we find that: 

2
2

π λβ π
λ

= =  

meaning that: 
cos cos 1      and      sin sin 0β π β π= = - = =   

 
and therefore: 
 

0
0 0

0 0

cos sin ( 1) (0)
cos sin ( 1) (0)

L L L
in

L L
L

Z β j Z β Z j ZZ Z Z
Z β j Z β Z j

Z
Z

æ ö æ ö+ - +÷ ÷ç ç= = =÷ ÷ç ç÷ ÷ç ç÷ ÷+ - +è ø è ø

 
 

 

 
In other words, if the transmission line is precisely one-half wavelength long, 
the input impedance is equal to the load impedance, regardless of Z0 or 







 

0,Z   

2
  

 
ZL 
 

 
in LZ Z  
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2. Line Length is one-quarter a wavelength 
 
If the length of the transmission line is exactly one-quarter wavelength 
( 4λ= ), we find that: 

2
4 2

π λ πβ
λ

= =  

 
meaning that: 
 

cos cos 2 0      and      sin sin 2 1β π β π= = = =   
 
and therefore: 
 

( )0 0
0 0

2

0

0

0

cos sin (0) (1)
cos sin (0) (1)

L L
in

L L L

Z β j Z β Z j ZZ Z Z
Z β j Z β Z Z

Z
Zj

æ ö æ ö+ +÷ ÷ç ç= = =÷ ÷ç ç÷ ÷ç ç÷ ÷+ +è ø è ø

 
 

 

 
 

In other words, if the transmission line is precisely one-quarter 
wavelength long, the input impedance is inversely proportional to the 
load impedance
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A short becomes an open—and vice versa! 
 
  Think about what this means!  

 
Say the load impedance is a short circuit, such that 0LZ = .   
 
The input impedance at  beginning of the 4λ  transmission line is therefore: 
 

( ) ( )2 2
0 0

0in
L

Z Z
Z

Z
= = = ¥  

 
inZ = ¥  !  This is an open circuit!   

 
The quarter-wave transmission line transforms a short-circuit into an open-
circuit—and vice versa! 
 

0,Z   

4
  

 
ZL=0 
 

 
inZ    
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3. Load is numerically equal to Z0 
 
If the load is numerically equal to the characteristic impedance of the 
transmission line (a real value), we find that—regardless of length  (!)—the input 
impedance becomes: 
 

0

0

0
0

0 0
0

0 0

cos sin
cos sin
cos sin
cos sin

L

L
in

Z β j Z βZ
Z β j Z β
Z β j Z βZ

Z

Z

Z
Z β j β

æ ö+ ÷ç= ÷ç ÷ç ÷+è ø
æ ö+ ÷ç= =÷ç ÷ç ÷+è ø

 
 
 
 

 

 
In other words, if the load impedance is equal to the transmission line 
characteristic impedance, the input impedance will be likewise be equal to Z0,  
regardless of the transmission line length  !!!! 
 
 
 
 
 
 
 
 
 

0,Z   

  

 
ZL=Z0 
 

 
0inZ Z  
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4. Load is purely reactive (RL=0)  
 
If the load is purely reactive (i.e., the resistive component is zero), the input 
impedance is: 

0
0

0

0
0 2

0

0
0

0

cos sin
cos sin

cos sin
cos sin

cos sin
cos sin

L
in

L

L

L

L

L

Z β j Z βZ Z
Z β j Z β
j X β j Z βZ
Z β j X β

X β Z βj Z
Z β X β

æ ö+ ÷ç= ÷ç ÷ç ÷+è ø
æ ö+ ÷ç ÷= ç ÷ç ÷÷ç +è ø
æ ö+ ÷ç= ÷ç ÷ç ÷-è ø

 
 

 
 
 
 

 

 
In other words, if the load is purely reactive, then the input impedance will 
likewise be purely reactive, regardless of the line length  . 
 
 
 
 
 
 
 

0,Z   

  

 
ZL=jXL 
 

in inZ j X
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5. Load is purely real (XL=0)  
 
Q:  Hey! If  a purely reactive load results in a purely reactive input impedance, 
then is seems to reason  that a purely resistive load would likewise result in a 
purely resistive input impedance. 
 
Is this true?  It seems to work for real load 0LZ Z= ! 
 
A:  This is definitely not true!!!! 
 
Even if the load is purely resistive (ZL = R), the input impedance will in general be 
complex (both resistive and reactive components). 
 
  Do you see why?  Why does this make sense?  Make sure YOU know! 

 

0,Z   

  

 
ZL = RL 
 

in in inZ R j X   
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6.Line length is much  
shorter than a wavelength  

 
If the transmission line is electrically small—its length   is small with respect to 
signal wavelength λ --we find that: 
 

2 2 0πβ π
λ λ

= = »
   

and thus: 
cos cos 0 1      and      sin sin 0 0β β= = = =   

 
so that the input impedance is: 
 

0
0 0

0 0

cos sin (1) (0)
cos sin (1) (0)

L L L

L
in L

L

Z β j Z β Z j ZZ Z
Z β j Z Z

Z
β j Z

Z
æ ö æ ö+ +÷ ÷ç ç= = =÷ ÷ç ç÷ ÷ç ç÷ ÷+ +è ø è ø

 
 

 

 
 

In other words, if the transmission line length is much smaller than a 
wavelength, the input impedance inZ  will always be equal to the load 
impedance LZ .   
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Electrically small: A wire is just a wire 
 
This is the assumption we used in all previous circuits courses (e.g., EECS 211, 
212, 312, 412)!   
 
In those courses, we assumed that the signal frequency ω  is relatively low, such 
that the signal wavelength λ  is very large (λ   ). 
 
Note also for this case ( the electrically short transmission line), the voltage and 
current at each end of the transmission line are approximately the same! 

 
( ) ( 0)    and    I( ) ( 0)   if  V z V z z I z λ= - » = = - » =     

 
If λ  ,  our “wire” behaves exactly as it did in EECS 211 ! 

