2.4 - The Smith Chart

Reading Assignment: pp. 64-73

The Smith Chart > An icon of microwave
engineering!

The Smith Chart provides:

1) A graphical method to solve many transmission line
problems.

2) A visual indication of microwave device performance.
The most important fact about the Smith Chart is:
-~ It exists on the complex I plane.

HO: THE COMPLEX I' PLANE

Q: But how is the complex I plane useful?

A: We can easily plot and determine values of I'(z)

HO: TRANSFORMATIONS ON THE COMPLEX T" PLANE

Q: But transformations of I are relatively easy—
transformations of line impedance Z is the difficult one.



A: We can likewise map line impedance onto the complex I
planel

HO: MAPPING Z TO T

HO: THE SMITH CHART

HO: SMITH CHART GEOGRAPHY

HO: THE OUTER SCALE

The Smith Chart allows us o solve many important
transmission line problems!

HO: Z;, CALCULATIONS USING THE SMITH CHART

EXAMPLE: THE INPUT IMPEDANCE OF A SHORTED
TRANSMISSION LINE

EXAMPLE: DETERMINING THE LOAD IMPEDANCE OF A
TRANSMISSION LINE

EXAMPLE: DETERMINING THE LENGTH OF A TRANSMISSION
LINE

An alternative to impedance Z, is its inverse—admittance V.

HO: IMPEDANCE AND ADMITTANCE




Expressing a load or line impedance in terms of its admittance
is sometimes helpful. Additionally, we can easily map
admittance onto the Smith Chart.

HO: ADMITTANCE AND THE SMITH CHART

EXAMPLE: ADMITTANCE CALCULATIONS WITH THE SMITH CHART




The Complex I" Plane

Resistance Ris a real value, thus we can indicate specific resistor values as points on the
real line:

R=0 R =20 Q R=50Q R
°

R=5Q

Likewise, since impedance Zis a complex value, we can indicate specific impedance values
as point on a fwo dimensional complex impedance plane :

Note each dimension is defined by a

Mm{Z) single real line:
®Z=30+j40Q * The horizontal line (axis) indicating
the real component of Z(i.e.,
> Re{Z} Re{Z}).
e Z=60-/30Q * The vertical line (axis) indicating
the imaginary component of
impedance Z(i.e., Im{Z}).

The intersection of these two lines is
the point denoting the impedance Z = 0.



Lines and Curves on the Complex Z Plane

* Note then that a vertical line is formed by the locus of all points (impedances) whose
resistive (i.e., real) component is equal to, say, 75.

* Likewise, a horizontal line is formed by the locus of all points (impedances) whose
reactive (i.e., imaginary) component is equal o -30.

Im{Z}

<«<—R=75

Re{Z}




The Validity Region of the Complex Z Plane

If we assume that the real component of every impedance is positive, then we find that
only the right side of the plane will be useful for plotting impedance Z—points on the

left side indicate impedances with negative resistances!
A

Im{Z}
Tnvalid Valid
Region Region
(R>0)
< (R<O) > Re {Z}

A\ 4
Moreover, we find that common impedances such as Z =« (an open circuit!) cannot be
plotted, as their points appear an infinite distance from the origin.
Im{Z}

Z =0 Z=Ly

(short) (matched)
NN\ Q L Re{Z}

Z = (open)
Somewhere way the
heck over there Il




The Complex I" Plane

Q: Yikes! The complex Z plane does not appear to be a very helpful. Is there some
graphical tool that is more useful?

A: Yes! Recall that impedance Zand reflection coefficient I" are equivalent complex
values—if you know one, you know the other.

We can therefore define a complex I" plane in the same manner that we defined a
complex impedance plane. We will find that there are many advantages to plotting on the
complex I' plane, as opposed to the complex Z plane!

Im{T’}

1 =03+,04
r=-05+,01

Re{l}

o ['=06-/0.3




Lines and Curves on the Complex I" Plane

We can plot points and lines on this complex I plane exactly as before: Im{L}

Re{r}=0.5
However, we will find that the utility of the complex j{ )
I" pane as a graphical tool becomes apparent only when Re{T"}

we represent a complex reflection coefficient in terms
of its magnitude (|I) and phase (6, ):

Im{r}=-0.3 /

r=Te/™

In other words, we express I" using polar coordinates.

Note then that a circle is formed by the locus of all points whose magnitude |I'| equal to,

say, 0.7. Likewise, a radial line is formed by the locus of all points whose phase 6, is equal
to 135", . Timiry 0. =135 Tim{T)
r=0.6e’*" ol .
[ ]

IT] r[=07

QF
< N Re{I'} Re{I'}

r=07e”*”




The Validity Region of the Complex I" Plane

Perhaps the most important aspect of the complex I plane is its validity region. Recall for the complex
Z plane that this validity region was unbounded and infinite in extent, such that many important
impedances (e.g., open-circuits) could not be plotted.

Q: What is the validity region for the complexT plane?

A: Recall that we found that for Re{Z} >0 (i.e., positive resistance), the magnitude of the
reflection coefficient was limited:

0<|r|<1 m{I}

Trvalid

Therefore, the validity region for the Region
complex I plane consists of all points (|F| 1)
inside the circle [I'|=1--a finite and

bounded areal
Re{I'}

N =t

<



Note that we can plot all valid impedances (i.e., R >0) within this finite validity region!

Im{I'}
/
r=e’”=-10 r=0
(short) (matched)
/ Re{l}
< ®
r=e’°=10
(open)

r|=1
(Z = jJX — purely reactive)



Transformations on the
Complex I" Plane

The usefulness of the complex I' plane is apparent when we consider again the terminated,
lossless transmission line:

z=—/ z=0

< Y S

Recall that the reflection coefficient function for any location zalong the transmission
line can be expressed as (since z, =0):

I(z)=Tr, e =|r,| /%"
And thus, as we would expect:

I[(z=0)=I, and [(z=-0)=T,e’?" =T,

n



Transforming I': to T

Recall this result "says” that adding a transmission line of length ¢ to a load results in a
phase shift in . by -2/ radians, while the magnitude |I'| remains unchanged.

