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2.3 – The Terminated,  
Lossless Transmission Line 

 
Reading Assignment: pp. 57-64 
 
We now know that a lossless transmission line is completely 
characterized by real constants 0Z  and β . 
 
Likewise, the 2 waves propagating on a transmission line are 
completely characterized by complex constants 0V +  and 0V − . 
 
Q:  0Z  and β  are determined from L, C, and ω .  How do we 
find  0V +  and 0V −  ? 
 
A:  Apply Boundary Conditions! 
 
Every transmission line has 2 “boundaries” 
 

1)     At one end of the transmission line. 
2)    At the other end of the trans line! 

 
Typically, there is a source at one end of the line, and a load 
at the other. 
 

 The purpose of the transmission line is to get power from 
the source, to the load! 
 
Let’s apply the load boundary condition! 
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HO:  THE TERMINATED, LOSSLESS TRANSMISSION LINE 
 
Q:  So, the purpose of the transmission line is to transfer 
E.M. energy from the source to the load.  Exactly how much 
power is flowing in the transmission line, and how much is 
delivered to the load? 
 
A:  HO: INCIDENT, REFLECTED, AND ABSORBED POWER 
 
Let’s look at several “special” values of load impedance, as well 
as the interesting transmission line behavior they create. 
 
HO:  SPECIAL VALUES OF LOAD IMPEDANCE 
 
Q: So the line impedance at the end of a line must be load 
impedance ZL  (i.e., ( )L LZ z z Z= = );  what is the line 
impedance at the beginning of the line (i.e., 

( )LZ z z ?= − = )? 
 
A: The input impedance ! 
 
HO:  TRANSMISSION LINE INPUT IMPEDANCE 
 
EXAMPLE: INPUT IMPEDANCE 
 
Q:  For a given ZL we can determine an equivalent LΓ .  Is 
there an equivalent inΓ for each Zin ? 
 
A:  HO: THE REFLECTION COEFFICIENT TRANSFORMATION 
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Note that we can specify a load with its impedance ZL  or 
equivalently, its reflection coefficient LΓ . 
 
Q:  But these are both complex values.  Isn’t there a way of 
specifying a load with a real value? 
 
A:  Yes (sort of)!  The two most common methods are Return 
Loss and VSWR. 
 
HO: RETURN LOSS AND VSWR 
 
Q: What happens if our transmission line is terminated by 
something other than a load?  Is our transmission line theory 
still valid? 
 
A:  As long as a transmission line is connected to linear 
devices our theory is valid.  However, we must be careful to 
properly apply the boundary conditions associated with each 
linear device! 
 
EXAMPLE:  THE TRANSMISSION COEFFICIENT 
 
EXAMPLE:  APPLYING BOUNDARY CONDITIONS 
 
EXAMPLE:  ANOTHER BOUNDARY CONDITION PROBLEM 
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The Terminated, Lossless 
Transmission Line 

 
Now let’s attach something to our transmission line. Consider a lossless line, length , 
terminated with a load ZL. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Q:  What is the current and voltage at each and every point on the transmission line (i.e., 
what is ( )I z  and ( )V z  for all points z where L Lz zz− ≤ ≤  ?)? 
 
A:  To find out, we must apply boundary conditions! 
 
In other words, at the end of the transmission line ( Lzz = )—where the load is attached—
we have many requirements that all must be satisfied!  

I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

Lzz = −  Lzz =  
z 
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The First Two Requirements 
 

Requirement 1. To begin with, the voltage and current ( ( )LzI z =  
and ( )LzV z = ) must be consistent with a valid transmission line 
solution (i.e., satisfy the telegraphers equations): 

 

         

( ) ( ) ( )

( ) ( ) ( )

L L

L L

L L L
z z

0 0

L L
L

0 0

z z0 0

0 0

z z z

z z
z

j j

j j

V z V z V z
V e V e

V z V z
I z

Z Z
V Ve e
Z Z

β β

β β

+ −

− ++ −

+ −

+ −
− +

= = = + =

= +

= =
= = −

= −

 

 
Requirement 2.  Likewise, the load voltage and current must 
be related by Ohm’s law: 
 

L L LV Z I=  
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Boundary Conditions !!!!!! 
 
Requirement 3.  Most importantly, we recognize that the values ( )LzI z = , ( )LV z z=  and 
IL, VL are not independent, but in fact are strictly related by Kirchoff’s Laws! 
 
 
 
 
   
 
 
 
 
 

From KVL and KCL we find these requirements: 
 

 

                   
( )

( )

L

L

z

z

L

L

V z V

I z I

= =

= =

 

 
These are our boundary conditions! 

I(z=zL) 

0,Z β  

        + 
 
V (z=zL) 
 
        - 

+ 
 
VL 
 
- 

 
ZL 
 

IL 

Lzz = −  Lzz =  



 
  

 

1/21/2010 The Terminated Lossless Line present.doc 4/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A Solution for all Requirements 
 
Combining the mathematical results of these three requirements, we find that: 
 

( )Lz LZ z Z= =  
 

In other words, the line impedance at the end of the transmission line (i.e., at z = zL) must 
be equal to the load impedance attached to that end! 
 
Q: But the result above is useful for the “old” ( ) ( ) ( )V z ,I z ,Z z  description of 
transmission line activity.  What does the boundary condition enforce with respect to our 
“new” wave viewpoint (i.e., ( ) ( ) ( )V z ,V z , z+ − Γ ?? 
 
A: The three requirements lead us to these relationships: 
 

( ) ( )

( ) ( ) ( ) ( )( )

L L

L L L L
0

z z

z z z z

L L L

L

L

V Z I

V z Z I z

ZV z V z V z V z
Z

+ − + −

=

= = =

= + = = = − =
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Rearranging, we can conclude: 
 

( )
( )

0

0

L L

L L

V z z Z Z
V z z Z Z

−

+

= −
=

= +
 

 
Q:  Hey wait as second! We earlier defined ( ) ( )V z V z− +  as reflection coefficient ( )zΓ .  
How does this relate to the expression above? 
 
A: Recall that ( )zΓ  is a function of transmission line position z.  The value 

( ) ( )L Lz zV z V z− += =  is simply the value of function ( )zΓ  evaluated at Lzz =  (i.e., 
evaluated at the end of the line): 
 

( )
( ) ( )L 0

L
0L

z
z

z
L

L

V z Z Zz
Z ZV z

−

+

= −
= Γ = =

+=
 

 
This value is of fundamental importance for the terminated transmission line problem, so 
we provide it with its own special symbol ( LΓ ) ! 
 
 

( ) 0
L

0

z L
L

L

Z Zz
Z Z

−
Γ Γ = =

+
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A: We are trying to find ( )V z and ( )I z  when a lossless transmission line 
is terminated by a load ZL! 
 
We can now determine the value of 0V −  in terms of 0V + . Since: 
 

( )
( )

L
L

L

z
2 zL 0 0

z
0L 0

z
z

j
j

L j

V z V e V e
VV z V e

β
β

β

− +− −
+

− ++ +

=
Γ = = =

=
 

 
We rearrange and find: 

L2 z
0 0

j
LV e Vβ−− += Γ  

  
And thus the “minus” propagating wave is: 
 

( ) ( )L2 z
0 0

jj z j z
LV z V e e V eββ β−+ +− − += = Γ  

 
 
 

Q:  I’m confused! Just what are were we trying to accomplish ? 

 



 
  

 

1/21/2010 The Terminated Lossless Line present.doc 7/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Bottom Line 
 
And so finally, the voltage and current along the terminated transmission line can be 
expressed in terms of load reflection coefficient LΓ : 
 

 
( ) ( )

( ) ( )

L

L

2 z
0

2 z0

0

jj z j z
L

jj z j z
L

V z V e e e

VI z e e e
Z

ββ β

ββ β

−− ++

+
−− +

⎡ ⎤= + Γ
⎣ ⎦

⎡ ⎤= − Γ
⎣ ⎦

 

 
 
where: 

0

0

L
L

L

Z Z
Z Z

−
Γ =

+
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A Very Useful Simplification 
 
Now, we can further simplify our analysis by arbitrarily assigning the end point zL a zero 
value (i.e., Lz 0= ): 
 
 
 
 
 
 
 
 
If the load is located at z =0 (i.e., if Lz 0= ), we find that: 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

0 0

0 0

0 0 0 00 0

0 0
0 0

0
0 0

0

0

0 0
0

0 0 0
j j j j

V z V z
I z

Z ZV z V z V z
V VV e V e e e

V
Z

V
Z

V
V

Z

β β β β

+ −

+ −

+ −
− + − ++ −

+ −
+ −

= =
= = −

= = = + =

= =

−

+ −

=
=

+

 

( ) 0 0
0

0 0

0
V VZ
V

Z z
V

+ −

+ −

⎛ ⎞+
⎜= ⎜ −⎝

= ⎟⎟
⎠
 

I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  

z 
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Likewise, it is apparent that if Lz 0= , LΓ  and 0Γ  are the same: 
 

( ) ( )
( )

0
0

0

0
0L L

V z Vz z
VV z

− −

++

=
Γ = Γ = = = = Γ

=
 

Therefore: 
0

0
0

L
L

L

Z Z
Z Z

−
Γ = = Γ

+
 

 
Thus, we can write the line current and voltage simply as: 
 
 
 

( )

( )

( )

0

L

0

0

0

                                                          for z 0

j z j z
L

j z j z
L

j z j z
L

j z j z
L

V z V e e

VI z e e
Z

e eZ z Z
e e

β β

β β

β β

β β

− ++

+
− +

− +

− +

⎡ ⎤= + Γ⎣ ⎦
⎡ ⎤=⎣ ⎦

⎡ ⎤= − Γ⎣ ⎦

⎛ ⎞+ Γ
= ⎜ ⎟⎜ ⎟− Γ⎝ ⎠
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What About V0
+ ?? 

 
Q:  But, how do we determine 0V +  ?? 
 
 

 
 
 
 
 
 
 
 

 
 
 

A: We require a second boundary 
condition to determine 0V + .  The only 
boundary left is at the other end of the 
transmission line.  Typically, a source of 
some sort is located there.  This makes 
physical sense, as something must 
generate the incident wave ! 
 

 
I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  

z 
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Incident, Reflected, 
and Absorbed Power 

 
We have discovered that two waves propagate along a transmission line, one in each 
direction ( ( ) ( ) and  V z V z+ − ).   
 