 
 
 

0,Z   

  

 
ZL=jXL 
 

in LZ Z  
LV
+

-

IL 

LV
+

-

IL 
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Example: Input Impedance 
 
Consider the following circuit: 

 
 
 
 
 
 
If we ignored our new -wave knowledge, we might erroneously 
conclude that the input impedance of this circuit is: 
 
 
 
 
Therefore: 

( )3 2 1 2 6 9 2.7 2.1
3 2 1 2 3in

j j jZ j
j j j

- + + -
= = = -

- + + + -
 

 
Of course, this is not the correct answer! 
 
We must use our transmission line theory to determine an 
accurate value.   
 
Define Z1  as the input impedance of the last section: 

4
λ=  

.0 2 0Z   
1 2

LZ
j



 

3j  

2 

1 2
LZ

j



 inZ  

1Z  .0 2 0Z   

8
  

1 2
LZ

j



 

2
λ= 8

λ=

0 1Z = 0 1.5Z =3j-

2

inZ
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we find that Z1 is : 
  

( ) ( )
( ) ( )

0
1 0

0

cos sin
cos sin

(1 2) cos 2 sin4 42
2 cos (1 2) sin4 4
1 42

8 2

L

L

Z β j Z βZ Z
Z β j Z β

π πj j
π πj j

j
j

j

æ ö+ ÷ç= ÷ç ÷ç ÷+è ø
æ ö+ + ÷ç ÷ç ÷ç= ÷ç ÷ç ÷+ + ÷çè ø
æ ö+ ÷ç= ÷ç ÷÷çè ø

= -

 
 

 

 
Therefore, our circuit now becomes: 
 
 
 
 
 
 
Note the resistor is in series with impedance Z1.  We can 
combine these two into one impedance defined as Z2: 
 

2 12 2 (8 2) 10 2Z Z j j= + = + - = -  
 
 
 
 
 
 

1 8 2Z j   

4
λ=  2

λ=

0 1Z = 0 1.5Z =3j-

2

inZ

2 10 2Z j   

4
λ=  2

λ=

0 1Z = 0 1.5Z =3j-inZ
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Now let’s define the input impedance of the middle transmission 
line section as Z3: 
 
 
 
 
 
Note that this transmission line is a quarter wavelength 
( 4

λ= ).  This is one of the special cases we considered 

earlier!  The input impedance Z3 is: 
 

2
0

3

2
0

2
21.5

10 2
0.21 0.043

L

ZZ
Z
Z
Z

j
j

=

=

=
-

= +

 

 
Thus, we can further simplify the original circuit as: 
 
 
 
 
 
 
Now we find that the impedance Z3 is parallel to the capacitor.  
We can combine the two impedances and define the result as 
impedance Z4: 

3Z  2 10 2Z j   

4
λ=  

0 1.5Z =

. .3 0 21 0 043Z j   

2
λ=

0 1Z =
3j-inZ
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4 3 (0.21 0.043)
3(0.21 0.043)
3 0.21 0.043

0.22 0.028

Z j j
j j
j j

j

= - +

- +
=

- + +
= +

 

 
Now we are left with this equivalent circuit: 
 
 
 
 
 
 
Note that the remaining transmission line section is a half 
wavelength!  This is one of the special situations we discussed in 
a previous handout.  Recall that the input impedance in this case 
is simply equal to the load impedance: 
 

4 0.22 0.028in LZ Z Z j= = = +  
 

Whew! We are finally done. The input impedance of the original 
circuit is: 
 
 
 

 

2
  

. .4 0 22 0 028Z j   0 1Z =inZ

. .0 22 0 028inZ j   
inZ  
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Note this means that this circuit: 
 
 
 
 
 
 
 
 
and this circuit: 
 
 
 
 
 
 
 
are precisely the same(at frequency 0ω )!   
 
They have exactly the same impedance, and thus they “behave” 
precisely the same way in any circuit (but only at frequency 

0ω !). 

. .0 22 0 028
inZ

j



 

0.22 

j 0.028 

4
λ=  

.0 2 0Z   
1 2

LZ
j



 

2
λ= 8

λ=

0 1Z = 0 1.5Z =3j-

2

inZ
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The Reflection  
Coefficient Transformation 

 
The load at the end of some length of a transmission line (with characteristic 
impedance Z0 ) can be specified in terms of its impedance ZL or its reflection 
coefficient L 

 
 
 
 
 
 
 
 
Note both values are complex, and either one completely specifies the load—if 
you know one, you know the other! 
 

0
0

0

1
         and           

1
L L

L L
L L

Z Z Z Z
Z Z

æ ö- + ÷ç= = ÷ç ÷ç ÷+ -è ø





 

 

0,Z   

  

 
ZL or L  
 



 

2/1/2012 The Reflection Coefficient Transformation present 2/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Is there such a thing as Gin ? 

 
Recall that we determined how a length of transmission line transformed the load 
impedance into an input impedance of a (generally) different value: 
 
 
 
 
 
 
 

 
 
Q:  Can we likewise express this input impedance in terms of the reflection 
coefficient (i.e., in )?  If so, what does in mean? 

 
 

 
 
 
 
 

0,Z   

  

 
ZL  
 

 
inZ  

0,Z   

  

 
ZL  
 

 
?in   
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The hard way 
 
A:  Well, we could execute these three steps: 

 
1.   Convert L to ZL: 

0
1
1

L
L

L
Z Z

æ ö+ ÷ç= ÷ç ÷ç ÷-è ø




 

 
2.  Transform ZL  down the line to Zin : 

 
0

0
0

cos sin
cos sin

L
in

L

Z β j Z βZ Z
Z β j Z β

æ ö+ ÷ç= ÷ç ÷ç ÷+è ø

 
 

 

 
3.  Convert Zinto in : 

0

0

in
in

in

Z Z
Z Z

-
=

+
  

 
Q:  Yikes! This is a ton of complex arithmetic—isn’t there an easier way? 