Q: Magnitude |U'| and phase 6, --aren't those the values
@ @% used when plotting on the complexT plane?

Im{I'}

A: Precisely! In fact, plotting the
transformation of I', to I';, along a
transmission line length ¢ has an
interesting graphical
interpretation. Let's
parametrically plot T'(z) from
z=2z (ie.,z=0)toz=2z, ¢
(ie., z=-1):




Graphically Transforming I'z to T

1 Since adding a length of transmission line to a load I', modifies
() the phase 6. but not the magnitude |, |, we trace a circular arc
"f'%.‘ as we parametrically plot T'(z)! This arc has a radius |, | and an
i f arc angle 24/ radians.
- 1—'1"1-#-1 \ T"'{‘
N :1-—_5 “~ { \_| With this knowledge, we can easily solve many interesting
| Transmission line problems graphically—using the complex I" planel!

For example, say we wish to determine I'y, for a transmission line length ¢ =1/8 and
terminated with a short circuit.

zZ=—/ z=0
2. P Ly Z,, 311 =-1

— =28 —>



Example: Graphically Transforming I'z to T

The reflection coefficient of a short circuitis ', =-1=1¢’", and therefore we begin at

that point on the complex I' plane. We then move along a circular arc
-2t =-2(z/4) =-x/2 radians (i.e., rotate clockwise 90°).

Im{I['}

Re{l'}

Vv

When we stop, we find we are at the point for I, in this case I',, =1’ (i.e., magnitude
is one, phase is 90°).



Example: Now with / = \/4

Now, let's repeat this same problem, only with a new transmission line length of ¢ =1/4.

Now we rotate clockwise 23/ = = radians (180°). o
Im

I'(z)

Re{l'}

For this case, the input reflection coefficient is T, =1e’/° =1 : the reflection coefficient

of an open circuit!

Our short-circuit load has been transformed into an open circuit with a quarter-
wavelength transmission line!



You're not surprised—are you?

z=—/ z=0
#—
{ ]
ZOIIB 1_',-” :1 ZOIIB FL:—I
(open) & (short)
e S Im{T"}

=} —s

Recall that a quarter-wave transmission
line was one of the special cases we

considered earlier. Recall we found that
the input impedance was proportional to

the inverse of the load impedance. Re{l'}

&

Thus, a quarter-wave transmission line
transforms a short into an open.
Conversely, a quarter-wave transmission
can also transform an open into a short:

L




Example: Now with / = 1/2

Finally, let's again consider the problem where I', =-1 (i.e., short), only this time with a
transmission line length ¢ = 4/2 ( a half wavelengthl). We rotate clockwise

20 =2rx radians (360°).
Hey look! We came clear
around to where we started/!

/ Im{I'}

Thus, we find that I, =T, if r(z)

( = A/2--but you knew this too!

Recall that the half-

wavelength transmission line is
likewise a special case, where

we found that Z, =Z,. This N
result, of course, likewise

means that ', =T ,.

Re{l'}




Example: Now transform I'in to T':

Now, let's consider the opposite problem. Say we know that the input impedance at the

beginning of a transmission line with length ¢ =1/8 is:

r,=05e*
Q: What is the reflection coefficient of the load?

0, =06, +2pl
A: In this case, we begin at I';,and

rotate COUNTER-CLOCKWISE along
a circular arc (radius 0.5) 24/ = /2

radians (i.e., 60°). Essentially, we are

Im{I'}

removing the phase shift associated
with the tfransmission line!

-1

The reflection coefficient of the load
is therefore:
r,=05e"

Re{I'}




Mapping Z to T

Recall that line impedance and reflection coefficient are equivalent—either one can be
expressed in terms of the other:

r(z)= and z(z)zzo[tiggj

Note this relationship also depends on the characteristic impedance Z; of the
transmission line. To make this relationship more direct, we first define a normalized
impedance value z' (an impedance coefficient!):

Z(z) _ R(z)+j X(z)

)= Z,

=r(z)+Jjx(z)

Using this definition, we find:




Normalized Impedance

Thus, we can express I'(z) explicitly in ferms of normalized impedance z'--and vice
versal!

The equations above describe a mapping between coefficients z’ and I'. This means that
each and every normalized impedance value likewise corresponds to one specific point on

the complex T plane!

case Z z' r

For example, say we wish to mark or somehow
indicate the values of normalized impedance z° 1 o . 1

that correspond to the various points on the

complex T" plane. 2 0 0 -1
Some values we already know specifically > 3 Z, 1 0
J %o J J
~J %o —J ~J




Mapping points on both the I" and Z planes

Trvalid

Therefore, we find that these five normalized Regxon

impedances map onto five specific points on the
complex I' plane >

\ X
Trivalid +
Resi S=2 27
rohen 21 F:J)
['=-1)
< E' o > 7
b EH | N
r-) 2
r=0)

Or, the five complex ' map onto five point§on the nor'malized< impedance plane. >



Mapping contours on both the T" and Z planes

Now, the preceding provided examples of the mapping of points between the complex
(normalized) impedance plane, and the complex I' plane. We can likewise map whole
contours (i.e., sets of points) between these two complex planes. We shall first look at

two familiar cases.

Z =R

In other words, the case where impedance is purely real, with no reactive component (i.e.,

X =0); meaning that normalized impedance is:

z'=r+ /0 (/e.,x=0)

where we recall that r=R/Z,.

Remember, this real-valued impedance results in a real-valued reflection coefficient:

1
1

r
r

=

+

, r-1
F,, :Re{r}zm

IE.;

I, =Im{I'}

0



Thus, we can determine a mapping between two contours—one contour (x =0) on the
normalized impedance plane, the other (I, =0) on the complex " plane:

x=0 & T,=0 betnld
: Regibh
e
N X
Trvalid
Regioh
<« e p:
D NA R R R R R R A I
N e
x=0
(r;=0)




Z = jX

In other words, the case where impedance is purely imaginary, with no resistive
component (i.e., R =0).