 
 
 
 
 
 
 
 
The result is that electromagnetic energy flows along the transmission line at a given rate 
(i.e., power).  
 

Q: At what rate does energy flow along a transmission line, and where does that 
power go? 

 
A: We can answer that question by determining the power absorbed by the load! 

( ) ( ) ( )I z I z I z+ −= +  

   

( ) ( )( )V z V z V z+ −

+

= +

−

 

     

LV
+

−
 

 

 
ZL 
 

IL 

z = −  0z =  
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The Load Absorbs Power 
 
You of course recall that the time-averaged power (a real value!) absorbed by a complex 
impedance ZL is: 

{ } { }Re Re Re
2 2

1 1
2 2 2

L L
abs L L L

L

V IP V I Z
Z

∗
∗

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
 

 
Of course, the load voltage and current is simply the voltage an current at the end of the 
transmission line (at 0z = ).  A happy result is that we can then use our transmission line 
theory to determine this absorbed power: 
 

{ }

{ }

( ) ( ){ }
( ){ }

( )

Re

Re

Re

Re

0 0 0 0
0 0 0 0

0
2

20
0 0 0

0
2

20
0

0

1
2
1 ( 0) ( 0)
2

1

2

1
2

2

1

abs L L

j j j j

P V I

V z I z

V e e V e e
Z

V
Z

V
Z

∗

∗

∗
− + − ++ +

+

+
∗

=

= = =

⎡ ⎤

=

⎡ ⎤= + Γ − Γ⎣ ⎦ ⎣ ⎦

= − Γ −Γ − Γ

− Γ

β β β β
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Incident Power 
 
The significance of this result can be seen by rewriting the expression as: 
 

( )
2 2 2

20 0 0 0
0

0 0

2 2
0 0

0 00 2
1

2 22 2abs

V V V
P

Z Z Z
V V

Z Z

+ + ++ −Γ
= − Γ = − −=  

 
The two terms in above expression have a very definite physical meaning.  The first term 
is the time-averaged power of the wave propagating along the transmission line toward 
the load. 
 
We say that this wave is incident on the load: 
 
 

2
0

02inc

V
P P

Z

+
+= =  
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Reflected Power 
 
Likewise, the second term of the Pabs equation describes the power of the wave moving in 
the other direction (away from the load).  We refer to this as the wave reflected from 
the load: 
 

2 2 2
20 0 0

0 0

2

02 2 2
L

Lr L ce nf i

V V V
P P

Z Z Z
P

− + +
−

Γ
= = = = Γ = Γ  

 
 
Thus, the power absorbed by the load (i.e., the power delivered to the load) is simply: 
 

2 2
0 0

0 02 2abs inc ref

V V
P P P

Z Z

+ −

= − = −  

 
or, rearranging, we find: 
 

inc abs refP P P= +  
 

 
This equation is simply an expression of the conservation of energy !   
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Energy is Conserved 
 
Power flowing toward the load (Pinc) is either absorbed by the load (Pabs) or reflected back 
from the load (Pref). 
 
 
 
 
 
 
 
 
Now let’s consider some special cases, and the power that results. 
 
 
 
 
 
 
 
 
 
 

 
ZL 
 

Pabs 

Pinc Pref 
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1.  2 1LΓ =  
 
For this case, we find that the load absorbs no power! 
 

( ) ( )2
01 1 1 0abs inc incP P P= − Γ = − =  

 
Likewise, we find that the reflected power is equal to the incident: 
 

( )2 1L inc inc increfP P P P= Γ = =  
 
Note these two results are completely consistent—by conservation of energy, if one is 
true the other must also be: 
 

0inc abs ref ref refP P P P P= + = + =  
 
In this case, no power is absorbed by the load.  All of the incident power is reflected, so 
that the reflected power is equal to that of the incident. 
 
 
 
 
 
 

 
1LΓ =  

0absP =  

Pinc increfP P=  
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2.  0LΓ =  
 
For this case, we find that there is no reflected power!  
 

( )2 0 0L inc increfP P P= Γ = =  
 
Likewise, we find that the absorbed power is equal to the incident: 
 

( ) ( )2
01 1 0abs inc inc incP P P P= − Γ = − =  

 
Note these two results are completely consistent—by conservation of energy, if one is 
true the other must also be: 

0inc abs abs absrefP P P P P= + = + =  
 
In this case, all the incident power is absorbed by the load.  None of the incident power is 
reflected, so that the absorbed power is equal to that of the incident. 
 
 
 
 
 
 
 

 
0LΓ =  

incabsP P=  

Pinc 0refP =
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3.  0 1L< Γ <  
 
For this case, we find that the reflected power is greater than zero, but less than the 
incident power.  

20 L inc increfP P P< = Γ <  
 
Likewise, we find that the absorbed power is also greater than zero, but less than the 
incident power. 

( )2
00 1abs inc incP P P< = − Γ <  

 
Note these two results are completely consistent—by conservation of energy, if one is 
true the other must also be: 
 

0 inc abs increfP P P P< = − <       and      0 abs inc increfP P P P< = − <  
 
In this case, the incident power is divided.  Some of the incident power is absorbed by 
the load, while the remainder is reflected from the load.   
 
 
 
 
 
 

 
0 1L< Γ <  

incabsP P<  

incP  increfP P<  
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4.  1LΓ >  
 
For this case, we find that the reflected power is greater than the incident power.  
 

20 L inc increfP P P< = Γ <  
 
Q:  Yikes! What’s up with that? This result does not seem at all consistent with your 
conservation of energy argument. How can the reflected power be larger than the 
incident? 
 
A: Quite insightful!  It is indeed a result quite askew with our conservation of energy 
analysis.  To see why, let’s determine the absorbed power for this case. 
 

( )21 0abs inc LP P= − Γ <  

 
The power absorbed by the load is negative! 
 
This result actually has a physical interpretation. A negative absorbed power indicates 
that the load is not absorbing power at all—it is instead producing power!   
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This makes sense if you think about it.  The power flowing away from the load (the 
reflected power) can be larger than the power flowing toward the load (the incident 
power) only if the load itself is creating this extra power.  The load is not a power sink, it 
is a power source. 
 
Q: But how could a passive load be a power source?   
 
A:  It can’t.  A passive device cannot produce power.  Thus, we have come to an important 
conclusion.  The reflection coefficient of any and all passive loads must have a magnitude 
that is less than one. 
 

1LΓ ≤    for all passive loads 
 
 
Q: Can LΓ  every be greater than one? 
 
A:  Sure, if the “load” is an active device.  In other words, the load must have some 
external power source connected to it. 

 
Q:  What about the case where 0LΓ < , shouldn’t we examine that 
situation as well? 
 
A: That would be just plain silly; do you see why? 
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Special Values of Load Impedance 
 
It’s interesting to note that the load ZL enforces a boundary condition that explicitly 
determines neither ( )V z  nor ( )I z —but completely specifies line impedance ( )Z z ! 
 

( ) 0
0 0

0

cos sin
cos sin

j z j z
L L

j z j z
L L

e e Z z j Z zZ z Z Z
e e Z z j Z z

β β

β β

β β
β β

− +

− +

+ Γ −
= =

− Γ −
 

 
Likewise, the load boundary condition leaves ( )V z+  and ( )V z−  undetermined, but 
completely determines reflection coefficient function ( )zΓ ! 
 

( ) 2 20

0

j z j zL
L

L

Z Zz e e
Z Z

β β+ +−
Γ = Γ =

+
 

 
Let’s look at some specific values of load impedance L L LZ R j X= +  and see what functions 
( )Z z  and ( )zΓ  result!  We assume that the load is located at 0z =  ( 0L∴ Γ = Γ ). 

 
 
 
 
 
 

0,Z β  

 

 
L L LZ R j X= +  

 

z = −  0z =  

z 
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  The Matched Case 
 
In this case 0LZ Z= —the load impedance is numerically equal to the characteristic 
impedance of the transmission line.   Assuming the line is lossless, then Z0 is real, and 
thus: 

0LR Z=       and       0LX =  
 
It is evident that the resulting load reflection coefficient is zero: 
 

0 0 0

0 0 0

0L
L

L

Z Z Z Z
Z Z Z Z

− −
Γ = = =

+ +
 

 
As  a result, we find that the reflected wave is zero, as is the reflection coefficient 
function: 

( ) 0
j zV z V e β−+ +=           ( ) 0V z− =              ( ) 0zΓ =  

 
Thus, the total voltage and current along the transmission line is simply voltage and 
current of the incident wave, and the line impedance is simply 0Z  at all z : 
 

( ) ( ) 0
j zV z V z V e β−+ += =            ( ) ( ) 0

0

j zVI z I z e
Z

β
+

−+= =           ( ) ( )
( ) 0

V zZ z Z
I z

= =  
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Power Flow in the Matched Condition 
 
Note from these results we can conclude that out boundary conditions are satisfied: 
 

( ) ( )0 00 and 0 0LZ z Z Z z= = = Γ = = Γ =   !!! 
 

Note that since 0LΓ = , this is a case where the reflected power is zero, and all the 
incident power is absorbed by the load: 

 
 

 
 
 
 
 
Q: Is there any other load for which this is true? 
 
A:  Nope, 0LZ Z=  is the only one! 
 

 
We call this condition (when 0LZ Z= ) the matched condition, and the load 

0LZ Z=  a matched load. 
 

 
0LΓ =  

incabsP P=  

Pinc 0refP =  
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A Short-Circuit Load 
 
A device with no impedance ( 0LZ = ) is called a short circuit!  I.E.: 
 

0LR =     and     0LX =  
 
In this case, the voltage across the load—and thus the voltage at the end of the 
transmission line—is zero: 
 

0L L LV Z I= =         and       ( )0 0V z = =  
 

Note that this does not mean that the current is zero! 
 

( )0 0LI I z= = ≠  
 

For a short, the resulting load reflection coefficient is therefore: 
 

0 0

0 0

0 1
0

jL
L

L

Z Z Z e
Z Z Z

− −
Γ = = = − =

+ +
π  
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A Reactive Result! 
  
As a result, the reflected wave is equal in magnitude to the incident wave.  The reflection 
coefficient function thus has a magnitude of 1! 

 

( ) 0
j zV z V e β−+ +=                 ( ) 0

j zV z V e β+− += −             ( ) ( )
( )

( )22 j zj zV zz e e
V z

β πβ
−

+
+Γ = = − =  

 
The reflected wave is just as big as the incident wave! 
 