 
A:  Actually, there is! 
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Déjà vu all over again 
 
Slugging through all the algebra, find that the result I really simple: 
 

2j β
in L e-=    

 
Q:  Hey! This result looks familiar.  
 
Haven’t we seen something like this before? 
 
A:  Absolutely!   
 
Recall that we found that the reflection coefficient function ( )z  can be 
expressed as: 

( ) 2
0

j βzz e+=   
 

Evaluating this function at the beginning of the line (i.e., at z =-  ): 
 

( ) ( )2
0

2
0

j β
z

j β

z e
e

+ -
-

-
=

=

=






 


 



 

2/1/2012 The Reflection Coefficient Transformation present 5/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Just evaluate the  
reflection coefficient function 

 
But, we recognize that: 

( )0 0 Lz= = =    
 
And so: 

( ) 2j β
Lz e  -=- =   

 
 
Thus, we find that in  is simply the value of function ( )z  evaluated at the line 
input of z = -  ! 
 

( ) 2j β
in Lz e-= =- =     

 
Makes sense!  
 
After all, the input impedance is likewise simply the line impedance evaluated at 
the line input of z =-  : 

( )inZ Z z= = -  
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Only the phase changes as we  
move along the transmission line 

 
It is apparent that from the above expression that the reflection coefficient at 
the input (i.e., in )  is simply related to L  by a phase shift of 2β . 
 
In other words, the magnitude of in  is the same as the magnitude of L ! 
 

( )Γ 2 (1)j θ β
Li LLn e  -= = =  

 
The phase shift associated with transforming the load L down a transmission 
line can be attributed to the phase shift associated with the wave propagating a 
length   down the line, reflecting from loadL , and then propagating a length   
back up the line:  
 
 
 
 
 
 
 

L  
 

0,Z β  

β   

j jβ β
i n Le e      
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Three physical events 
 
To emphasize this wave interpretation, we begin with the knowledge that: 
 

( ) 0
jβV z V e-- -= - =   

 
In other “words” the minus-wave at z = -  is just the minus-wave at 0z =  (i.e., 

0V - ), “shifted” in phase by  β-  . 
 
Now, we also know that the minus-wave and plus-wave at 0z =  are related by the 
reflection coefficient 0 L   : 
 

0 0LV V- +=  
 

Likewise, we know that:  
 

( ) 0
jβV z V e++ += - =   

 
In other “words” the plus-wave at z = -  is just the minus-wave at 0z =  (i.e., 

0V - ), “shifted” in phase by  β+  . 
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A causal interpretation 
 
Putting these statements together, we find: 
 

( )

( )

0

0

jβ

jβ
L

jβ jβ
L

V z e V
e V
e e V z





-- -

- +

- - -

= - =

=

= = -





 





 

 
And from the definition of the input reflection coefficient we have thus 
confirmed: 

( )
( )

jβ jβ
L in

V z
e e

V z
 

-
- -

-

= -
= =

= -
 


 

 
Note the “causal” interpretation of this result: propagate down the line, reflect 
off the load, and propagate back up the line! 

 

L  
 

0,Z β  

β   

j jβ β
i n Le e      
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Return Loss and VSWR 
 
 
The ratio of the reflected power from a load, to the incident power on that load, 
is known as return loss.  
 
Typically, return loss is expressed in dB: 

 
 
 

2
10 1010 10ref

L
inc

PR L
P

 
    

 
. . log log  

 
 
 
The return loss thus tells us the percentage of the incident power reflected by 
load (expressed in decibels!). 
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A larger “loss” is better! 
 
For example, if the return loss is 10dB, then 10% of the incident power is 
reflected at the load, with the remaining 90% being absorbed by the load—we 
“lose” 10% of the incident power 
 
Likewise, if the return loss is 30dB, then 0.1 % of the incident power is 
reflected at the load, with the remaining 99.9%  being absorbed by the load—we 
“lose” 0.1% of the incident power. 
 

 Thus, a larger numeric value for return loss actually indicates less 
lost power!   

 
An ideal return loss would be dB, whereas a return loss of 0 dB indicates that 

1L  —the load is reactive! 
 
 

Return loss is helpful, as it provides a real-valued measure of load 
match (as opposed to the complex values LZ  and L ).   
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Voltage Standing Wave Ratio 
 
Another traditional real-valued measure of load match is Voltage Standing Wave 
Ratio (VSWR).   
 
Consider again the voltage along a terminated transmission line, as a function of 
position z : 
 

  0
jβz jβz

LV z V e e     G  

 
 
Recall this is a complex function, the magnitude of which expresses the 
magnitude of the sinusoidal signal at position z, while the phase of the complex 
value represents the relative phase of the sinusoidal signal. 
 
Let’s look at the magnitude only: 
 

 
0

2
0

2
0

 

           1
           1

jβz jβz
L

j βzjβz
L

j βz
L

V e eV z
V ee
V e

 

 



 

 

 

G

G

G
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VSWR depends on |L| only 
 
It can be shown that the largest value of  V z  occurs at the location z where: 
 

2 0j βz
L Le j  G G  

 
while the smallest value of  V z  occurs at the location z where: 
 

2 0j βz
L Le j   G G  

 
As a result we can conclude that:  
 

       0 0max min
1 1L LV V V Vz z  G G  

 
 
The ratio of    max min

to V Vz z  is known as the Voltage Standing Wave Ratio 
(VSWR): 
 

 
 

1
1

1
L

L

V zVSWR VSWR
V z

 
    

 
 max

min
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VSWR =  1 if matched, bigger if not! 
 
 
Note if 0L   (i.e., 0LZ Z ), then VSWR = 1.  
 
 We find for this case: 

( ) ( ) 0max min   V z V z V    
 

In other words, the voltage magnitude is a constant with respect to position z. 
 
 
 
Conversely, if 1L   (i.e., LZ jX ), then VSWR =  .   
 