Meaning that normalized impedance is:

where we recall that x = X/Z, .

Remember, this imaginary impedance results in a reflection coefficient with unity

magnitude:



Thus, we can determine a mapping between two contours—one contour (- =0) on the
normalized impedance plane, the other (|| =1) on the complex T" plane:

Trivalid
r=0 < ‘F‘ =1 Region

NX
Irvalid IX =Jod
Resion
o 3 ° L
Z/‘ =0
o



What about r=0.5, or x=-1.5??

Q: These two "mappings” may very well be
fascinating in an academic sense, but they are
not particularly relevant, since actual values of
impedance generally have both a real and
/maginary component.

Sure, mappings of more general impedance
contours (e.g., r =0.5 or x =-15) onto the
complex T would be useful—but it seems clear

that those mappings are impossible to achie VD

A: Actuadlly, not only are mappings of more general impedance contours (such as r=0.5
and x =-15) onto the complex I" plane possible, these mappings have already been
achieved—thanks to Dr. Smith and his famous chart!



The Smith Chart

Say we wish to map a line on the normalized complex impedance plane onto the complex T’
plane.

For example, we could map the vertical line =2 (Re{z'} =2) or the horizontal line x=-1
(Im{z'} =-1).

Im{z'}

] —r=2

> Re{z'}

R

N

Recall =0 simply maps to the circle || =1 on the complex I' plane, and x = O simply maps
to the line ', =0.

But, for the examples given above, the mapping is not so straight forward. The contours
will in general be functions of both I', and T, (e.g., T2 + T2 =0.5), and thus the mapping

cannot be stated with simple functions suchas [I|=1 or I', =0.



Vertical contours on the complex Z plane map...

As a matter of fact, a vertical line on the normalized impedance plane of the form:

Note this equation is of the same form as that of a circle:

2

(X—XC)Z+(y—yC)2 =a

where:
a = the radius of the circle

P(x=x.,y=y.) = point located at the center of the circle

Thus, the vertical line r = ¢. maps into a circle on the complex I' plane!



..onto circles on the complex & plane

By inspection, it is apparent that the center of this circle is located at this point on the

complex I plane:

+ C

r

In other words, the center of this circle always lies somewhere along the I'; =0 line.

! rl=1
Likewise, by inspection, we find the _ A/ I
radius of this circle is: v

We perform a few of these mappings
and see where these circles lie on the
complex I" plane >




Some_important stuff to notice

We see that as the constant ¢.increases, the radius of the circle decreases, and its

center moves to the right. Note:
1. If ¢.>0 then the circle lies entirely within

the circle | =1.

] M =1
\/\/ 2. If ¢.<0 then the circle lies entirely
outside the circle |T|=1.

3. If ¢.=0 (i.e., areactive impedance), the
circle lies on circle |[]=1.

4. If c. =x, then the radius of the circle is
zero, and its center is at the point
I,=1T,=0 (ie, I'=1e/°). Inother words,
the entire vertical line 7 = on the
nhormalized impedance plane is mapped onto
just a single point on the complex I' plane!

But of course, this makes sense! If r =, the impedance
is infinite (an open circuit), regardless of what the value
of the reactive component x is.



Horizontal contours on the complex Z plane map...

Now, let's turn our attention to the mapping of horizontal lines in the normalized
impedance plane, i.e., lines of the form:

/

where ¢, is some constant (e.g. x =-2 or x =0.5).

We can show that this horizontal line in the normalized impedance plane is mapped onto
the complex T plane as:

Note this equation is also that of a circle! Thus, the horizontal line x = ¢, maps into a
circle on the complex I" plane!



..onto circles on the complex & plane

By inspection, we find that the center of this circle lies at the point:

e[rr 1T, :ij
C

/

in other words, the center of this circle always lies somewhere along the vertical ', =1

line. AT < r, =1
Likewise, by inspection, the x 505 ZX _10 ;772-0
radius of this circle is: A
T~ XW.O
1
a=—
|

y =1

We perform a few of these
mappings and see where these
circles lie on the complex I'
plane—>

FaNiEze




Some more important stuff to notice

We see that as the magnitude of constant c¢;increases, the radius of the circle
decreases, and its center moves foward the point (I', =1,I', =0). Note:

1. If ¢;>0(i.e., reactance is inductive) then the circle lies
entirely in the upper half of the complex I' plane (i.e.,
where I'; > 0)—the upper half-plane is known as the

x =05

/‘

lies entirely in the lower half of the complex I plane (i.e’,
where I'; < 0)—the lower half-plane is known as the

capacitive region.

3. If ¢;=0 (i.e., apurely resistive impedance), the circle
has an infinite radius, such that it lies entirely on the line
r,=0.

9
inductive region.
2. If ¢;<0(i.e., reactance is capacitive) then the circle I =1
A\

X

-0.5

N

4. If ¢ =+x, then the radius of the circle is zero, and its center is at the point
I,=1T,=0 (ie, [ =1e/°). Inother words, the entire vertical line x = or x =-x on

the normalized impedance plane is mapped onto just a single point on the complex I plane!



But of course, this makes sense! If x =, the impedance is infinite (an open circuit),
regardless of what the value of the resistive component ris.

5. Note also that much of the circle formed by L Z-r, =1
mappmg x =¢; onto the complex I' plane lies outside the —lo S 1o x=20
circle | =1. =4

. : : el W
This makes sense! The portions of the circles
laying outside |I'| =1 circle correspond to
impedances where the real (resistive) part is I =1

negative (i.e., r<0).
Thus, we typically can completely ignore the

portions of the circles that lie outside the |I'|=1
circle |

A\

=-05

9

Mapping many lines of the form r =c¢. and x = ¢,onto circles on the complex I plane

results in tool called the Smith Chart......
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Rectilinear and Curvilinear Grids

Note the Smith Chart is simply the vertical lines r = ¢. and horizontal lines x = ¢, of the
hormalized impedance plane, mapped onto the two types of circles on the complex I' plane.