The total voltage and current along a shorted transmission line take an interesting form: 
 

( ) ( ) ( ) ( )0
0

0

22 sin cosVV z j V z I z z
Z

β β
+

+= − =  

 
Meaning that the line impedance can likewise be written in terms of a trigonometric 
function: 

( ) ( )
( )

( )0
V zZ z jZ tan z
I z

β= = −  

 
Note that this impedance is purely reactive! 
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Boundary Conditions are Confirmed 
 
Note from these results we can conclude that out boundary conditions are satisfied: 

 
 ( ) ( )00 0 0Z z jZ tan= = − =  

 
Just as we expected—a short circuit! 
 
This is likewise confirmed by evaluating the voltage and current at the end of the line 
(i.e., Lz 0z = = ): 
 

( ) ( ) ( ) ( )0 0
0

0 0

2 20 2 sin 0 0 0 cos 0V VV z j V I z
Z Z

+ +
+= = − = = = =  

 
As expected, the voltage is zero at the end of the transmission line (i.e. the voltage 
across the short).  Also, the current at the end of the line (i.e., the current through the 
short) is at a maximum! 
 
Additionally, the reflection coefficient at the load is: 
 

( ) ( )2 00 1j j
Lz e eβ πΓ = = − = − = = Γ  

 
Again confirming that the boundary conditions are satisfied! 
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A Short Cannot Absorb Energy 
 
Finally, let’s determine the power flow associated with this short circuit load.  Since 

1LΓ = , this is a case where the absorbed power is zero, and all the incident power is  
reflected by the load: 
 

0 and incabs refP P P= =  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1LΓ =
 

0absP =  

Pinc increfP P=  
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An Open-Circuit Load 
 
A device with infinite impedance ( LZ = ∞)  is called an open circuit!  I.E.: 
 

LR = ∞     and/or     LX = ±∞  
 
In this case, the current through the load—and thus the current at the end of the 
transmission line—is zero: 
 

0L
L

L

VI
Z

= =         and       ( ) 0LI z z= =  

 
Note that this does not mean that the voltage is zero! 
 

( ) 0L LV V z z= = ≠  
 
For an open, the resulting load reflection coefficient is: 
 

00

0

1
L L

jL L
L Z ZL L

Z Z Zlim lim e
Z Z Z→∞ →∞

−
Γ = = = =

+
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A Reactive Result! 
  
As a result, the reflected wave is equal in magnitude to the incident wave.  The reflection 
coefficient function thus has a magnitude of 1! 

 

( ) 0
j zV z V e β−+ +=                 ( ) 0

j zV z V e β+− +=             ( ) ( )
( )

2j zV zz e
V z

β
−

+
+Γ = =  

 
The reflected wave is just as big as the incident wave! 

 
The total voltage and current along the transmission line is simply (assuming Lz 0= ): 
 

( ) ( ) ( ) ( )0
0

0

22 cos sinVV z V z I z j z
Z

β β
+

+= = −  

 
Meaning that the line impedance can likewise be written in terms of trigonometric 
function: 

( ) ( )
( )

( )0 cotV zZ z j Z z
I z

β= =  

 
Again note that this impedance is purely reactive—V(z) and I(z) are again 90  out of 
phase! 
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Boundary Conditions are Confirmed 
 

Note from these results we can conclude that out boundary conditions are satisfied: 
 

 ( ) ( )00 0Z z j Z cot= = = ∞  
 
Just as we expected—an open circuit! 
 
This is likewise confiremed by evaluating the voltage and current at the end of the line 
(i.e., 0Lz z= = ): 

( ) ( ) ( ) ( )0 0
0

0 0

2 20 2 cos 0 0 sin 0 0V VV z V I z j
Z Z

+ +
+= = = = = − =  

 
As expected, the current is zero at the end of the transmission line (i.e. the current 
through the open).  Likewise, the voltage at the end of the line (i.e., the voltage across 
the open) is at a maximum! 
 
Additionally, the reflection coefficient at the load is: 
 

( ) ( )2 0 00 1j j
Lz e eβΓ = = = = = Γ  

 
Again confirming that the boundary conditions are satisfied! 
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An Open Cannot Absorb Energy 
 
Finally, let’s determine the power flow associated with this open circuit load.  Since 

1LΓ = , this is again a case where the absorbed power is zero, and all the incident power 
is  reflected by the load: 
 

0 and incabs refP P P= =  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1LΓ =
 

0absP =  

Pinc increfP P=  



 
  

 

1/21/2010 Special Values of Load Impedance present.doc 12/22 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A Purely Reactive Load 
 
 
For this case, the load impedance is purely reactive L LZ j X=  (e.g. a capacitor of 
inductor), and thus the resistive portion is zero: 
 

0LR =  
 
Thus, both the current through the load, and voltage across the load, are non-zero:  
 

( )Lz 0LI I z= = ≠                   ( )Lz 0LV V z= = ≠  
 

The resulting load reflection coefficient is: 
 

00

0 0

LL
L

L L

jX ZZ Z
Z Z jX Z

−−
Γ = =

+ +
 

 
Given that Z0 is real (i.e., the line is lossless), we find that this load reflection coefficient 
is a complex number.   
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V+, V- and Γ 
 

However, we find that the magnitude of this load reflection coefficient is: 
 

2 2 2
2 0 0

2 2 2
00

1L L
L

LL

jX Z X Z
X ZjX Z

− +
Γ = = =

++
 

 
Its magnitude is one! Thus, we find that for reactive loads, the reflection coefficient can 
be simply expressed as: 
 

j
L e θΓΓ =            where    1 0

2 2
0

2 L

L

Z Xtan
X Z

θ −
Γ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

 
 We can therefore conclude that 0 0

jV e VθΓ− += , and so for a reactive load, : 
 

( ) 0
j zV z V e β−+ +=                 ( ) 0

j j zV z e V eθ βΓ +− +=             ( ) ( )
( )

2j zV zz e
V z

β
−

+
+Γ = =  

 
The reflected wave is again just as big as the incident wave! 
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I, V, and Z 
 
The total voltage and current along the transmission line are complex (assuming 0Lz = ): 
 

( ) ( )2
02 cos 2jV z V e zθ β θΓ++

Γ= +             ( ) ( )20

0

2 sin 2Lj
L

VI z j e z
Z

θ β θ
+

+= − +  

 
Meaning that the line impedance can again be written in terms of trigonometric function: 
 

( ) ( )
( )

( )0 cot 2V zZ z jZ z
I z

β θΓ= = +  

 
Again note that this impedance is purely reactive—V(z) and I(z) are once again 90  out of 
phase! 
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Boundary Conditions! 
 
Note at the end of the line (i.e., Lz 0z = = ), we find that 
 

( ) ( ) ( ) ( )0
0

0

20 2 cos 2 0 sin 2VV z V I z j
Z

θ θ
+

+
Γ Γ= = = = −  

 
As expected, neither the current nor voltage at the end of the line are zero.  
 
We also note that the line impedance at the end of the transmission line is: 
 

( ) ( )00 2Z z jZ cot θΓ= =  
 

With a little trigonometry, we can show (trust me!) that: 
 

( )
0

2 LXcot
Z

θΓ =  

and therefore: 
 

( ) ( )00 2 L LZ z jZ cot j X ZθΓ= = = =  
 
Just as we expected! 
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Déjà vu All Over Again  
 
Q:  Gee, a reactive load leads to results very similar to that of an open or short circuit.  
Is this just coincidence? 
 
A:  Hardly!  An open and short are in fact reactive loads—they cannot absorb power 
(think about this!). 
 

Specifically, for an open, we find 0θΓ = , so that:            1j
L e θΓΓ = =  

 
 

Likewise, for a short, we find that θ πΓ = , so that:          1j
L e θΓΓ = = −  

 
The power flow associated with a reactive load is the same as for an open or 
short.  Since 1LΓ = , it is again a case where the absorbed power is zero, 
and all the incident power is  reflected by the load: 
 

 
 

 
 

 

 
1LΓ =  

0absP =  

Pinc increfP P=  
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Resistive Load 
 
For this case L LZ R= , so the load impedance is purely real (e.g. a resistor), meaning its 
reactive portion is zero: 

0LX =  
 
The resulting load reflection coefficient is: 
 

0 0

0 0

L
L

L

Z Z R Z
Z Z R Z

− −
Γ = =

+ +
 

 
Given that Z0 is real (i.e., the line is lossless), we find that this load reflection coefficient 
must be a purely real value!  In other words: 
 

{ } 0

0
L

R ZRe
R Z
−

Γ =
+

            { }Im 0LΓ =  

 
The magnitude is thus: 

0

0
L

R Z
R Z
−

Γ =
+

      

 
whereas the phase θΓ  can take on one of two values: 
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{ }

{ }

L 0

L 0

0 Re 0   (i.e., if R )
  

Re 0   (i.e., if R )

L

L

if Z

if Z
θ

π
Γ

⎧ Γ > >
⎪= ⎨
⎪ Γ < <⎩

 

 
For this case, the impedance at the end of the line must be real ( ( )L LZ z z R= = ).  Thus, 
the current and the voltage at this point are precisely in phase. 
 
However, even though the load impedance is real, the line impedance at all other points on 
the line is generally complex! 
 
Moreover, the general current and voltage expressions, as well as reflection coefficient 
function, cannot be further simplified for the case where L LZ R= . 
 
Q:  Why is that?  When the load was purely imaginary (reactive), we where able to simply 
our general expressions, and likewise deduce all sorts of interesting results! 
 
A:  True! And here’s why.  Remember, a lossless transmission line has series inductance 
and shunt capacitance only.  In other words, a length of lossless transmission line is a 
purely reactive device (it absorbs no energy!). 
 
 
 
 



 
  

 

1/21/2010 Special Values of Load Impedance present.doc 19/22 

Jim Stiles The Univ. of Kansas Dept. of EECS 

*  If we attach a purely reactive load at the end of the transmission line, we still have a 
completely reactive system (load and transmission line).  Because this system has no 
resistive (i.e., real) component, the general expressions for line impedance, line voltage, 
etc. can be significantly simplified. 
 
*  However, if we attach a purely real load to our reactive transmission line, we now have 
a complex system, with both real and imaginary (i.e., resistive and reactive) components.  
This complex case is exactly what our general expressions already describes—no further 
simplification is possible! 
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The “General” Load 
 

Now, let’s look at the general case L L LZ R jX= + , where the load has both a real 
(resistive) and imaginary (reactive) component. 
 