We find for this case: 
 

( ) ( ) 0min max0      and       2V z V z V    
 

In other words, the voltage magnitude varies greatly with respect to position z. 
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A plot of the total voltage magnitude 
 
 
As with return loss, VSWR is dependent on the magnitude of L (i.e, |L|) only ! 
 
 
 

( ) minV z  

2z    

( ) maxV z  

z 

( )V z  
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Example:The Transmission 
Coefficient T 

 
Consider this circuit: 
 
 
 
 
 
 
 
 
 
I.E.,  a transmission line with characteristic impedance Z1 
transitions to a different transmission line at location z =0.  
This second transmission line has different characteristic 
impedance Z2  ( 1 2Z Z≠ ) .  This second line is terminated with a 
load ZL = Z2  (i.e., the second line is matched). 
 

Q:  What is the voltage and current along each of  these 
two transmission lines?  More specifically, what are 

01 01 02 02, ,  and  V V V V+ − + −  ??  
 
A:  Since a source has not been specified, we can only 
determine 01 02 02,  and  V V V− + −  in terms of complex constant 

01V + .  To accomplish this, we must apply a boundary 
condition at z =0! 

0z =  

I1(z) 

1 1Z β,  
+ 
V1 (z) 
- 

 
ZL=Z2 
 

z 

I2(z) 

+ 
V2 (z) 
- 

2 2Z β,  
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z < 0 
 
We know that the voltage along the first transmission line is: 
 

( ) 1 1
1 01 01 for 0j z j zV z V e V e zβ β− ++ −= + <⎡ ⎤⎣ ⎦ 

 
while the current along that same line is described as: 
 

( ) 1 101 01
1

1 1
for 0j z j zV VI z e e z

Z Z
β β

+ −
− += − <⎡ ⎤⎣ ⎦ 

 
 z > 0 
 
We likewise know that the voltage along the second 
transmission line is: 
 

( ) 2 2
2 02 02 for 0j z j zV z V e V e zβ β− ++ −= + >⎡ ⎤⎣ ⎦ 

 
while the current along that same line is described as: 
  

( ) 2 202 02
2

2 2
for 0j z j zV VI z e e z

Z Z
β β

+ −
− += − >⎡ ⎤⎣ ⎦ 

 
Moreover, since the second line is terminated in a matched 
load, we know that the reflected wave from this load must be 
zero: 
 

( ) 2
2 02 0j zV z V e β−− −= =  
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The voltage and current along the second transmission line is 
thus simply: 
 

( ) ( ) 2
2 2 02 for 0j zV z V z V e zβ−+ += = >⎡ ⎤⎣ ⎦ 

 

( ) ( ) 202
2 2

2
for 0j zVI z I z e z

Z
β

+
−+= = >⎡ ⎤⎣ ⎦ 

 
z=0 
 
At the location where these two transmission lines meet, the 
current and voltage expressions each must satisfy some specific 
boundary conditions: 
 
 
 
 
 
 
 
 
 
 
The first boundary condition comes from KVL, and states that: 
 

                 
( ) ( )

( ) ( ) ( )1 1 2

1 2

0 0 0
01 01 02

01 01 02

0 0
j j j

V V

V z V z
V e V e V

V
eβ β β

+ − +

− + −+ − +

= = =

+

=

=

+

 

 

0z =  

I1(0) 

1 1Z β,  
     + 
V1 (0) 
     - 

 
ZL=Z2 
 

z 

I2(0) 

   + 
V2 (0) 
   - 

2 2Z β,  
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while the second boundary condition comes from KCL, and states 
that: 

                 

( ) ( )
( ) ( ) ( )1 1 2

1 2

0 0 001 01 0

01 01 02

1

2

1 1

1 2

2

0 0

j j j

I z I z
V V Ve e e
Z Z Z

V V V
Z Z Z

β β β

+ − +

+ − +
− + −

= = =

=

−

−

=  

 
We now have two equations and two unknowns 01 02(  and )V V− + !  We 
can solve for each in terms of 01V +  (i.e., the incident wave). 
 
From the first boundary condition we can state: 
 

01 02 01V V V− + += −  
 
Inserting this into the second boundary condition, we find an 
expression involving only 02V +  and 01V + : 

 
01 01 02

1 1 2

01 02 01 02

1 1 2

01 02 02

1 2 1

2

V V V
Z Z Z

V V V V
Z Z Z

V V V
Z Z Z

+ − +

+ + + +

+ + +

− =

−
− =

= +

 

 
Solving this expression, we find: 
 

2
02 01

1 2

2ZV V
Z Z

+ +⎛ ⎞
= ⎜ ⎟+⎝ ⎠
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We can therefore define a transmission coefficient, which 
relates 02 01 to V V+ + : 
 
 

02 2
0

01 1 2

2V ZT
V Z Z

+

+ = +
 

 
 
Meaning that 02 01V T V+ += , and thus: 
 

( ) ( ) 2
2 2 01 for 0j zV z V z T V e zβ−+ += = >⎡ ⎤⎣ ⎦ 

 
 
We can likewise determine the constant 01 01 in terms of V V− + .  We 
again start with the first boundary condition, from which we 
concluded: 

02 01 01V V V+ + −= +  
 

We can insert this into the second boundary condition, and 
determine an expression involving 01V −  and 01V +  only: 
  

01 01 02

1 1 2

01 01 01 01

1 1 2

01 01
1 2 1 2

1 1 1 1

V V V
Z Z Z
V V V V
Z Z Z

V V
Z Z Z Z

+ − +

+ − + −

+ −

− =

+
− =

⎛ ⎞ ⎛ ⎞
− = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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Solving this expression, we find: 
 

2 1
01 01

2 1

Z ZV V
Z Z

− +⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

 
We can therefore define a reflection coefficient, which relates 

01 01 to V V− + : 
 
 

01 2 1
0

01 2 1

V Z Z
V Z Z

−

+

−
Γ =

+
 

 
 
 
This result should not surprise us! 
 