For the normalized impedance plane, a vertical line ¥ x =1

r =c¢. and a horizontal line x = ¢, are always 1\ A
perpendicular to each other when they intersect. 15
We say these lines form a rectilinear grid. U<

However, a similar thing is true for the Smith Chart! Y -0
When a mapped circle r = ¢, intersects a mapped
circle x = ¢ , the two circles are perpendicular at *
that intersection point. We say these circles form a

curvilinear grid. x = -1

In fact, the Smith Chart is formed by distorting the rectilinear grid of the normalized
impedance plane into the curvilinear grid of the Smith Chart!



The proverbial square peg..

The rectilinear grid of the complex impedance plane:
X

A p
/‘zOE

r X
<9 ® _—

x =-1

Distorting this rectilinear grid >



And then distorting some more—we have the curvilinear grid of the Smith Chart!
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Smith Chart Geography

We have located specific points on the complex impedance plane, such as a short circuit
or a matched load.

We've also identified contours, such as r=1or x=-2.

We can likewise identify whole regions (!) of the complex
impedance plane, providing a bit of a geography lesson of the
complex impedance plane.
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For example, we can divide the complex
impedance plane into four regions based
onh normalized resistance value r:
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Mapping onto the I" Plane

2/5

Just like points and contours, these regions of the complex impedance plane can be
mapped onto the complex gamma plane!

Jim Stiles
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Reactive Boundaries and Borders

Instead of dividing the complex impedance plane into regions based on normalized
resistance r, we could divide it based on normalized reactance x:

Alm{z"}

Re{z'}

Jim Stiles The Univ. of Kansas Dept. of EECS
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Mapping onto the I" Plane

These four regions can likewise be mapped onto the complex gamma plane:
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Smith Chart Geography

Note the four resistance regions and the four reactance regions combine to from 16
separate regions on the complex impedance and complex gamma planes!

Eight of these sixteen regions lie in the valid region (i.e., » > 0), while the other eight lie
entirely in the invalid region.

Make sure you can locate the eight
impedance regions on a Smith Chart—this
understanding of Smith Chart geography
will help you understand your design and
analysis results!
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Line position =z and phase angle are related!

Recall however, for a terminated transmission line, the reflection coefficient function is:
[(z)=Tye/*% =|Ty|e/?* 1%

Thus, the phase of the reflection coefficient function depends on transmission line
position zas:
2

Or(2) =202 +0p = 2[7

As a result, a change in line position z (i.e., Az) results in a change in reflection
coefficient phase 6. (i.e., AO.):
Az

Abp= 4r

For example, a change of position equal to one-quarter wavelength Az =%, results ina

phase change of = radians—we rotate half-way around the complex I" plane (otherwise
known as the Smith Chart).



A second outer scale

The Smith Chart thus has a
second scale (besides 6,)

that surrounds it—one that
relates transmission line

tion in wavelengths (i.e.,

Az/1) to the reflection
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This second scale is very useful!

Since the phase scale on the Smith Chart extends from —-180° < 6. <180" (i.e.,
—7 < 6. <), this electrical length scale extends from:

O<%<O.5

Note for this mapping the reflection coefficient phase at location z =0 is 6, =-r.
Therefore, 6, =-7, and we find that:

Ty =|Toled® =|Tole /™ = —|T|
In other words, I, is a negative real value.

Q: But, T, could be anything! What is the likelihood of T, being a real and negative

value? Most of the time this is not the case—this second Smith Chart scale seems to be
nearly useless!?

A: Quite the contrary! This electrical length scale is in fact very useful—you just need
to understand how to utilize it!



The first of many analogies

This electrical length scale is very much like the mile markers you see
along an interstate highway: although the specific numbers are quite
arbitrary, they are still very useful.

/ INTERSTATE \

Take for example Interstate 70, which stretches
across Kansas. The western end of I-70 (at the
Colorado border) is denoted as mile 1.

& At each mile along I-70 a new marker is placed, such that the
| eastern end of I-70 (at the Missouri border) is labeled mile
| 423—Interstate 70 runs for 423 miles across Kansas!
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The location of various tfowns and burgs along I-70 can thus be specified in ferms of these
mile markers. For example, along I-70 we find:
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Oakley at 76
Hays at 159
Russell at 184
Salina at 251

~|Junction City 296

Topeka at 361
Lawrence at 388
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Mile markers: the key to successful navigation

So say you are traveling eastbound (=) along I-70, and you want
to know the distance to Topeka. Topeka is at mile marker 361,
but this does not of course mean you are 361 miles from Topeka.

Instead, you subtract from 361 the value of the mile marker
denoting your position along I-70.

For example, if you find yourself in the lovely borough of Russell (mile marker
184), you have precisely 361-184 = 177 miles to go before reaching Topekal

am a distance of 361-388 = -27 miles from Topeka! How can I be a negative
distance from something??

A: The mile markers across Kansas are arranged such that their value increases as we
move from west to east across the state. Take the value of the mile marker denoting to
where you are traveling, and subtract from it the value of the mile marker where you are.

If this value is positive, then your destination is East of you; if this value is negative, it is
West of your current position (hopefully you're in the westbound lanel).
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Its not rocket sciencel

For example, say you're traveling to Salina (mile marker 251). If you are in Oakley (mile
marker 76) then:

251-76= 175 >  Sdlinais 175 miles East of Oakley

If, on the other hand, you begin your journey from Junction City (mile marker 296), we
find:
251-296= -45 > Salina is 45 miles West of Junction City

-— - _| —— \ ST, a5
MARYSVILLE b OSEPH cpcmond)
NG

(36) .
( concoRoia ﬁw
(18) ]
>

Jim Stiles The Univ. of Kansas Dept. of EECS



Please tell me this is useful

Q: But just what the &()#$ % does this discussion have to do with SMITH CHARTS /1212

A: The electrical length scale (z/1)
around the perimeter of the Smith
Chart is precisely analogous to mile
markers along an interstate!