Q:  Haven’t we already determined all the general expressions (e.g., 

( ) ( ) ( ) ( )L ,V z ,I z ,Z z , zΓ Γ ) for this general case?  Is there anything else left to be 
determined? 
 
A: There is one last thing we need to discuss.  It seems trivial, but its ramifications are 
very important! 
 
For you see, the “general” case is not, in reality, quite so general.   
 
Although the reactive component of the load can be either positive or negative 
( LX−∞ < < ∞ ), the resistive component of a passive load must be positive ( 0LR > )—there’s 
no such thing as a (passive) negative resistor! 
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This leads to one very important and useful result.  Consider the load reflection 
coefficient: 

( )
( )
( )
( )

0

0

0

0

0

0

L
L

L

L L

L L

L L

L L

Z Z
Z Z
R jX Z
R jX Z
R Z jX
R Z jX

−
Γ =

+

+ −
=

+ +

− +
=

+ +

 

 
Now let’s look at the magnitude of this value: 
 

( )
( )
( )
( )
( )
( )
( )
( )

2
2 0

0

2 2
0

2 2
0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2
2

2
2

L L
L

L L

L L

L L

L L L

L L L

L L L

L L L

R Z jX
R Z jX

R Z X
R Z X
R R Z Z X
R R Z Z X

R Z X R Z
R Z X R Z

− +
Γ =

+ +

− +
=

+ +

− + +
=

+ + +

+ + −
=

+ + +
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It is apparent that since both LR  and 0Z  are positive, the numerator of the above 
expression must be less than (or equal to) the denominator of the above expression. 
 

 In other words, the magnitude of the load reflection coefficient is always less 
than or equal to one! 

 
1LΓ ≤     (for 0LR ≥ ) 

 
 
Moreover, we find that this means the reflection coefficient function likewise always has 
a magnitude less than or equal to one, for all values of position z. 
 

( ) 1zΓ ≤     (for all  z) 
 
Which means, of course, that the reflected wave will always have a magnitude less than 
that of the incident wave magnitude: 
 
 

( ) ( )V z V z− +≤          (for all  z) 
 
 

Recall this result is consistent with conservation of energy—the reflected wave from a 
passive load cannot be larger than the wave incident on it. 
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Transmission Line 
Input Impedance 

 
Consider a lossless line, length , terminated with a load ZL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let’s determine the input impedance of this line! 
 
Q:  Just what do you mean by input impedance? 
 
A:  The input impedance is simply the line impedance seen at the beginning (z = − ) of 
the transmission line, i.e.: 

( ) ( )
( )in

V zZ Z z
I z

= −
= = − =

= −
 

( ) ( ) ( )I z I z I z+ −= +  

   

( ) ( )( )V z V z V z+ −

+

= +

−

 

     

LV
+

−
 

 

 
ZL 
 

IL 

z = −  0z =  
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Note Zin equal to neither the load impedance ZL nor the  characteristic impedance Z0 !  
 

0     and      in inLZ Z Z Z≠ ≠  
 
To determine exactly what Zin is, we first must determine the voltage and current at the 
beginning of the transmission line (z = − ). 
 

( )

( )

0 0

0
0

0

j j

j j

V z V e e

VI z e e
Z

β β

β β

+ −+

+
+ −

⎡ ⎤= − = + Γ⎣ ⎦

⎡ ⎤= − = − Γ⎣ ⎦

 

Therefore: 
 

( )
( )

0
0

0

j j

in j j
V z e eZ Z
I z e e

β β

β β

+ −

+ −

⎛ ⎞= − + Γ
= = ⎜ ⎟= − − Γ⎝ ⎠

 

 
We can explicitly write inZ  in terms of load ZL using the previously determined 
relationship: 

0
0

0

L
L

L

Z Z
Z Z

−
Γ = = Γ

+
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Combining these two expressions, we get: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0
0

0 0

0
0

0

j j
L L

in j j
L L

j j j j
L

j j j j
L

Z Z e Z Z e
Z Z

Z Z e Z Z e

Z e e Z e e
Z

Z e e Z e e

β β

β β

β β β β

β β β β

+ −

+ −

+ − + −

+ − + −

+ + −
=

+ − −

⎛ ⎞+ + −
= ⎜ ⎟⎜ ⎟+ − −⎝ ⎠

 

 
Now, recall Euler’s equations: 

cos sin
cos sin

j

j

e j
e j

β

β

β β

β β

+

−

= +

= −
 

 
Using Euler’s relationships, we can likewise write the input impedance without the complex 
exponentials: 

 
0

0
0

0
0

0

cos sin
cos sin

tan
tan

L
in

L

L

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

β β
β β

β
β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

 

 
Note that depending on the values of 0,  and Zβ , the input impedance can be radically 
different from the load impedance ZL ! 
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Some Special Cases of Input Impedance 
 
Now let’s look at the Zin for some important load impedances and line lengths. 
 

 You should commit these results to memory! 
 
 
 
1.  2

λ=  
 
If the length of the transmission line is exactly one-half wavelength ( 2λ= ), we find 
that: 

2
2

π λβ π
λ

= =  

meaning that: 
 

cos cos 1      and      sin sin 0β π β π= = − = =  
 

and therefore: 
 

0
0 0

0 0

cos sin ( 1) (0)
cos sin ( 1) (0)

L L L
in

L L
L

Z j Z Z j ZZ Z Z
Z j Z Z j

Z
Z

β β
β β

⎛ ⎞ ⎛ ⎞+ − +
= = =⎜ ⎟ ⎜ ⎟+ − +⎝ ⎠ ⎝ ⎠
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In other words, if the transmission line is precisely one-half wavelength long, the input 
impedance is equal to the load impedance, regardless of Z0 or β. 
 
 
 
 
 
 
 
 
2.   4

λ=  

 
If the length of the transmission line is exactly one-quarter wavelength ( 4λ= ), we 
find that: 

2
4 2

π λ πβ
λ

= =  

meaning that: 
 

cos cos 2 0      and      sin sin 2 1β π β π= = = =  
and therefore: 
 

( )0 0
0

0
0

0 0

2
cos sin (0) (1)
cos sin (0) (1)

L L
in

L L L

Z j Z Z j ZZ Z Z
Z j

Z
ZZ Z j Z

β β
β β

⎛ ⎞ ⎛ ⎞+ +
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 

0,Z β  

2
λ=  

 
ZL 
 

 
in LZ Z=  
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In other words, if the transmission line is precisely one-quarter wavelength long, the 
input impedance is inversely proportional to the load impedance. 
 
Think about what this means! Say the load impedance is a short circuit, such that 0LZ = .  
The input impedance at  beginning of the 4λ  transmission line is therefore: 
 

( ) ( )2 2
0 0

0in
L

Z Z
Z

Z
= = = ∞  

 
inZ = ∞  !  This is an open circuit!  The quarter-wave transmission line transforms a short-

circuit into an open-circuit—and vice versa! 
 

0,Z β  

4
λ=  

 
ZL=0 
 

 
inZ = ∞  
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3.   0LZ Z=  
 
If the load is numerically equal to the characteristic impedance of the transmission line 
(a real value), we find that the input impedance becomes: 
 

0
0

0

0 0
0

0 0

0

cos sin
cos sin

cos sin
cos sin

L
in

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

Z

β β
β β

β β
β β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

=

 

 
In other words, if the load impedance is equal to the transmission line characteristic 
impedance, the input impedance will be likewise be equal to Z0  regardless of the 
transmission line length . 
 
 
 
 
 
 
 
 
 

0,Z β  

 

 
ZL=Z0 
 

 
0inZ Z=  
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4.  L LZ j X=  
 
If the load is purely reactive (i.e., the resistive component is zero), the input impedance 
is: 

0
0

0

0
0 2

0

0
0

0

cos sin
cos sin

cos sin
cos sin

cos sin
cos sin

L
in

L

L

L

L

L

Z j ZZ Z
Z j Z

j X j ZZ
Z j X

X Zj Z
Z X

β β
β β

β β
β β

β β
β β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

⎛ ⎞+
= ⎜ ⎟

−⎝ ⎠

 

 
In other words, if the load is purely reactive, then the input impedance will likewise be 
purely reactive, regardless of the line length . 
 
 
 
 
 
 
 
Note that the opposite is not true: even if the load is purely resistive (ZL = R), the input 
impedance will  be complex (both resistive and reactive components). 
 

0,Z β  

 

 
ZL=jXL 
 

in inZ j X=
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5.  λ  
 
If the transmission line is electrically small—its length  is small with respect to signal 
wavelength λ --we find that: 
 

2 2 0πβ π
λ λ

= = ≈  

and thus: 
 

cos cos 0 1      and      sin sin 0 0β β= = = =  
 
so that the input impedance is: 
 

0
0

0

0
0

cos sin
cos sin

(1) (0)
(1) (0)

L
in

L

L L

L

L

Z j ZZ Z
Z j Z
Z j ZZ
Z j Z

Z

β β
β β

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠
=

 

 
In other words, if the transmission line length is much smaller than a wavelength, the 
input impedance inZ  will always be equal to the load impedance LZ .   
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This is the assumption we used in all previous circuits courses (e.g., EECS 211, 212, 312, 
412)!  In those courses, we assumed that the signal frequency ω  is relatively low, such 
that the signal wavelength λ  is very large (λ ). 
 
Note also for this case ( the electrically short transmission line), the voltage and current 
at each end of the transmission line are approximately the same! 

 
( ) ( 0)    and    I( ) ( 0)   if  V z V z z I z λ= − ≈ = = − ≈ =  

 
If λ ,  our “wire” behaves exactly as it did in EECS 211 ! 
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Example: Input Impedance 
 
Consider the following circuit: 

 
 
 
 
 
 
If we ignored our new μ-wave knowledge, we might erroneously 
conclude that the input impedance of this circuit is: 
 
 
 
 
 
Therefore: 

( )
. .

3 2 1 2 6 9 2 7 2 1
3 2 1 2 3in

j j jZ j
j j j

− + + −
= = = −
− + + + −

 

 
Of course, this is not the correct answer! 
 