Note that because the second transmission line is matched, its 
input impedance is equal to Z1

 : 
 
 
 
 
 
 
 
 
 0z =  

 
ZL=Z2 
 

z 

2 2Z β,  2inZ Z=  
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and thus we can equivalently write the entire circuit as: 
 
 
 
 
 
 
 
 
 
 
We have already analyzed this circuit!   We know that: 
 

01 01

2 1
01

2 1

LV V
Z Z V
Z Z

− +

+

= Γ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

 
Which is exactly the same result as we determined earlier! 
 
 
The values of the reflection coefficient 0Γ and the transmission 
coefficient T0 are not independent, but in fact are directly 
related.  Recall the first boundary expressed was: 
 

01 01 02V V V+ − ++ =  
 

Dividing this by 01V + : 
01 02

01 01
1 V V

V V

− +

+ ++ =  

0z =  

1 1Z β,  
 
Z2 
 

z 

I1(z) 

+ 
V1 (z) 
- 
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Since 0 01 01V V− +Γ =  and  0 02 01T V V+ += : 
 
 

0 01 T+ Γ =  
 
 
Note the result 0 01T = + Γ  is true for this particular circuit, and 
therefore is not a universally valid expression for two-port 
networks! 
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Example: Applying 
Boundary Conditions 

 
Consider this circuit: 
 
 
 
 
 
 
 
 
 
I.E.,  Two transmissions of identical characteristic impedance 
are connect by a series impedance ZL . This second line is 
eventually terminated with a load ZL = Z0  (i.e., the second line is 
matched). 
 

Q:  What is the voltage and current along each of  these 
two transmission lines?  More specifically, what are 

01 01 02 02, ,  and  V V V V     ??  
 
A:  Since a source has not been specified, we can only 
determine 01 02 02,  and  V V V    in terms of complex constant 

01V  .  To accomplish this, we must apply a boundary 
conditions at the end of each line! 

0,Z β   1 1V z




 0,Z β  

ZL IL 

+   VL   - 

 1 1V z




  2 2V z




 2 2I z 1 1I z

1 0z   
z1 

2 0z   
z2 
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z1 < 0 
 
We know that the voltage along the first transmission line is: 
 

  1 1
1 1 01 01 1for 0j βzj βzV z V e V e z        

 
while the current along that same line is described as: 
 

  1 101 01
1 1 1

0 0

for 0j βz j βzV VI z e e z
Z Z

 
        

 
 z2 > 0 
 
We likewise know that the voltage along the second 
transmission line is: 
 

  2 2
2 2 02 02 2for 0j βz j βzV z V e V e z         

 
while the current along that same line is described as: 
  

  2 202 02
2 2 2

0 0

for 0j βz j βzV VI z e e z
Z Z

 
        

 
Moreover, since the second line is terminated in a matched 
load, we know that the reflected wave from this load must be 
zero: 
 

  2
2 2 02 0j βzV z V e     
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The voltage and current along the second transmission line is 
thus simply: 
 

    2
2 2 2 2 02 2for 0j βzV z V z V e z        

 

    202
2 2 2 2 2

2

for 0j βzVI z I z e z
Z


       

 
z=0 
 
At the location where these two transmission lines meet, the 
current and voltage expressions each must satisfy some specific 
boundary conditions: 
 
 
 
 
 
 
 
 
 
 
The first boundary condition comes from KVL, and states that: 
 

                 

   
     

1 2
0 0

0

0
01 01 02

1 01 02

0 0L L
j β j β j β

L

L L

L

V z I Z V z

V e V e I
V V

V e
V

Z
I Z

   





 

   

 





 

 

 
 

0,Z β   1 1 0V z






 0,Z β  

ZL IL 

+   VL   - 

 2 2 0V z






 2 2 0I z  1 1 0I z 

1 0z   
z1 

2 0z   
z2 
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the second boundary condition comes from KCL, and states that: 
 

                 

 
   

01 0

1

0 001 01

1 0

0 0

0 L

j β

L

j β
L

I z I
V Ve e I
Z Z

V V Z I

 






  

 

   

 
while the third boundary condition likewise comes from KCL, and 
states that: 

 
 

2

0

2

0

0

0 0

2

0

L

L

j β
L

I I z
VI e
Z

Z I V









 

  

 
Finally, we have Ohm’s Law: 
 

L L LV Z I  
 
Note that we now have four equations and four unknowns 

01 02( , , , )L LV V V I  !  We can solve for each in terms of 01V   (i.e., the 
incident wave). 
 
For example, let’s determine 02V   (in terms of 01V  ).  We combine 
the first and second boundary conditions to determine: 
 

 
 

01 0

0

01 01 02

0

2

1 02

1 0 02
L

L L

L L

L L

V V I Z

V I Z Z V

V
V V I I Z VZ
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And then adding in the third boundary condition: 
 

 

 
01 0 02

01
0

0 02

0
01 02

2

0

0

2

2

2
2

L L

L

L

V I Z Z V

V Z ZV V
Z

Z ZV V
Z



 

 

 

  

  

 
  

 

 

  
Thus, we find that 02 0 01V T V  : 
 

02 0
0

01 0

2
2 L

V ZT
V Z Z




  
 

 
Now let’s determine 01V   (in terms of 01V  ). 
 
 
 
 
 
 
  
 
 
A:  Perhaps.  Humor me while I continue with our boundary 
condition analysis. 
 
We combine the first and third boundary conditions to 
determine: 
 

Q:  Why are you wasting our time?  Don’t 
we already know that  01 0 01V V   , where: 
 

0
0

0

L

L

Z Z
Z Z
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01 01 02

01 01

01 0

0

1 0L L

L

L L

L

L

V V I Z Z

V V I Z
V Z ZI I

V
V

  

 

 

  

 

 





 

 
And then adding the second boundary condition: 
 

 
   

01 01 0

01 01 0

0
0

01 01

0

1 01
0 0

2

L L

L

L L

V V I Z Z

V V Z Z

Z Z ZV V
Z

V V

Z

Z



 

 

 



  

  

   
  

  






 

 
Thus, we find that 01 0 01V V   , where: 
 

01
0

01 02
L

L

ZV
V Z Z




 


 

 
Note this is not the expression: 
 

0
0

0

L

L

Z Z
Z Z


 


 

 
This is a completely different problem than the 
transmission line simply terminated by load ZL. Thus, the 
results are likewise different.  This shows that you must 
always carefully consider the problem you are attempting 
to solve, and guard against using  “shortcuts” with 
previously derived expressions that may be inapplicable. 
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 This is why you must know why a correct answer is correct! 
 