Recall that the change in phase
(A6r) of the reflection

1. 1T 1. » / 7% 4
coefficient funf:‘rlon is related to il | .Ffig’fgs's,’i’,ﬂ H‘;iii?’ 4
the change in distance (Az) along o] [t B
a transmission line as: i |

25), GK CONDUCTANCE COMPONENT (G/ Yok

Sesaumsesesi: EENETS LR
ol ";‘:%“?:“:“‘";"“\“g R e
e
fust ue! ‘ e “ “’ ’
RS

“ <A O“. ‘: S

Az

AO.= 47

The value Az/4 can be determined
from the outer scale of the Smith
Chart, simply by taking the
difference of the two "mile markers”
values.




““--l

For example ...

For example, say you're at some location z =z along a
transmission line. The value of the reflection coefficient
function at that point happens to be:

I(z=2)=0.685¢ /%

Finding the phase angle of 6. =-65" on the outer scale of the
Smith Chart, we note that the corresponding electrical length

value is:
0.160)

Note this tells us nothing about the location z=z. This does not mean that z,=0.160)\,

for example!



Continued ...

Now, say we move a short distance Az (i.e., a distance less than 1/2) along the
transmission line, to a new location denoted as z=z,.

We find that this new location that the reflection coefficient function has a value of:

I(z=2,)=0.685¢"/"

0.14
Now finding the phase angle of 6. =+74" on the outer scale 0.3 015
of the Smith Chart, we note that the corresponding N
electrical length value is: 5 % ¢

0.353A\

Note this tells us nothing about the location z=2z,. This
does not mean that z;,=0.353)\, for example!




See the analogy?

Q: So what do the values 0.160)\ and 0.353)\ tell us?

A: They allow us to determine the distance between points z, and z; on the fransmission
line:
AZ _ 7, 7z
= "

Thus, for this example, the distance between locations z; and z; is:

Az=0.3531-0.1601=0.1931

- The transmission line location z, is a distance of 0.193\ from location z;!




The power of negative thinking

Q: But, say the reflection coefficient at some
point zz has a phase value of 6. =-112°. This maps

to a value of:

0.094)\
on the outer scale of the Smith Chart.

The distance between zs and z; would then turn
out to be:

ATZ ~0.094-0.160 = -0.066

What does the negative value mean??

A: Just like our I-70 mile marker analogy, the sign (plus or minus) indicates the direction
of movement from one point to another.



This isn't rocket science either

In the first example, we find that Az >0, meaning z, >z, :
z, =2, +0.0941

Clearly, the location z; is further down the transmission line (i.e., closer to the load) than
is location z;.

For the second example, we find that Az <0, meaning z, <z :

z,=2,—-0.0661

3'COLORED

'
PAPER, TURE

Conversely, in this second example, the location z; is

closer to the beginning of the transmission line (i.e., e )
farther from the load) than is location z;. AP TG WO — o



You shouldn't have be surprised

This is completely consistent with what we already know to be truel

In the first case, the positive value Az =0.1931 maps to a phase
change of AG, =74 —(-65")=139".

In other words, as we move toward the load from location z; to location z,, we rotate
counter-clockwise around the Smith Chart.

Likewise, the negative value Az =-0.0661 maps to a phase change of
A6, =-112° —(-65") =-47".

In other words, as we move away from the load (toward the source) from a location z; to
location z3, we rotate clockwise around the Smith Chart.
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A graphical summary of what T just said
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Yet another outer scale

/

Q: I notice that there is a second electrical length scale on the
Smith Chart. Its values increase as we move clockwise from an initial
value of zero to a maximum value of 0.54. What's up with that? —

A: This scale uses an alternative mapping between 6. and z/4:

z 1 6 1 ~z
—==--L = 0. =4r|—-=
24 4 r ”(4 zj
This scale is analogous to a situation wherein a second of mile markers were placed

along I-70. These mile markers begin at the east side of Kansas (at the Missouri border),
and end at the west side of Kansas (at the Colorado border).
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What's the point?

Q: What good would this second set of markers do? Does it serve any purpose?

e i S
LB.

A: Not much really. After all, this second set is redundant—it 0 FROZEN l(?ﬁUBE
does not provide any new information that the original set I 79¢ 4

already provides. £

Yet, if we were to place this new set along I-70, we almost certainly
would place the original mile markers along the eastbound lanes, and
this new set along the westbound lanes.

LB

In this manner, all I-70 motorists (eastbound or westbound) would
see an increase in the mile markers as they traverse the Sunflower
State.

As a result, a positive distance to their
destination indicates to all drivers that their
destination is in front of them (in the direction they are driving),

while a negative distance indicates to all drivers that their

destination is behind the (they better turn around!).




The power of positive thinking

Thus, it could be argued that each set of mile markers is optimized
for a specific direction of travel—the original set if you are traveling
east, and this second set if you are traveling west.

Similarly, the two electrical length scales on the Smith Chart are meant for two different
“directions of travel". If we move down the transmission line toward the load, the value
Az will be positive.

Conversely, if we move up the transmission line and away from the load
(i.e., "toward the generator"), this second electrical length scale will also
provide a positive value of Az.

Again, these two electrical length scales are redundant—you will get the
correct answer regardless of the scale you use, but be careful to
interpret negative signs properly.




Oh, so you noticed

Q: Wait! I just useda Smith Chart to analyze a
transmission line problem in the manner you have just
explained. At one point on my transmission line the phase of
the reflection coefficient is 6. =+170°, which is denoted as

0.4864 on the "wavelengths toward load” scale.

I then moved a short distance along the line toward the
load, and found that the reflection coefficient phase was
0. =-144°, which is denoted as 0.0501 on the "wavelengths

toward load” scale.

According to your "instruction”, the distance between these two points is:

Az =0.0501-0.4861=-0.4361

A large negative value! This says that I moved nearly a half wavelength away from the
Joad, but I know that I moved just a short distance toward the load! What happened?