We must use our transmission line theory to determine an 
accurate value.  Define Z1  as the input impedance of the last 
section: 

0 1Z =  

2
λ=  

.0 1 5Z =  

4
λ=  

.0 2 0Z =  

8
λ=  

3j−  
2 

1 2
LZ

j
=

+
 inZ  

3j−  

2 

1 2
LZ

j
=

+
 inZ  

.0 2 0Z =  

8
λ=  

1 2
LZ

j
=

+
 1Z  
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we find that Z1 is : 
 

( ) ( )
( ) ( )

( )

( )

0
1 0

0

cos sin
cos sin

1 2 cos 2 sin4 42
2 cos 1 2 sin4 4
1 42

8 2

L

L

Z j ZZ Z
Z j Z

j j

j j

j
j

j

β β
β β

π π

π π

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

⎛ ⎞+ +
⎜ ⎟=
⎜ ⎟⎜ ⎟+ +⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
⎝ ⎠

= −

 

 
Therefore, our circuit now becomes: 
 
 
 
 
 
 
Note the resistor is in series with impedance Z1.  We can 
combine these two into one impedance defined as Z2: 
 

( )2 12 2 8 2 10 2Z Z j j= + = + − = −  
 
 
 
 
 
 

0 1Z =  

2
λ=  

.0 1 5Z =  

4
λ=  

3j−  
2 1 8 2Z j= −  

inZ  

0 1Z =  

2
λ=  

.0 1 5Z =  

4
λ=  

3j−  2 10 2Z j= −  
inZ  
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Now let’s define the input impedance of the middle transmission 
line section as Z3: 
 
 
 
 
 
Note that this transmission line is a quarter wavelength 
( 4

λ= ).  This is one of the special cases we considered earlier!  

The input impedance Z3 is: 
 

.

. .

2
0

3

2
0

2
21 5

10 2
0 21 0 043

L

ZZ
Z
Z
Z

j
j

=

=

=
−

= +

 

 
Thus, we can further simplify the original circuit as: 
 
 
 
 
 
 
Now we find that the impedance Z3 is parallel to the capacitor.  
We can combine the two impedances and define the result as 
impedance Z4: 

.0 1 5Z =  

4
λ=  

2 10 2Z j= −  
3Z  

0 1Z =  

2
λ=  

3j−  
. .3 0 21 0 043Z j= +  inZ  
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( . . )

( . . )
. .

. .

4 3 0 21 0 043
3 0 21 0 043
3 0 21 0 043

0 22 0 028

Z j j
j j
j j

j

= − +

− +
=
− + +

= +

 

 
Now we are left with this equivalent circuit: 
 
 
 
 
 
 
Note that the remaining transmission line section is a half 
wavelength!  This is one of the special situations we discussed in 
a previous handout.  Recall that the input impedance in this case 
is simply equal to the load impedance: 
 

. .4 0 22 0 028in LZ Z Z j= = = +  
 

Whew! We are finally done. The input impedance of the original 
circuit is: 
 
 
 

 

0 1Z =  

2
λ=  

. .4 0 22 0 028Z j= +  inZ  

. .0 22 0 028inZ j= +  
inZ  
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Note this means that this circuit: 
 
 
 
 
 
 
 
 
and this circuit: 
 
 
 
 
 
 
 
are precisely the same!  They have exactly the same impedance, 
and thus they “behave” precisely the same way in any circuit 
(but only at frequency 0ω !). 

0.22 

j 0.028 . .0 22 0 028
inZ

j
=

+
 

0 1Z =

 

2
λ=

 

.0 1 5Z =

 

4
λ=

 

.0 2 0Z =
 

8
λ=

 

3j−
 

2
 1 2

LZ
j
=

+

 
. .0 22 0 028
in

Z

j

=

+
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The Reflection Coefficient 
Transformation 

 
The load at the end of some length of a transmission line (with characteristic impedance 
Z0 ) can be specified in terms of its impedance ZL or its reflection coefficient ΓL . 
 
Note both values are complex, and either one completely specifies the load—if you know 
one, you know the other! 
 

0
0

0

1         and           
1

L L
L L

L L

Z Z Z Z
Z Z

⎛ ⎞− + Γ
Γ = = ⎜ ⎟+ − Γ⎝ ⎠
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Recall that we determined how a length of transmission line transformed the load 
impedance into an input impedance of a (generally) different value: 
 
 
 
 
 
 
 
where: 

0
0

0

0
0

0

cos sin
cos sin

tan
tan

L
in

L

L

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

β β
β β

β
β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

 

 
Q:  Say we know the load in terms of its reflection coefficient.  How can we express the 
input impedance in terms its reflection coefficient (call this inΓ )? 

 
 

 
 
 
 

 
ΓL 
 

0,Z β  

 

?inΓ =  
 

0,Z β  

0,Z β  

 

inZ  
 

0,Z β  LZ  
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A:  Well, we could execute these three steps: 

 
1.   Convert ΓL to ZL: 

0
1
1

L
L

L
Z Z ⎛ ⎞+ Γ

= ⎜ ⎟− Γ⎝ ⎠
 

 
 
 
2.  Transform ZL  down the line to Zin : 

 
0

0
0

cos sin
cos sin

L
in

L

Z j ZZ Z
Z j Z

β β
β β

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

 
3.  Convert Zin  to Γin : 

 
0

0

in
in

in

Z Z
Z Z

−
Γ =

+
 

 
Q:  Yikes! This is a ton of complex arithmetic—isn’t there an easier way? 

 
A:  Actually, there is! 
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Recall in an earlier handout that the input impedance of a transmission line length , 
terminated with a load LΓ , is: 
 

( )
( ) 0

j j
L

in j j
L

V z e eZ Z
I z e e

β β

β β

+ −

+ −

⎛ ⎞= − + Γ
= = ⎜ ⎟= − − Γ⎝ ⎠

 

 
Note this directly relates LΓ  to Zin  (steps 1 and 2 combined!).  If we directly insert this 
equation into: 

0

0

in
in

in

Z Z
Z Z

−
Γ =

+
 

 
we get  an equation directly relating LΓ  to inΓ  : 
 

( ) ( )
( ) ( )

0

0

2

2
2

j j j j
L L

in j j j j
L L

j
L

j

j j
L

j
L

e e e eZ
Z e e e e

e
e
e e
e

β β β β

β β β β

β

β

β β

β

+ − + −

+ − + −

−

+

− −

−

+ Γ − − Γ
Γ =

+ Γ + − Γ

Γ
=

= Γ

= Γ

 

 
Q:  Hey! This result looks familiar. Haven’t we seen something like this before? 
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A:  Absolutely!  Recall that we found that the reflection coefficient function ( )zΓ  can be 
expressed as: 

( ) 2
0

j zz e βΓ = Γ  
 

Evaluating this function at the beginning of the line (i.e., at Lzz = − ): 
 

( ) ( )2
L 0

2 2
0

z L

L

j z

j z j

z e
e e

β

β β

−

−

Γ = − = Γ

= Γ
 

But, we recognize that: 
 

( )L2 z
0 Lzj

Le zβΓ = Γ = = Γ  
 
And so: 

( ) L2 z 2
L 0

2

z j j

j
L

z e e
e

β β

β

−

−

Γ = − = Γ

= Γ
 

 
Thus, we find that inΓ  is simply the value of function ( )zΓ  evaluated at the line input of 

Lzz = −  ! 
 

( ) 2
Lz j

in Lz e β−Γ = Γ = − = Γ  
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Makes sense! After all, the input impedance is likewise simply the line impedance 
evaluated at the line input of Lzz = − : 
 

( )LzinZ Z z= = −  
 
It is apparent that from the above expression that the reflection coefficient at the input 
is simply related to LΓ  by a phase shift of 2β . 
 
In other words, the magnitude of inΓ  is the same as the magnitude of LΓ ! 
 

( )2

(1)

j
in L

L

L

e θ βΓ −Γ = Γ

= Γ

= Γ

 

 
If we think about this, it makes perfect sense!   
 
Recall that the power absorbed by the load Γin

  would be: 
 

( )
2

20

0

1
2

in
abs in

V
P

Z

+

= − Γ  

 
while that absorbed by the load ΓL is:  
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( )
2

20

0

1
2

L
abs L

V
P

Z

+

= − Γ  

 
 
 
 
 
 
 
 
 
 

 
 
Recall, however, that a lossless transmission line can absorb no power!  By adding a length 
of transmission line to load ΓL , we have added only reactance.  Therefore, the power 
absorbed by load Γin is equal to the power absorbed by ΓL: 
 

( ) ( )
2 2

220 0

0 0
22

1 1
2 2

1 1

in L
abs abs

in L

in L

P P

V V
Z Z

+ +

=

− Γ = − Γ

− Γ = − Γ

 

 
Thus, we can conclude from conservation of energy that: 
 

0,Z β  

 

in
a b sP  

 
0,Z β  

 
ΓL 
 

L
a b sP  
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in LΓ = Γ  
 
Which of course is exactly the result we just found! 
 
Finally, the phase shift associated with transforming the load ΓL down a transmission line 
can be attributed to the phase shift associated with the wave propagating a length  down 
the line, reflecting from load ΓL , and then propagating a length  back up the line:  
 
 
 
 
 
 
 
To emphasize this wave interpretation, we recall that by definition, we can write inΓ  as: 
 

( ) ( )
( )

L
in L

L

V z zz z
V z z

−

+

= −
Γ = Γ = − =

= −
 

Therefore: 
 

( ) ( )
( )

L in L
j j

L L

V z z V z z
e e V z zβ β

− +

− − +

= − = Γ = −

= Γ = −
 

LΓ  
 

0,Z β  

φ β=  

j j
in Le eβ β− −Γ = Γ  
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Return Loss and VSWR 
 
The ratio of the reflected power from a load, to the incident power on that load, is known 
as return loss. Typically, return loss is expressed in dB: 

 
 

2
10 1010 10ref

L
inc

PR L
P

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
Γ. . log log  

 
 
The return loss thus tells us the percentage of the incident power reflected by load 
(expressed in decibels!). 
 
For example, if the return loss is 10dB, then 10% of the incident power is reflected at 
the load, with the remaining 90% being absorbed by the load—we “lose” 10% of the 
incident power 
 
Likewise, if the return loss is 30dB, then 0.1 % of the incident power is reflected at the 
load, with the remaining 99.9%  being absorbed by the load—we “lose” 0.1% of the 
incident power. 
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Thus, a larger numeric value for return loss actually indicates less lost power!  An ideal 
return loss would be ∞dB, whereas a return loss of 0 dB indicates that 1LΓ = --the load is 
reactive! 
 
Return loss is helpful, as it provides a real-valued measure of load match (as opposed to 
the complex values LZ  and LΓ ).   
 