 
 
 
 
 
A:  Actually, there is! 
 
An alternative way for finding 0 01 01V V    is to determine the 
input impedance at the end of the first transmission line: 
 
 
 
 
 
 
 
 
 
Note that since the second line is (eventually) terminated in a 
matched load, the input impedance at the beginning of the 
second line is simply equal to Z0.

Q:  But, isn’t there some 
way to solve this using our 
previous work? 
 

0,Z β  0,Z β  

ZL 

Zin2  = Z0 

1 0z   
z1 

2 0z   
z2 

0,Z β  0,Z β  

ZL 

1 0z   
z1 

2 0z   
z2 

Zin 
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Thus, the equivalent circuit becomes: 
 
 
 
 
 
 
 
 
And it is apparent that: 
 

0in LZ Z Z   
 
As far as the first section of transmission line is concerned, it 
is terminated in a load with impedance 0LZ Z .  The current and 
voltage along this first transmission line is precisely the same 
as if it actually were! 
 
 
 
 
 
 
 
 
 
 

0,Z β  0LZ Z  

1 0z   
z1 

 1 1V z




 1 1I z

ZL 

1 0z   

z1 

Z0 Zin 0,Z β  
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Thus, we find that 0 01 01V V   , where: 
 

 
 

 
 

1 0
0

1 0

0 0

0 0

0

0
0

2

L

L

L

L

Z z Z
Z z Z
Z Z Z
Z Z Z

Z
Z Z

 


 

 


 




G

 

 
Precisely the same result as before! 
 
Now, one more point.  Recall we found in an earlier handout that 

0 01T    .  But for this example we find that this statement is 
not valid: 

 0
0 0

0

2
1

2
L

L

Z Z T
Z Z


   


 

 
Again, be careful when analyzing microwave circuits!  
 
 
 
 
 
 
 
 
 
A:  An important engineering tool that you must master is 
commonly referred to as the “sanity check”. 

Q:  But this seems so 
difficult. How will I 
know if I have made a 
mistake? 
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Simply put, a sanity check is simply thinking about your result, 
and determining whether or not it makes sense.  A great 
strategy is to set one of the variables to a value so that the 
physical problem becomes trivial—so trivial that the correct 
answer is obvious to you.  Then make sure your results likewise 
provide this obvious answer! 
 
For example, consider the problem we just finished analyzing.  
Say that the impedance ZL is actually a short circuit (ZL=0). We 
find that:  
 

0
0 0

0
2

L

L

L Z

Z
Z Z



  


               0
0

0 0

2 1
2

LL Z

ZT
Z Z



 


 

 
Likewise, consider the case where ZL is actually an open circuit 
(ZL= ). We find that:  
 

0
0

1
2

L

L

L Z

Z
Z Z



  


               0
0

0

2 0
2

LL Z

ZT
Z Z



 


 

 
Think about what these results mean in terms of the physical 
problem: 

 
  
 
 
 
 
 
 

0,Z β   1 1V z




 0,Z β  

ZL IL 

+   VL   - 

 1 1V z




  2 2V z




 2 2I z 1 1I z

1 0z   
z1 

2 0z   
z2 
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Q: Do these results make sense? Have we passed the sanity 
check? 
 
 

 

A: I’ll let you decide!  
What do you think? 
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Example: Another 
Boundary Condition Problem 
 
 
 
 
 
 
 
 
 
 
 
The total voltage along the transmission line shown above is expressed 
as: 
 

( )
0 0

0 0 0

j βz j βz
a a

j βz j βz
b b

V e V e z
V z

V e V e z

− ++ −

− ++ −

⎧ + < −
⎪

= ⎨
⎪ + − < <⎩

 

 
 
Carefully determine and apply boundary conditions at both 0z =  and 
z = −  to find the three values: 
 

0 0 0

0 0 0

, ,a b b

a a a

V V V
V V V

− + −

+ + +
 

 
 
 
 

0,Z β  0
2

Z
0,Z β  

4λ=  

0
2

Z

( )aI z+  ( )aI z−  ( )bI z+  ( )bI z−  

z =−  z =0 
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Solution 
 
From the telegrapher’s equation, we likewise know that the current along 
the transmission lines is: 
 

( )

0 0

0 0

0 0

0 0

0

jβz jβza a

jβz jβzb b

V Ve e z
Z Z

I z
V Ve e z
Z Z

+ −
− +

+ −
− +

⎧
− < −⎪

⎪
⎪= ⎨
⎪
⎪ − − < <
⎪⎩

 

 
To find the values:  

00 0

0 00

a

a

b

a a

bV
V V

V
V

, V,
−

+

−+

+ +
 

 
We need only to evaluate boundary conditions! 
 