Here's the problem

A: Note the electrical length scales on the Smith Chart begin and end where 6. =tz (by
the short circuit!). 1
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In your example, when rotating counter-clockwise around the chart (i.e., moving toward
the load) you passed by this transition. This makes the calculation of Az a bit more

problematic.



Yet another enlightening analogy

To see why, let's again consider our I-70 analogy. Say we are
Lawrence, and wish to drive eastbound on Interstate 70 until we
reach Columbia, Missouri.

The mile marker for Lawrence is of course 388, and Columbia Missouri is located at mile
marker 126. We might conclude that the distance from Lawrence to Columbia is:

126 -388 =-262 miles

Q: VYikes! According to this, Columbia is 262 miles west of Lawrence—should we turn the
car around?
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Th in f | | bVi * t(i‘)l:il'lgne civil or cfiﬁiiﬁél"lvi-
ability.
e Pa u Y o ous So far, they have deter-

mined that the crash oc-
curred when the plane

Thus, to accurately determine the distance between Lawrence and ~ Sfruck  the ground, but
they're unsure what speed

Columbia, we need to break the problem into two steps: the aircraft was going at the
p p Mpact R

Step 1: Determine the distance between Lawrence (mile marker 388) , and the last mile
marker before the state line (mile marker 423):

uuuuuuu

I Surveyﬁnds fewer deer after hunt | 423-388 =35 miles

Step 2: Determine the distance between the first mile marker after the state line (mile
marker 0) and Columbia (mile marker 126): 1L

Pje— REGION T oo Toue

. ctjms 1i
126-0=126miles|  [emma L rerer B e SEEER

e e S T e Tt S e
K Y - e g e ]

Thus, the distance between Lawrence and Columbia is the distance between Lawrence and
the state line (35 miles), plus the distance from the state line to Columbia (126 miles):

35+126 =161 mil
i Tt DIANA WAS STILL

Columbia, Missouri is 161 miles east of Lawrence, Kansas! AI.WE HOURS

BEFORE SHE DIED

* Don't complain; it's far superior to the obviously painful.




Back to the real world

Now back to the Smith Chart problem; as we rotate counter-clockwise around the Smith
Chart, the "wavelengths tfoward load” scale increases in value, until it reaches a maximum
value of 0.54 (at 6. =+x).

At that point, the scale "resets” to its minimum value of zero. We have metaphorically
“crossed the state line" of this scale.

Thus, to accurately determine the electrical length moved along a transmission line, we
must divide the problem into two steps:

Step 1: Determine the electrical length from the initial point to the “"end” of the
scale at 0.54.

Step 2: Determine the electrical distance from the “beginning” of the scale (i.e., 0)
and the second location on the transmission line.

Add the results of steps 1 and 2, and you have your answer!




Your problem is solved

o,
4
O—*
90 J
i
INDU%
—
—
N
Il
N
N—"

For example, let's look at the case that originally gave
us the erroneous result. The distance from the initial

location to the end of the scale is:
0.014)

[0.3

v

00 N> WAVELENG
0.4

CE COMPONENT (R/

And the distance from the beginning of the scale to
the second point is:

0.0504-0.0004 =+0.0504

Thus the distance between the two points is:

0.0144 +0.0504 =+0.064 1

The second point is just a little closer to the load

than the first |



Zin Calculations using
the Smith Chart

|
I |
Z = —/ z=0

The normalized input impedance z, of a transmission line length ¢,
when terminated in normalized load z/, can be determined as:

r _ Zin
Zin =

/Q: Evaluating this \ Zo
unattractive expression > [Z .+ j Z, tan ﬁzj
Jooks not the least bit Z, °\Z,+jZ tanpt
pleasant. Isn't there a less Z,|Z, + j tan ¢
disagreeable method to 1+, Z,/Z, tanpt
determine z, ?

/ _z,+/tanpr

1+ z tanps




A: Yes there isl Instead, we could determine this normalized input impedance by
following these three steps:

1. Convert z/ to IT',, using the equation:

Z,-Z, Z/|Z,-1 z -1
L Z2+Z, Z/Z,+1 z+1

2. Convert I', to I, , using the equation:

mn

1 -j2p¢
I,=I,e

3. Convert I', to z;

mnt

using the equation:

n

" Z, 1-T,

n

. Z, 1+T,

N

~ .

Q: But performing these three calculations would be
even more difficult than the single step you described
earlier. What short of dimwit would ever use (or
recommend) this approach?

I




A: The benefit in this last approach is that each of the three steps can be executed using
a Smith Chart—no complex calculations are required!

1. Convert z to T,

Find the point z, from the impedance mappings on your Smith Chart. Place you pencil
at that point—you have now located the correct I', on your complex I' planel

For example, say z/ =0.6 — j1.4. We find on the Smith Chart the circle for r=0.6

and the circle for x=-1.4. The intersection of these two circles is the point on the
complex I plane corresponding to normalized impedance z/ =0.6 — j1.4.

This point is a distance of 0.685 units from the origin, and is located at angle of -65
degrees. Thus the value of T, is:

I, =0.685¢ /%



2. Convert I', to I',,

Since we have correctly located the point ', on the complex I plane, we merely need
to rotate that point clockwise around a circle (| =0.685) by an angle 25/

When we stop, we are located at the point on the complex I" plane where ' =T, !
For example, if the length of the transmission line ferminated in z/ =0.6 - j14 is

¢ =0.307 4, we should rotate around the Smith Chart a total of 28/ =1.228x radians,
or 221°. We are now at the point on the complex I' plane:

I'=0.685¢"/"*

This is the value of T, |



3. Convert I', to z,

When you get finished rotating, and your pencil is located at the point I' =T, , simply
lift your pencil and determine the values r and x to which the point corresponds!