Another traditional real-valued measure of load match is Voltage Standing Wave Ratio 
(VSWR).  Consider again the voltage along a terminated transmission line, as a function of 
position z : 

( ) 0
j z j z

LV z V e eβ β− ++ ⎡ ⎤= + Γ⎣ ⎦  
 

Recall this is a complex function, the magnitude of which expresses the magnitude of the 
sinusoidal signal at position z, while the phase of the complex value represents the 
relative phase of the sinusoidal signal. 
 
Let’s look at the magnitude only: 
 

( ) 0
2

0
2

0

| | | | | |
           | || ||1 |
           | ||1 |

j z j z
L

j z j z
L

j z
L

V z V e e
V e e
V e

β β

β β

β

− ++

− ++

++

= + Γ

= + Γ

= + Γ
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It can be shown that the largest value of |V (z)| occurs at the location z where: 
 

2 0j z
L Le jβ+Γ = Γ +  

 
while the smallest value of |V (z)|occurs at the location z where: 
 

2 0j z
L Le jβ+Γ = − Γ +  

As a result we can conclude that:  
 

( ) ( )

( ) ( )

0

0

1

1

Lmax

Lmin

V z V

V z V

+

+

= + Γ

= − Γ

 

 
The ratio of ( ) ( ) to V z V zmax min  is known as the Voltage Standing Wave Ratio (VSWR): 
 
 

( )
( )

1
VSWR 1

1
L

L

V z
VSWR

V z
+ Γ

= ∴ ≤ ≤ ∞
− Γ

max

min
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Note if 0LΓ =  (i.e., 0LZ Z= ), then VSWR = 1.  We find for this case: 
 

( ) ( ) 0max min   V z V z V += =  
 

In other words, the voltage magnitude is a constant with respect to position z. 
 
Conversely, if 1LΓ =  (i.e., LZ jX= ), then VSWR = ∞ .  We find for this case: 
 

( ) ( ) 0min max0      and       2V z V z V += =  
 

In other words, the voltage magnitude varies greatly with respect to position z. 
As with return loss, VSWR is dependent on the magnitude of ΓL (i.e, |ΓL|) only ! 
 
 
 

|V(z)|max 

|V(z)| 

|V(z)|min 

z 

2z λΔ =  
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Example:The Transmission 
Coefficient T 

 
Consider this circuit: 
 
 
 
 
 
 
 
 
 
I.E.,  a transmission line with characteristic impedance Z1 
transitions to a different transmission line at location z =0.  
This second transmission line has different characteristic 
impedance Z2  ( 1 2Z Z≠ ) .  This second line is terminated with a 
load ZL = Z2  (i.e., the second line is matched). 
 

Q:  What is the voltage and current along each of  these 
two transmission lines?  More specifically, what are 

01 01 02 02, ,  and  V V V V+ − + −  ??  
 
A:  Since a source has not been specified, we can only 
determine 01 02 02,  and  V V V− + −  in terms of complex constant 

01V + .  To accomplish this, we must apply a boundary 
condition at z =0! 

0z =  

I1(z) 

1 1Z β,  
+ 
V1 (z) 
- 

 
ZL=Z2 
 

z 

I2(z) 

+ 
V2 (z) 
- 

2 2Z β,  
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z < 0 
 
We know that the voltage along the first transmission line is: 
 

( ) 1 1
1 01 01 for 0j z j zV z V e V e zβ β− ++ −= + <⎡ ⎤⎣ ⎦ 

 
while the current along that same line is described as: 
 

( ) 1 101 01
1

1 1
for 0j z j zV VI z e e z

Z Z
β β

+ −
− += − <⎡ ⎤⎣ ⎦ 

 
 z > 0 
 
We likewise know that the voltage along the second 
transmission line is: 
 

( ) 2 2
2 02 02 for 0j z j zV z V e V e zβ β− ++ −= + >⎡ ⎤⎣ ⎦ 

 
while the current along that same line is described as: 
  

( ) 2 202 02
2

2 2
for 0j z j zV VI z e e z

Z Z
β β

+ −
− += − >⎡ ⎤⎣ ⎦ 

 
Moreover, since the second line is terminated in a matched 
load, we know that the reflected wave from this load must be 
zero: 
 

( ) 2
2 02 0j zV z V e β−− −= =  
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The voltage and current along the second transmission line is 
thus simply: 
 

( ) ( ) 2
2 2 02 for 0j zV z V z V e zβ−+ += = >⎡ ⎤⎣ ⎦ 

 

( ) ( ) 202
2 2

2
for 0j zVI z I z e z

Z
β

+
−+= = >⎡ ⎤⎣ ⎦ 

 
z=0 
 
At the location where these two transmission lines meet, the 
current and voltage expressions each must satisfy some specific 
boundary conditions: 
 
 
 
 
 
 
 
 
 
 
The first boundary condition comes from KVL, and states that: 
 

                 
( ) ( )

( ) ( ) ( )1 1 2

1 2

0 0 0
01 01 02

01 01 02

0 0
j j j

V V

V z V z
V e V e V

V
eβ β β

+ − +

− + −+ − +

= = =

+

=

=

+

 

 

0z =  

I1(0) 

1 1Z β,  
     + 
V1 (0) 
     - 

 
ZL=Z2 
 

z 

I2(0) 

   + 
V2 (0) 
   - 

2 2Z β,  
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while the second boundary condition comes from KCL, and states 
that: 

                 

( ) ( )
( ) ( ) ( )1 1 2

1 2

0 0 001 01 0

01 01 02

1

2

1 1

1 2

2

0 0

j j j

I z I z
V V Ve e e
Z Z Z

V V V
Z Z Z

β β β

+ − +

+ − +
− + −

= = =

=

−

−

=  

 
We now have two equations and two unknowns 01 02(  and )V V− + !  We 
can solve for each in terms of 01V +  (i.e., the incident wave). 
 
From the first boundary condition we can state: 
 

01 02 01V V V− + += −  
 
Inserting this into the second boundary condition, we find an 
expression involving only 02V +  and 01V + : 

 
01 01 02

1 1 2

01 02 01 02

1 1 2

01 02 02

1 2 1

2

V V V
Z Z Z

V V V V
Z Z Z

V V V
Z Z Z

+ − +

+ + + +

+ + +

− =

−
− =

= +

 

 
Solving this expression, we find: 
 

2
02 01

1 2

2ZV V
Z Z

+ +⎛ ⎞
= ⎜ ⎟+⎝ ⎠
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We can therefore define a transmission coefficient, which 
relates 02 01 to V V+ + : 
 
 

02 2
0

01 1 2

2V ZT
V Z Z

+

+ = +
 

 
 
Meaning that 02 01V T V+ += , and thus: 
 

( ) ( ) 2
2 2 01 for 0j zV z V z T V e zβ−+ += = >⎡ ⎤⎣ ⎦ 

 
 
We can likewise determine the constant 01 01 in terms of V V− + .  We 
again start with the first boundary condition, from which we 
concluded: 

02 01 01V V V+ + −= +  
 

We can insert this into the second boundary condition, and 
determine an expression involving 01V −  and 01V +  only: 
  

01 01 02

1 1 2

01 01 01 01

1 1 2

01 01
1 2 1 2

1 1 1 1

V V V
Z Z Z
V V V V
Z Z Z

V V
Z Z Z Z

+ − +

+ − + −

+ −

− =

+
− =

⎛ ⎞ ⎛ ⎞
− = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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Solving this expression, we find: 
 

2 1
01 01

2 1

Z ZV V
Z Z

− +⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

 
We can therefore define a reflection coefficient, which relates 

01 01 to V V− + : 
 
 

01 2 1
0

01 2 1

V Z Z
V Z Z

−

+

−
Γ =

+
 

 
 
 
This result should not surprise us! 
 
Note that because the second transmission line is matched, its 
input impedance is equal to Z1

 : 
 
 
 
 
 
 
 
 
 0z =  

 
ZL=Z2 
 

z 

2 2Z β,  2inZ Z=  
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and thus we can equivalently write the entire circuit as: 
 
 
 
 
 
 
 
 
 
 
We have already analyzed this circuit!   We know that: 
 

01 01

2 1
01

2 1

LV V
Z Z V
Z Z

− +

+

= Γ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

 
Which is exactly the same result as we determined earlier! 
 
 
The values of the reflection coefficient 0Γ and the transmission 
coefficient T0 are not independent, but in fact are directly 
related.  Recall the first boundary expressed was: 
 

01 01 02V V V+ − ++ =  
 

Dividing this by 01V + : 
01 02

01 01
1 V V

V V

− +

+ ++ =  

0z =  

1 1Z β,  
 
Z2 
 

z 

I1(z) 

+ 
V1 (z) 
- 
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Since 0 01 01V V− +Γ =  and  0 02 01T V V+ += : 
 
 

0 01 T+ Γ =  
 
 
Note the result 0 01T = + Γ  is true for this particular circuit, and 
therefore is not a universally valid expression for two-port 
networks! 
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Example: Applying 
Boundary Conditions 

 
Consider this circuit: 
 
 
 
 
 
 
 
 
 
I.E.,  Two transmissions of identical characteristic impedance 
are connect by a series impedance ZL . This second line is 
eventually terminated with a load ZL = Z0  (i.e., the second line is 
matched). 
 

Q:  What is the voltage and current along each of  these 
two transmission lines?  More specifically, what are 

01 01 02 02, ,  and  V V V V+ − + −  ??  
 
A:  Since a source has not been specified, we can only 
determine 01 02 02,  and  V V V− + −  in terms of complex constant 

01V + .  To accomplish this, we must apply a boundary 
conditions at the end of each line! 