Boundary Conditions at z = −   
 
 

 
 
 
 
 
 
 
 

From KVL, we conclude: 
 

( ) ( )a bV z V z= − = = −  

 

z = −  

( )aV z
+

= −

−

 

( )aI z =−  ( )bI z =−  

( )bV z
+

= −

−

 
RI  
0

2
Z
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From KCL: 

( ) ( )a b RI z I z I= − = = − +  

 
And from Ohm’s Law: 
 

( ) ( ) ( )
0 0 0

2 2
2

a a b
R

V z V z V zI
Z Z Z
=− =− =−

= = =  

 
We likewise know from the telegrapher’s equation that: 

 

( ) ( ) ( )
0 0

0 0

j β j β
a a a

j β j β
a a

V z V e V e
V e V e

− − + −+ −

+ −+ −

= − = +

= +
 

 
And since 4λ= , we find: 
 

2
4 2

π λ πβ
λ

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

And so: 
 

( )
( ) ( )

( ) ( )
( )

2 2

0 0

0 0

0 0

0 0

π π

j β j β
a a a

j j
a a

a a

a a

V z V e V e

V e V e
V j V j
j V V

+ −+ −

+ −+ −

+ −

+ −

= − = +

= +

= + −

= −

 

 
We similarly find that: 
 

( ) ( )0 0b b bV z j V V+ −= − = −  

 
and for currents: 
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( ) 0 0

0

a a
a

V VI z j
Z

+ −+
= − =  

 

( ) 0 0

0

b b
b

V VI z j
Z

+ −+
= − =  

 
Inserting these results into our KVL boundary condition statement: 
 

( ) ( )
( ) ( )0 0 0 0

0 0 0 0

a b

a a b b

a a b b

V z V z
j V V j V V

V V V V

+ − + −

+ − + −

= − = = −

− = −

− = −

 

 
Normalizing to (i.e., dividing by) 0aV + , we conclude: 
 

0

0

00

0 0

1 a

a

b b

a a

V
V

V
V

V
V

+

++

− −

+
− = −  

 
From Ohm’s Law: 

( ) ( )

( ) ( )

0 0

0 0

0 0

0 0

22

22

a aa
R

b bb
R

j V VV z
I

Z Z

j V VV z
I

Z Z

+ −

+ −

−= −
= =

−=−
= =

 

 
And finally from our KCL boundary condition: 
 

( ) ( )
0 0 0 0

0 0

a b R

a a b b
R

I z I z I
V V V Vj j I

Z Z

+ − + −

= − = = − +

+ +
= +
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After an enjoyable little bit of algebra, we can thus conclude: 
 

0 0 0 0 0a a b b RV V V V j I Z+ − + −+ = + −  
 

And inserting the result from Ohm’s Law: 
 

( )

( )
( ) ( )

0 0 0 0 0

0 0
0 0 0

0

2 0
0 0 0 0

0

0 0 0 0

0 0 0 0

0 0

2

2

2 1

2 2
3

a a b b R

b b
b b

b b b b

b b b b

b b b b

b b

V V V V jI Z
j V V

V V j Z
Z

ZV V j V V
Z

V V V V
V V V V
V V

+ − + −

+ −

+ −

+ − + −

+ − + −

+ − + −

+ −

+ = + −

⎛ ⎞−
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

⎛ ⎞
= + − − ⎜ ⎟

⎝ ⎠
= + − − −

= + + −

= −

 

 
Again normalizing to 0aV + , we get a second relationship: 
 

0

0

0

0 0

0

1 3 ba

aa

b

a

V
VV

V
V

V +

+ ++

−−

+ = −  

 
Q:  But wait! We now have two equations: 
 

0

0

00

0 0

1 a

a

b b

a a

V
V

V
V

V
V

+

++

− −

+
− = −                 

0

0

0

0 0

0

1 3 ba

aa

b

a

V
VV

V
V

V +

+ ++

−−

+ = −       

 
but three unknowns: 

00 0

0 00

, , ba b

aa a

V
V V

V V
V

−

++

+−

+
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Did we make a mistake somewhere? 
 
A:  Nope! We just have more work to do. After all, there is a yet another 
boundary to be analyzed! 
 
 
Boundary Conditions at 0z =   
 
 
 
 
 
 
 
 
 
 
From KVL, we conclude: 

( )0b LV z V= =  

 
From KCL: 

( )0b LI z I= =  

 
And from Ohm’s Law: 

0
2 0

2L L
L Z

V VI
Z

= =  

 
We likewise know from the telegrapher’s equation that: 

 

( ) ( ) ( )

( ) ( )

0 0
0 0

0 0

0 0

0
1 1

j β j β
b b b

b b

b b

V z V e V e
V V
V V

− ++ −

+ −

+ −

= = +

= +

= +

 

 

0,Z β  0

2
Z

 

( )0bV z
+

=

−

 

( )0bI z =  

0z =  

LV
+

−

 

LI  
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We similarly find that: 

( ) 0 0

0

0 b b
b

V VI z
Z

+ −−
= =  

 
Combing this with the above results: 
 

( ) ( )

( )

0

0

0 00 0

0 0

2

2 0
0

2

L
L

b
b

b bb b

VI
Z
V z

I z
Z

V VV V
Z Z

+ −+ −

=

=
= =

+−
=

 

 
From which we conclude: 
 

( )0 0 0 0 0 02 3b b b b b bV V V V V V+ − + − − +− = + ⇒ − =  

 
And so: 

0 0
1
3b bV V− += −  

 
Note that we could have also determined this using the load reflection 
coefficient: 

( )
( ) ( ) 0

0
0

0
b

b

V z
z

V z

−

+

=
= Γ = = Γ

=
 

 
Where: 

( ) ( )0
0 00 j β

b b bV z V e V+− − −= = =  

 

( ) ( )0
0 00 j β

b b bV z V e V−+ + += = =  
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And we use the boundary condition: 
 

0 0 0
0

0 0 0

0.5 0.5 1
0.5 1.5 3

L
b Lb

L

Z Z Z Z
Z Z Z Z

− − −
Γ = Γ = = = = −

+ +
 

 
Therefore, we arrive at the same result as before: 
 

( )
( ) 0

0

0

0
0

1
3

b
b

b

b

b

V z
V z

V
V

−

+

−

+

=
= Γ

=

= −

 

 
Either way, we can use this result to simplify our first set of boundary 
conditions: 

0

0

0

0

0

0

0 0

0 0

0

0

0

0

0

0

1

3

1
3

4
3

b

a

a

b

a

b

a

b b

a a

b

a

a

b

a

V

V
V
V

V

V
V V
V V

V

V

V

V

V

V

−+

+

+

+

+ +

+ +

+

+

+

+

−

+

+

− = −

=

−
= −

= +

 