For example, we can determine directly from the Smith Chart that the point
I, =0.685e"/7* is located at the intersection of circles = 0.5 and x=1.2. Inother

words:

z, =05+ /12
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Example: The Input
Impedance of a Shorted

Transmission Line

Let's determine the input impedance of a transmission line that
is terminated in a short circuit, and whose length is:

a) f:%zo.lzm = 2B0=90°

b) ¢=342-03754 = 2pr=270




=90°

01250, = 2p¢

_A
-7
Rotate clockw

a) /

r .
ﬂ_\/'

Z;

and find

1180°
eJ

from I'=-1.0

o

ise 90

I
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b) ¢=34£-03751 = 2pr=270

Rotate clockwise 270° from I'=-1.0=¢/"*" and find z,, = ;.

] QR CONDUCTANCE COMPO




Example: Determining the

Load Impedance of a
Transmission Line

Say that we know that the input impedance of a transmission
line length ¢=0.1344 is:

z/ =10+ j1.4

Let's determine the impedance of the load that is terminating
this line.

Z;, = zi =1 322 = 7?2
1+ /14
¢ =0.1342

| |
z = z=0

Locate z, on the Smith Chart, and then rotate counter-
clockwise (yes, I said counter-clockwise) 24/ =96.5".
Essentially, you are removing the phase shift associated with
the transmission line. When you stop, lift your pencil and find
z |
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¢ =0.1342
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Example: Determining
Transmission Line Length

A load terminating at transmission line has a hormalized
impedance z;, =2.0 + j2.0. What should the length ¢ of

transmission line be in order for its input impedance to be:
a) purely real (i.e., x, =0)?
b) have a real (resistive) part equal to one (i.e., r;, =1.0)?

Solution:

a) Find z/ =2.0+ 2.0 on your Smith Chart, and then rotate

clockwise until you "bump into" the contour x =0 (recall this is
contour lies on the T, axis!).

When you reach the x =0 contour—stop! Lift your pencil and
note that the impedance value of this location is purely real
(after all, x =0l).

Now, measure the rotation angle that was required tfo move
clockwise from z/ =2.0+ 2.0 to an impedance on the x =0

contour—this angle is equal to 257!

You can now solve for 7, or alternatively use the electrical
length scale surrounding the Smith Chart.



One more important point—there are two possible solutions!

Solution 1:

D, o3 = p=}
o o I = . o EHERE 5 Y R N ool &
L T e s e s s s s s = L~ e e ey e B ey e s e e s s e e P
RESTSTANCE COMPONENT (R/%o) . OR gONDUCTANCE COMBO

z, =42+ /0




Solution 2:

z, =024+ /0
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b) Find z/ =2.0+ 2.0 on your Smith Chart, and then rotate

clockwise until you "bump into" the circle r =1 (recall this circle
intersects the center point or the Smith Chart!).

When you reach the r =1 circle—stop! Lift your pencil and note
that the impedance value of this location has a real value equal
to one (after all, r =11).

Now, measure the rotation angle that was required tfo move
clockwise from z/ =2.0+ 2.0 to an impedance on the r =1

circle—this angle is equal to 257!

You can now solve for ¢, or alternatively use the electrical
length scale surrounding the Smith Chart.

Again, we find that there are two solutions!



Solution 1
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Solution 2:

0.2

I'(z)
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280 =339
0 =0.4712




Q: Hey! For part b), the solutions resulted in z,, =1- j1.6 and
z, =1+ j1.6 --the imaginary parts are equal but opposite! Is
this just a coincidence?

A: Hardly! Remember, the two impedance solutions must result
in the same magnitude for I'--for this example we find
IF(z)=0.625.

Thus, for impedances where r=1(i.e., z'=1+ j x):

poz-1 (egx)-l jx
241 (T+x)+1 2+ x

and therefore:

. 2
. A X
‘2+J'X‘2 4 + x°

T

Meaning:
2
o Al
1-|r]

of which there are two equal by opposite solutions!

2 |

V1=

Which for this example gives us our solutions x =+£1.6 .

X ==




Impedance & Admittance

As an alternative to impedance Z, we can define a complex parameter called admittance Y:
I
y==
V

where Vand I are complex voltage and current, respectively.

Clearly, admittance and impedance are not independent parameters, and are in fact simply
geomeftric inverses of each other:

Thus, all the impedance parameters that we have studied can be likewise expressed in
terms of admittance, e.g.:

y<z>=Z§z) yo Loy




Normalized Admittance

Moreover, we can define the characteristic admittance Y, of a transmission line as:

_1(2)
O_V+(z)

And thus it is similarly evident that characteristic impedance and characteristic
admittance are geometric inverses:

yO:



Susceptance and Conductance

Now since admittance is a complex value, it has both a real and imaginary component:

Y=6+j/8
where:
Re{Y} =6 = Conductance Im{Z} =B = Susceptance

Now, since Z =R + jX, we can state that:

1
G+ jB=
TR JX
mes yes, I see, and from this we can conclude: \
1 -1

GZE aﬂd 327

and so forth. Please speed this up and quit wasting my valuable time

making such obvious statements! /




Be Careful!

A: NOOOO! We find that & #1/R and B =1/X (generally). Do not make
this mistake!

I wish I had a
nickel for every
time my
software has
crashed—oh
wait, I do/

In fact, we find that:

R -X
crixr M Bt

Note then that IF X =0 (i.e., Z =R), we get, as expected:

GZE and B=0

And that IF R =0 (i.e., Z =R), we get, as expected:




Admittance and
the Smith Chart

Just like the complex impedance plane, we can plot points and contours on the complex
admittance plane: my) = 8

€—6=75

Re{Y}=6

B=-30 -/\

®y-120- j60

Q: Can we also map these points and contours onto the complex I” plane?