0Z β,  
   + 
V1 (z1) 
   - 

   + 
V2 (z2) 
   - 

0Z β,  

I1(z1) 

ZL 

I2(z2) 

IL 

+   VL   - 

1 0z =  
z1 

2 0z =  
z2 
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z1 < 0 
 
We know that the voltage along the first transmission line is: 
 

( ) 1 1
1 1 01 01 1for 0j zj zV z V e V e zββ +−+ −= + <⎡ ⎤⎣ ⎦ 

 
while the current along that same line is described as: 
 

( ) 1 101 01
1 1 1

0 0

for 0j z j zV VI z e e z
Z Z

β β
+ −

− += − <⎡ ⎤⎣ ⎦ 

 
 z2 > 0 
 
We likewise know that the voltage along the second 
transmission line is: 
 

( ) 2 2
2 2 02 02 2for 0j z j zV z V e V e zβ β− ++ −= + >⎡ ⎤⎣ ⎦ 

 
while the current along that same line is described as: 
  

( ) 2 202 02
2 2 2

0 0

for 0j z j zV VI z e e z
Z Z

β β
+ −

− += − >⎡ ⎤⎣ ⎦ 

 
Moreover, since the second line is terminated in a matched 
load, we know that the reflected wave from this load must be 
zero: 
 

( ) 2
2 2 02 0j zV z V e β−− −= =  
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The voltage and current along the second transmission line is 
thus simply: 
 

( ) ( ) 2
2 2 2 2 02 2for 0j zV z V z V e zβ−+ += = >⎡ ⎤⎣ ⎦ 

 

( ) ( ) 202
2 2 2 2 2

2

for 0j zVI z I z e z
Z

β
+

−+= = >⎡ ⎤⎣ ⎦ 

 
z=0 
 
At the location where these two transmission lines meet, the 
current and voltage expressions each must satisfy some specific 
boundary conditions: 
 
 
 
 
 
 
 
 
 
 
The first boundary condition comes from KVL, and states that: 
 

                 
( ) ( )

( ) ( ) ( )
1 2

0 0

01 0

0
01 01

1 0

0

2

2

0 0L L
j

L

j j
L L

L

V z I Z V z
V e V e I Z V e

V V I Z V

β β β− + −+ −

+

+

− ++ − =

= − = =

+ − =  

 
 

0Z β,  
   + 
V1 (0) 
   - 

   + 
V2 (0) 
   - 

0Z β,  

I1(0) 

ZL 

I2(0) 

IL 

+   VL   - 

1 0z =  
z1 

2 0z =  
z2 
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the second boundary condition comes from KCL, and states that: 
 

                 

( )
( ) ( )

1

0 001

01 01

01

0

0 0

0 L

j j
L

L

I z I
V Ve e I
Z Z

V V Z I

β β
+ −

−

−

+

+ − =

= =

− =  

 
while the third boundary condition likewise comes from KCL, and 
states that: 

( )
( )

2

002

0

0 02

0L

j
L

L

I I z
VI e
Z

Z I V

β
+

−

+

= =

=

=

 

 
Finally, we have Ohm’s Law: 
 

L L LV Z I=  
 
Note that we now have four equations and four unknowns 

01 02( , , , )L LV V V I− + !  We can solve for each in terms of 01V +  (i.e., the 
incident wave). 
 
For example, let’s determine 02V +  (in terms of 01V + ).  We combine 
the first and second boundary conditions to determine: 
 

( )
( )

01 0

0

01 01 02

0

2

1 02

1 0 02
L

L L

L L

L L

V V I Z

V I Z Z V

V
V V I I Z VZ

+ − +

+

+ +

++

+ − =

− + =

+ =− −  
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And then adding in the third boundary condition: 
 

( )

( )

01 0 02

01
0

0 02

0
01 02

2

0

0

2

2

22

L L

L

L

V I Z Z V

V Z ZV V
Z

Z ZV V
Z

+

+ +

+ +

+ +

− + =

− + =

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠

 

  
Thus, we find that 02 0 01V T V+ += : 
 

02 0
0

01 0

2
2 L

V ZT
V Z Z

+

+ = +
 

 
Now let’s determine 01V −  (in terms of 01V + ). 
 
 
 
 
 
 
  
 
 
A:  Perhaps.  Humor me while I continue with our boundary 
condition analysis. 
 
We combine the first and third boundary conditions to 
determine: 
 

Q:  Why are you wasting our time?  Don’t 
we already know that  01 0 01V V− += Γ , where: 
 

0
0

0

L

L

Z Z
Z Z

−
Γ =

+
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( )

01 01 02

01 01

01 0

0

1 0L L

L

L L

L

L

V V I Z Z

V V I Z
V Z ZI I

V
V

+ − +

+ −

+ −

+ − =

+ −

+ +

=

=

 

 
And then adding the second boundary condition: 
 

( )
( ) ( )

01 01 0

01 01 0

0
0

01 01

0

1 01
0 0

2

L L

L

L L

V V I Z Z

V V Z Z

Z Z ZV V
Z

V V

Z

Z

+

+ −

+ −

+ −

−

+ = +

+ = +

⎛ ⎞ ⎛ ⎞+
=⎜ ⎟ ⎜

⎝ ⎠ ⎝

−

⎟
⎠

 

 
Thus, we find that 01 0 01V V− += Γ , where: 
 

01
0

01 02
L

L

ZV
V Z Z

−

+Γ =
+

 

 
Note this is not the expression: 
 

0
0

0

L

L

Z Z
Z Z

−
Γ ≠

+
 

 
This is a completely different problem than the 
transmission line simply terminated by load ZL. Thus, the 
results are likewise different.  This shows that you must 
always carefully consider the problem you are attempting 
to solve, and guard against using  “shortcuts” with 
previously derived expressions that may be inapplicable. 
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 This is why you must know why a correct answer is correct! 
 

 
 
 
 
 
A:  Actually, there is! 
 
An alternative way for finding 0 01 01V V− +Γ =  is to determine the 
input impedance at the end of the first transmission line: 
 
 
 
 
 
 
 
 
Note that since the second line is (eventually) terminated in a 
matched load, the input impedance at the beginning of the 
second line is simply equal to Z0.

Q:  But, isn’t there some 
way to solve this using our 
previous work? 
 

0Z β,  0Z β,  

ZL 

1 0z =  
z1 

2 0z =  
z2 

Zin 

0Z β,  0Z β,  

ZL 

1 0z =  
z1 

2 0z =  
z2 

Zin2=Z0 
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Thus, the equivalent circuit becomes: 
 
 
 
 
 
 
 
 
And it is apparent that: 
 

0in LZ Z Z= +  
 
As far as the first section of transmission line is concerned, it 
is terminated in a load with impedance 0LZ Z+ .  The current and 
voltage along this first transmission line is precisely the same 
as if it actually were! 
 
 
 
 
 
 
 
 
 
 

0Z β,  

ZL 

1 0z =  
z1 

Zin Z0 

0Z β,  ZL + Z0 

1 0z =  
z1 

   + 
V1 (z1) 
   - 

I1(z1) 



 

1/29/2009 Example Boundary Conditions.doc 9/11 

Jim Stiles The Univ. of Kansas Dept. of EECS  

Thus, we find that 0 01 01V V− +Γ = , where: 
 

( )
( )

( )
( )

1 0
0

1 0

0 0

0 0

0

0
0

2

L

L

L

L

Z z Z
Z z Z
Z Z Z
Z Z Z

Z
Z Z

= −
Γ =

= +

+ −
=

+ +

=
+

 

 
Precisely the same result as before! 
 
Now, one more point.  Recall we found in an earlier handout that 

0 01T = + Γ .  But for this example we find that this statement is 
not valid: 

( )0
0 0

0

2
1

2
L

L

Z Z T
Z Z

+
+ Γ = ≠

+
 

 
Again, be careful when analyzing microwave circuits!  
 
 
 
 
 
 
 
 
 
A:  An important engineering tool that you must master is 
commonly referred to as the “sanity check”. 
 

Q:  But this seems so 
difficult. How will I 
know if I have made a 
mistake? 
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Simply put, a sanity check is simply thinking about your result, 
and determining whether or not it makes sense.  A great 
strategy is to set one of the variables to a value so that the 
physical problem becomes trivial—so trivial that the correct 
answer is obvious to you.  Then make sure your results likewise 
provide this obvious answer! 
 
For example, consider the problem we just finished analyzing.  
Say that the impedance ZL is actually a short circuit (ZL=0). We 
find that:  
 

0
0 0

0
2

L

L

L Z

Z
Z Z

=

Γ = =
+

               0
0

0 0

2 1
2

LL Z

ZT
Z Z

=

= =
+

 

 
Likewise, consider the case where ZL is actually an open circuit 
(ZL=∞ ). We find that:  
 

0
0

1
2

L

L

L Z

Z
Z Z

=∞

Γ = =
+

               0
0

0

2 0
2

LL Z

ZT
Z Z

=∞

= =
+

 

 
Think about what these results mean in terms of the physical 
problem: 

 
  
 
 
 
 
 
 

0Z β,  
   + 
V1 (z1) 
   - 

   + 
V2 (z2) 
   - 

0Z β,  

I1(z1) 

ZL 

I2(z2) 

IL 

+   VL   - 

1 0z =  
z1 

2 0z =  
z2 
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Q: Do these results make sense? Have we passed the sanity 
check? 
 
 

 

A: I’ll let you decide!  
What do you think? 
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Example: Another 
Boundary Condition Problem 
 
 
 
 
 
 
 
 
 
 
 
The total voltage along the transmission line shown above is expressed 
as: 
 

( )
0

j z j z
a a

j z j z
b b

V e V e z
V z

V e V e z

β β

β β

− ++ −

− ++ −

⎧ + < −
⎪

= ⎨
⎪ + − < <⎩

 

 
 
Carefully determine and apply boundary conditions at both 0z =  and 
z = −  to find the three values: 
 

, ,a b b

a a a

V VV
V V V

+ −−

+ + +  

 
 
 
 
 

0,Z β  0

2
Z

 

 

0,Z β  

4λ=  

0

2
Z

 

 

( )aV z+  ( )aV z−  ( )bV z+  ( )bV z−  

z =−  z =0 
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Solution 
 
From the telegrapher’s equation, we likewise know that the current along 
the transmission lines is: 
 

( )
0 0

0 0

0

j z j za a

j z j zbb

V Ve e z
Z Z

I z
VV e e z

Z Z

β β

β β

+ −
− +

−+
− +

⎧
− < −⎪

⎪⎪= ⎨
⎪
⎪ − − < <
⎪⎩

 

 
To find the values:  

ba b

aa a

V
V

V,V
V V

,
+

++

−−

+  

 
We need only to evaluate boundary conditions! 
 