And: 
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0

0

0

0

0 0

0 0

0

0

0

00

0

0

0

1 3

3
3

13
3

10
3

b

a

b

b

a

aa

b b

a

a

a

b

a

b

a

V

V
V
V
V
V V
V V

V
V

V
V

V

V
V

+

+

+

+

+ +

+ +

+

−

+

+

+

−

+

+
+ = −

−
= −

= +

=

 

 
NOW we have two equations and two unknowns: 
 

0

0

0

0 41
3

a

aa

bV
V

V
V ++

+−

− =                      
0

0

0

0 101
3a

b

a

aV V
VV

+−

++
+ =  

 
Adding the two equations, we find: 
 

0 0

0 0

0

0

0 0

0

0

0

0

4 101 1
3 3

142
3

3
7

b b

a a

b

a

a

b

a

a

a

a

V V
V V
V
V

V
V

V V
V V

+ +

+ +

+

+

+

+

− −

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

=

 

 
And so using the second equation above: 
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0

0

0

0

10 1
3
10 3 1
3 7
3
7

ba

aa

V
V

V
V

−

+

+

+
= −

= −

=

 

And finally, from one of our original boundary conditions: 
 

0 0

0

0

00

1

3 31
7 7

1
7

b

a a

b

a

aV
VV
V

V
V + −

+ + +

−

= − +

= − +

= −

 

 
And so now we summarize the fruit of our labor: 
 
 

0

0

3
7

a

a

V
V

−

+
=                0

0

3
7

b

a

V
V

+

+
=              0

0

1
7

b

a

V
V

−

+
= −  

 
 
 
Yes it is! It’s time for a sanity check!!! 
 
The first of our boundary condition equations: 
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0

0

0

0

0

0

13

1

1

4 4
7

7
3
7

7

7

b

a

ba

a a

V
V

V V
VV

+−

+ ++

−

− = −

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠

=

−  

And from the second: 
 

1

1 3

1 3
7

3

10 10
7 7

3
7 7

b

a

ba

a a

V
V VV

VV −−

+

+

+ ++ = −

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

=

−= −  

 
Notice that we can also verify the result: 
 

0

0

3
7

a

a

V
V

−

+
=  

 
By using the equivalent circuit of: 
 

 
 
 
 
 
 
 
 
 

 
 

 

 

0,Z β  0
2

Z
0,Z β  

4λ=  

0
2

Z

( )aI z+  ( )aI z−  ( )bI z+  ( )bI z−  

z =−  z =0 
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Specifically, we can determine the input impedance of this circuit: 
 
 
 
 
 
 
 
 
 
Since the transmission line is the special case of one quarter wavelength, 
we know that: 

2
0

0
0

2.0
0.5in

ZZ Z
Z

= =  

 
And so the equivalent circuit becomes:  

 
 
 
 
 
 
 
 
 
 

Where the two parallel impedances combine as: 
 

0
0 0 00.5 2 0.4

2.5
ZZ Z Z= =  

 
 
 
 
 

0
2

Z  0,Z β  02inZ Z=  

z =−  

 

0
2Lb

ZZ =  
0,Z β  

4λ=  

z =−  z =0 

inZ
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And so the equivalent load at z = −  is 00 4. Z : 
 
 

 
 
 
 
 
 
 

Now, the reflection coefficient of this load is: 
 

0 0

0 0

0 4 0 6 3
0 4 1 4 7La

. Z Z .

. Z Z .
− −

Γ = = = −
+

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: Absolutely not!  The boundary condition analysis is perfectly correct, 
and: 

 

Q: Wait a second! Using your fancy 
“boundary conditions” to solve the problem, 
you earlier arrived at the conclusion: 
 

0

0

3
7

a

a

V
V

−

+
=  

 
But now we find that instead: 
 

0

0

3
7

a

a
La

V
V

−

+
= Γ = −  

 
Apparently your annoyingly pretentious 
boundary condition analysis introduced 
some sort of sign error ! 

0,Z β  00.4LaZ Z=

z =−  
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0

0

3
7

a

a

V
V

−

+
=  

is the right answer. 
 
The statement: 

3
7

a

a
La

V
V

−

+ = Γ = −  

is erroneous! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  In the first case, load LbΓ  is located at position 0z = , so that: 
 

                                              
( )
( )

0
0

b b
Lb

b b

V z V
V z V

− −

+ +

=
Γ = =

=
 

 
 
 
 
 
 
 

 

 

Q:  But how could that possibly 
be? You earlier determined that: 
 

0

0

1
3

b
Lb

b

V
V

−

+
= Γ = −  

 

So why then is:  
 

0

0

a

a
La

V
V

−

+
≠ Γ    ???? 

LbΓ  
0,Z β  

z=0 



  
 

 

2/7/2012 Example Another Boundary Value Problem.doc 15/15 

Jim Stiles The Univ. of Kansas  Dept. of EECS
    

Note this result can be more compactly stated as a boundary condition 
requirement: 

( ) (0)0 0
0

0 0
0 j βb b

Lb b
b b

V Vz e
V V

− −
+

+ +
= = = = =Γ Γ Γ  

 
For the second case, the load LbΓ  is located instead at position z = − , 
so that:   

( )
( )

2 20 0
0

00

j β
a j β j βa a

La aj β
a aa

V z V e V e e
V z VV e

− −− −
− −

+ + ++

= −
= = = =

= −
Γ Γ  

 
 
 
 
 
 
 
 

Note this result can be more compactly stated as a boundary condition 
requirement: 

( ) 20

0

j βa
La

a

Vz e
V

−
−

+
= = − =Γ Γ  

 
From the equation above we find: 
 

20

0

3 3
7 7

j β jπa
La

a

V e e
V

−
+ +

+
= = − = +Γ  

 
 

 
 
 

      
 

That’s precisely the same result as we 
determined earlier using our boundary conditions!  
 
Our answers are good! 
 

0,Z β  LaΓ  

z = −  
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