A: You bet! Let's first rewrite the refection coefficient function in terms of line
admittance Y (z):

I'(z)=



Rotation around the Smith Chart

Thus,
-Y =Y
r,=2—-  and r,=23—=
tX%+Y, To%tY,

We can therefore likewise express I" in terms of normalized admittance:

Y-y 1=V} 1-y
,+Y 1+Y/¥ 1+y

=

Note this can likewise be expressed as:

!

le—y’z_y —lzej,,y’—l
1+y' y'+1 y'+1

Contrast this to the mapping between normalized impedance and T':

The difference between the two is simply the factor e/” —a rotation of 180° around the
Smith Chartl.



An_example

For example, let’s pick some load at random; z' =1+ j, for instance. We know where this
point is mapped onto the complex I' plane; we can locate it on our Smith Chart.

Now let's consider a different load, and Im{I'}
express it in terms of its normalized
admittance—an admittance that has the
same numerical value as the impedance of
the first load (i.e., y'=1+ /).

Q: Where would this admittance
value map onto the complex I”
plane?

Re{I'}

A: Start at the location
z'=1+ j on the Smith Chart,

and then rotate around the
center 180°. You are now at
the proper location on the
complex T plane for the
admittance y' =1+ j!

180°




We of course could just directly calculate I from the equation above, and then plot that
point on the I plane.

Note the reflection coefficient for z'=1+ j is:

F—Z’_1—1+J—1— J
241 1+ 41 2+

while the reflection coefficient for y'=1+ j is:

L1y 1m0+ o)
1+y" 1+Q+y) 2+

Note the two results have equal magnitude, but are separated in phase by 180° (-1=e’").
This means that the two loads occupy points on the complex I plane that are a 180°
rotation from each other!

Moreover, this is a true statement not just for the point we randomly picked, but is true
for any and all values of z' and y' mapped onto the complex I plane, provided that z' = y'.



Another example

For example, the g =2 circle
mapped on the complex plane
can be determined by rotating
the r=2 circle 180° around the
complex T plane, and the 6=-1
contour can be found by
rotating the x=-1 contour 180’
around the complex I" plane.

T Imin)

Re{I'}
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Admittance and the Smith Chart present

The Admittance Smith Chart

Thus, rotating all the
resistance circles and
reactance contours of
the Smith Chart 180
around the complex T’
plane provides us a
mapping of complex
admittance onto the
complex I plane:

Note that circles and
contours have been
rotated with respect
to the complex I'
plane—the complex I’
plane remains
unchanged!

Jim Stiles

\ Im{T'}

6/7

The Univ. of Kansas

Dept. of EECS



We're not surprised!

This result should not surprise us. Recall the case where a tfransmission line of length
¢ =A/4 is terminated with a load of impedance z, (or equivalently, an admittance y;). The

input impedance (admittance) for this case is:

In other words, when ¢ =1/4, the input impedance is numerically equal to the load
admittance—and vice versal

But note that if ¢ =1/4, then 24¢ = 7 --a rotation around the Smith Chart of 180°!



Example: Admittance
Calculations with the

Smith Chart

Say we wish to determine the normalized admittance y; of the
network below:

First, we need to determine the normalized input admittance of
the transmission line:




There are two ways to determine this valuel

Method 1

First, we express the load z, =1.6 + j2.6 in terms of its

admittance y, =1/z,. We can calculate this complex value—or
we can use a Smith Chart!

z, =16+ /2.6
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The Smith Chart above shows both the impedance mapping
(red) and admittance mapping (blue). Thus, we can locate the
impedance z, =1.6 + j2.6 on the impedance (red) mapping, and
then determine the value of that same I', point using the
admittance (blue) mapping.

From the chart above, we find this admittance value is
approximately y, =0.17 — j0.28.

Now, you may have noticed that the Smith Chart above, with
both impedance and admittance mappings, is very busy and
complicated. Unless the fwo mappings are printed in different
colors, this Smith Chart can be very confusing to use!

But remember, the two mappings are precisely identical—they're
just rotated 180° with respect to each other. Thus, we can
alternatively determine y, by again first locating z, =1.6 + j2.6

on the impedance mapping :

Z, :16+J26 NS,
/..._> ><\ <X ;




Then, we can rotate the entire Smith Chart 180°--while keeping
the point T',location on the complex I plane fixed.

e e e y, =017 - j0.28

Thus, use the admittance mapping at that point to determine
the admittance value of T, .

Note that rotating the entire Smith Chart, while keeping the
point I, fixed on the complex I plane, is a difficult maneuver to

successfully—as well as accurately—execute.

But, realize that rotating the entire Smith Chart 180° with
respect to point I', is equivalent to rotating 180° the point T,

with respect to the entire Smith Chart!

This maneuver (rotating the point I',) is much simpler, and the
typical method for determining admittance.
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Now, we can determine the value of y; by simply rotating
clockwise 24/ from y,, where ¢ =0.3721:



y, =017 - ,0.28

Transforming the load admittance to the beginning of the
transmission line, we have determined that y, =0.7 - j1.7.

Method 2

Alternatively, we could have first transformed impedance z, to
the end of the line (finding z,,), and then determined the value
of y, from the admittance mapping (i.e., rotate 180" around the
Smith Chart).
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The input impedance is determined after rotating clockwise
2p0,and is z;, =0.2+ j0O.5.

Now, we can rotate this point 180° to determine the input
admittance value y;,:



z, =02+ j05 [

b

The result is the same as with the earlier method--
vy, =07-/17.

Hopefully it is evident that the two methods are equivalent. In
method 1 we first rotate 180°, and then rotate 257. In the
second method we first rotate 25/, and then rotate 180°--the
result is thus the same!

Now, the remaining equivalent circuit is:



, z, = Yin =
% 17 - j1.7 07 - j17

Determining y; is just basic circuit theory. We first express
z, in terms of its admittance y;, =1/z;.

Note that we could do this using a calculator, but could likewise
use a Smith Chart (locate z, and then rotate 180°) to
accomplish this calculation! Either way, we find that
y,=0.3+/0.3.

o @
: Y. = Yin =
% 0.3+,0.3 07 - j17
[ @

Thus, y/ is simply:

N=Yot Y
=(0.3+/0.3)+(0.7 - j1.7)
-10- /14
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