Boundary Conditions at z = −   
 
 

 
 
 
 
 
 
 
 

From KVL, we conclude: 
 

( ) ( )a bV z V z= − = = −  
 

 

0,Z β  0,Z β  ( )aV z
+

= −
−

 

( )aI z = −  ( )bI z = −  

z =−  

( )bV z
+

= −
−

 

RI  
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From KCL: 
( ) ( )a RbI z I z I= − = = − +  

 
And from Ohm’s Law: 
 

( ) ( ) ( )
0 0 0

2 2
2

a a b
R

V z V z V zI
Z Z Z
=− =− =−

= = =  

 
We likewise know from the telegrapher’s equation that: 

 
( ) ( ) ( )j j

a a a
j j

a a

V z V e V e
V e V e

β β

β β

− − + −+ −

+ −+ −

= − = +

= +
 

 
And since 4λ= , we find: 
 

2
4 2

π λ πβ
λ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

And so: 
 

( )
( ) ( )

( ) ( )
( )

2 2

j j
a a a

j j
a a

a a

a a

V z V e V e

V e V e
V j V j
j V V

π π

β β+ −+ −

+ −+ −

+ −

+ −

= − = +

= +

= + −

= −

 

 
We similarly find that: 
 

( ) ( )b b bV z j V V+ −= − = −  
 

and for currents: 
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( )
0

a a
a

V VI z j
Z

+ −+
= − =  

 

( )
0

b b
b

V VI z j
Z

+ −+
= − =  

 
Inserting these results into our KVL boundary condition statement: 
 

( ) ( )

( ) ( )
a b

a a b b

a a b b

V z V z
j V V j V V

V V V V

+ − + −

+ − + −

= − = = −

− = −

− = −

 

 
Normalizing to (i.e., dividing by) aV + , we conclude: 
 

1 a

a

b

a

b

a

VV V
V VV

+

+ +

−

+

−

− = −  

 
From Ohm’s Law: 

( ) ( )

( ) ( )

0 0

0 0

22

22

a aa
R

b bb
R

j V VV zI
Z Z

j V VV zI
Z Z

+ −

+ −

−= −
= =

−=−
= =

 

 
And finally from our KCL boundary condition: 
 

( ) ( )

0 0

a Rb

a a b b
R

I z I z I
V VV Vj j I

Z Z

+ −+ −

= − = = − +

++
= +
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After an enjoyable little bit of algebra, we can thus conclude: 
 

0a a Rb bV V V V jI Z+ − + −+ = + −  
 

And inserting the result from Ohm’s Law: 
 

( )

( )

( ) ( )

0

0
0

2 0

0

2

2

2 1

2 2
3

a a Rb b

b b
b b

b b b b

b b b b

b b b b

b b

V V V V jI Z
j V V

V V j Z
Z

ZV V j V V
Z

V V V V
V V V V
V V

+ − + −

+ −
+ −

+ − + −

+ − + −

+ − + −

+ −

+ = + −

⎛ ⎞−
= + − ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + − − ⎜ ⎟
⎝ ⎠

= + − − −

= + + −

= −

 

 
Again normalizing to aV + , we get a second relationship: 
 

1 3 ba b

aa a

V
V

V V
VV

−

+

+

+

−

++ = −  

 
Q:  But wait! We now have two equations: 
 

1 a

a

b

a

b

a

VV V
V VV

+

+ +

−

+

−

− = −                 1 3 ba b

aa a

V
V

V V
VV

−

+

+

+

−

++ = −       

 
but three unknowns: 

, ,a

a a

b

a

bV
V

V
V

V
V++

+ −−

+  

 
Did we make a mistake somewhere? 
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A:  Nope! We just have more work to do. After all, there is a yet another 
boundary to be analyzed! 
 
 
Boundary Conditions at 0z =   
 
 
 
 
 
 
 
 
 
 
From KVL, we conclude: 

( )0 LbV z V= =  
 

From KCL: 
( )0 LbI z I= =  

 
And from Ohm’s Law: 

0 0

2

2

LL
L

VVI Z Z
= =  

 
We likewise know from the telegrapher’s equation that: 

 
( ) ( ) ( )

( ) ( )

0 00
1 1

j j
b b b

b b

b b

V z V e V e
V V
V V

β β− ++ −

+ −

+ −

= = +

= +

= +

 

 
We similarly find that: 

0,Z β  0

2
Z

 

 

( )0bV z
+

=

−

 

( )0bI z =  

z =0 

LV
+

−
 

LI  
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( )
0

0 b b
b

V VI z
Z

+ −−
= =  

 
Combing this with the above results: 
 

( ) ( )

( )

0

0

0 0

2

2 0
0

2

L
L

b
b

b bb b

VI
Z
V zI z

Z
V VV V

Z Z

+ −+ −

=

=
= =

+−
=

 

 
From which we conclude: 
 

( )2 3b b b b b bV V V V V V+ − + − − +− = + ⇒ − =  
 

And so: 
1
3b bV V− += −  

 
Note that we could have also determined this using the load reflection 
coefficient: 

( )
( )

( ) 0
0

0
0

b

b

V z z
V z

−

+

=
= Γ = = Γ

=
 

 
Where: 

( ) ( )00 j
b b bV z V e Vβ+− − −= = =  

 
( ) ( )00 j

b b bV z V e Vβ−+ + += = =  
 
 
 



 

1/29/2009 Example Another Boundary Value Problem.doc 8/15 

Jim Stiles The Univ. of Kansas  Dept. of EECS
    

And we use the boundary condition: 
 

0 0 0
0

0 0 0

0.5 0.5 1
0.5 1.5 3

L
Lb

L

Z Z Z Z
Z Z Z Z

− − −
Γ = Γ = = = = −

+ +
 

 
Therefore, we arrive at the same result as before: 
 

( )
( ) 0

0
0

1
3

b

b

b

b

V z
V z

V
V

−

+

−

+

=
= Γ

=

= −

 

 
Either way, we can use this result to simplify our first set of boundary 
conditions: 

1

3

1
3

4
3

b

a

b

a

b b

a

b

a

a

b

a

b

a

aa

V

V
V

V
V

V
V
V

V

V V
V V

V
V

V

+

+

+

+

+ +

+ +

+

−

+

+

−

+

+

+=

− = −

−
= −

= +
 

And: 
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1 3

33

13
3

10
3

b

a

b

a

b b

a

b

a

a

a

a

b

b

a

a

V

V
V

V

V
V
V
V
V V
V

V

V

V

V

V

+

+

+

+

+ +

+

−

+

−

+

+

+

+

+

+

+ = −

−
= −

= +

=

 

 
NOW we have two equations and two unknowns: 
 

41
3

a

a

b

aV
VV
V

+

+

−

+− =                      101
3

a b

aa

V
V

V
V +

−

+

+

+ =  

 
Adding the two equations, we find: 
 

4 101 1
3 3

142
3

3
7

b b

a a

b

a

a

a a

b

a

a V V
V

V V
V V V

V
V

V
V

− −

+ +

+ +

+ +

+

+

+

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

=

 

 
And so using the second equation above: 

 
10 1
3
10 3 1
3 7
3
7

b

a

a

a

V
V

V
V

+−

+ += −

= −

=

 



 

1/29/2009 Example Another Boundary Value Problem.doc 10/15 

Jim Stiles The Univ. of Kansas  Dept. of EECS
    

And finally, from one of our original boundary conditions: 
 

1

3 31
7 7

1
7

ab

a

b

aa

VVV
V V V

−

+

− +

+ += − +

= − +

= −

 

 
And so now we summarize the fruit of our labor: 
 
 

3
7

a

a

V
V

−

+ =                
3
7

b

a

V
V

+

+ =              
1
7

b

a

V
V

−

+ = −  

 
 
 
Yes it is! It’s time for a sanity check!!! 
 
The first of our boundary condition equations: 
 

1

1 1
7

3
7

3

4
7

7
4

7

b

a a

a

a

bV
VVV

VV −+

+

−

+ +− = −

⎛ ⎞− ⎜ ⎟
⎝ ⎠
−= −

=

 

And from the second: 
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1

1 3

1 3
7

3

10 10
7 7

3
7 7

b

a

ba

a a

V
V VV

VV −−

+

+

+ ++ = −

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

=

−= −  

 
Notice that we can also verify the result: 
 

3
7

a

a

V
V

−

+ =  

 
By using the equivalent circuit of: 
 

 
 
 
 
 
 
 
 
 

 
Specifically, we can determine the input impedance of this circuit: 
 
 

 
 
 
 
 
 
 

 

0,Z β  0

2
Z

 

 

0,Z β  

4λ=  

0

2
Z

 

 

( )aV z+  ( )aV z−  

z =−  z =0 

0,Z β  

4λ=  

0

2
Z

 

 

z =−  z =0 

inZ  
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Since the transmission line is the special case of one quarter wavelength, 
we know that: 

2
0

0
0

2.0
0.5in

ZZ Z
Z

= =  

 
And so the equivalent circuit is  

 
 
 
 
 
 
 
 
 
 

Where the two parallel impedances combine as: 
 

0
0 0 00.5 2 0.4

2.5
ZZ Z Z= =  

 
And so the equivalent load at z = −  is 00 4. Z : 
 
 

 
 
 
 
 
 
 
 

 
 
 

0,Z β  . 00 4 Z  

( )aV z+  ( )aV z−  

z = −  

0

2
Z

 

 

0,Z β  
02inZ Z=  

( )aV z+  ( )aV z−  

z = −  
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Now, the reflection coefficient of this load is: 
 

0 0

0 0

0 4 0 6 3
0 4 1 4 7La

. Z Z .

. Z Z .
− −

Γ = = = −
+

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: Absolutely not!  The boundary condition analysis is perfectly correct, 
and: 

3
7

a

a

V
V

−

+ =  

is the right answer. 
 
The statement: 

3
7

a

a
La

V
V

−

+ = Γ = −  

is erroneous! 
 
 

 

 

Q: Wait a second! Using your fancy 
“boundary conditions” to solve the problem, 
you earlier arrived at the conclusion: 
 

3
7

a

a

V
V

−

+ =  

 
But now we find that instead: 
 

3
7

a

a
La

V
V

−

+ = Γ = −  

 
Apparently your annoyingly pretentious 
boundary condition analysis introduced 
some sort of sign error ! 
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A:  In the first case, load LbΓ  is located at position 0z = , so that: 
 

                                              
( )
( )

0
0

b b
Lb

b b

V z V
V z V

− −

+ +

=
Γ = =

=
 

 
 
 
 
 
 
 

Note this result can be more compactly stated as a boundary condition 
requirement: 
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Q:  But how could that possibly 
be? You earlier determined that: 
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So why then is:  
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For the second case, the load LbΓ  is located at position 0z = , so that: 
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Note this result can be more compactly stated as a boundary condition 
requirement: 
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From the equation above we find: 
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( )aV z+  ( )aV z−  

z = −  

 

That’s precisely the 
same result as we 
determined earlier using 
our boundary conditions!  
Our answers are good! 
 





