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4.2 – Impedance and 
Admittance Matricies  

 
Reading Assignment: pp. 170-174 
 
A passive load is an example of a 1-port device—only one 
transmission line is connected to it. 
 
However, we often use devices with 2, 3, 4, or even more 
ports—multiple transmission lines can be attached to them! 
 
Q:  But, we use impedance Z, admittance Y, or reflection 
coefficient Γ to characterize a load.  How do we characterize 
a multi-port device? 
 
A:  The analogy to Z, Y, and Γ for a multi-port device is the 
impedance matrix, the admittance matrix and the scattering 
matrix. 
 
 
HO: The Impedance Matrix 
 
HO: The Admittance Matrix 
 
We can determine many thing about a device by simply looking 
at the elements of the impedance and scattering matrix. 
 
HO: Reciprocal and Lossless Devices 
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Q:  But how can we determine/measure the impedance and 
admittance matrix? 
 
A: Example: Evaluating the Admittance Matrix 
 
 
Q: OK, but what are the impedance and admittance matrix 
good for?  How can we use it to solve circuit problems? 
 
 
A: Example: Using the Impedance Matrix 
 
 

jstiles
stop

jstiles
stop
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The Impedance Matrix 
 
Consider the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note in this example, there are four identical transmission lines 
connected to the same “box”.  Inside this box there may be a 
very simple linear device/circuit, or it might contain a very large 
and complex linear microwave system. 
 

( )4 4I z  

( )2 2I z  

port 1 

( )1 1V z
+

−
 

( )4 4V z

+ −
 

( )2 2V z

+ −
 

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 
3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  

( )3 3V z
+

−
 

( )3 3I z  ( )1 1I z  
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 Either way, the “box” can be fully characterized by its 
impedance matrix! 
 
First, note that each transmission line has a specific location 
that effectively defines the input to the device  (i.e., z1P, z2P, 
z3P, z4P). These often arbitrary positions are known as the port 
locations, or port planes of the device. 
 
Thus, the voltage and current at port n is: 
 

( )n n nPV z z=                 ( )n n nPI z z=  
 

We can simplify this cumbersome notation by simply defining 
port n current and voltage as In and Vn : 
 

( )n n n nPV V z z= =                 ( )n n n nPI I z z= =  
 
For example, the current at port 3 would be ( )3 3 3 3PI I z z= = . 
 
Now, say there exists a non-zero current at port 1 (i.e., 1 0I ≠ ), 
while the current at all other ports are known to be zero (i.e., 

2 3 4 0I I I= = = ).   
 
Say we measure/determine the current at port 1 (i.e., 
determine 1I ),  and we then measure/determine the voltage at 
the port 2 plane (i.e., determine 2V ).   
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The complex ratio between 2 1 and V I  is know as the trans-
impedance parameter Z21: 
 

2
21

1

VZ
I

=  

 
Likewise, the trans-impedance parameters Z31 and Z41 are: 
 

3 4
31 41

1 1

         and           VVZ Z
I I

= =  

 
We of course could also define, say, trans-impedance parameter 
Z34 as the ratio between the complex values 4I  (the current 
into port 4) and 3V (the voltage at port 3), given that the 
current at all other ports (1, 2, and 3) are zero. 
 
Thus, more generally, the ratio of the current into port n  and 
the voltage at port m is: 
 
 

        (given that   0  for all )m
mn k

n

VZ I k n
I

= = ≠  
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A:  Place an open circuit at those ports! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Placing an open at a port (and it must be at the port!) enforces 
the condition that 0I = . 

 
 

 

1I  

4 0I =  

3V
+

−
 

2 0I =  

1V
+

−
 

4V+ −  

3 0I =  

2V+ −  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

 

Q:  But how do we ensure 
that all but one port 
current is zero ? 
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Now, we can thus equivalently state the definition of trans-
impedance as:  
 
 

        (given that all ports  are )m
mn

n

VZ k n
I

= ≠ open  

 
 
 
 
 
 
 
 
 
 
 
 
 
A:  OK, say that none of our ports are open-circuited, such 
that we have currents simultaneously on each of the four ports 
of our device.   

 
Since the device is linear, the voltage at any one port due to all 
the port currents is simply the coherent sum of the voltage at 
that port due to each of the currents! 
 
For example, the voltage at port 3 can be determined by: 
 

3 33 3 32 2 31 134 4V Z I Z I Z I Z I= + + +  
 

Q: As impossible as it sounds, 
this handout is even more 
boring and pointless than any 
of your previous efforts.  Why 
are we studying this? After all, 
what is the likelihood that a 
device will have an open circuit 
on all but one of its ports?!    
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More generally, the voltage at port m of an N-port device is: 
 
 

1

N

m mn n
n

V Z I
=

= ∑  

 
 
This expression can be written in matrix form as: 
 

=V IZ  
 
Where I is the vector: 
 

[ ]1 2 3
T

NI ,I ,I , ,I=I "  
 
and V  is the vector: 
 

1 2 3
T

NV ,V ,V , ,V⎡ ⎤= ⎣ ⎦V …  
 

And the matrix  Z  is called the impedance matrix: 
 

11 1

1

n

m mn

Z Z

Z Z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
…

# % #
"

 

 
The impedance matrix is a N  by N  matrix that completely 
characterizes a linear, N -port device.  Effectively, the 
impedance matrix describes a multi-port device the way that LZ  
describes a single-port device (e.g., a load)! 
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But beware! The values of the impedance matrix for a 
particular device or network, just like LZ , are frequency 
dependent!  Thus, it may be more instructive to explicitly 
write: 

 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

Z Z

Z Z

ω ω
ω

ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
…

# % #
"
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The Admittance Matrix 
 
Consider again the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to the Impedance Matrix, we can fully characterize 
this linear device using the Admittance Matrix. 
 
The elements of the Admittance Matrix are the trans-
admittance parameters mnY , defined as: 
 
 

( )4 4I z  

( )2 2I z  

port 1 

( )1 1V z
+

−
 

( )4 4V z

+ −
 

( )2 2V z

+ −
 

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 
3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  

( )3 3V z
+

−
 

( )3 3I z  ( )1 1I z  
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        (given that   0  for all )m
mn k

n

IY V k n
V

= = ≠  

 
 
 
Note here that the voltage at all but one port must be equal to 
zero.  We can ensure that by simply placing a short circuit at 
these zero voltage ports! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note that 1mn mnY Z≠ !  

 
 

 
 

 

1I  

2 0V =  

1V
+

−
 

2I  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

3I  

4I  

3 0V =  

4 0V =  
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Now, we can thus equivalently state the definition of trans-
admittance as:  
 
 

        (given that all ports  are )m
mn

n

VY k n
I

= ≠ short -circuited  

 
 
 
Just as with the trans-impedance values, we can use the trans-
admittance values to evaluate general circuit problems, where 
none of the ports have zero voltage.  
 
Since the device is linear, the current at any one port due to all 
the port currents is simply the coherent sum of the currents at 
that port due to each of the port voltages! 
 
For example, the current at port 3 can be determined by: 
 

3 33 3 32 2 31 134 4I Y V Y V Y V Y V= + + +  
 
More generally, the current at port m of an N-port device is: 
 
 

1

N

m mn n
n

I Y V
=

= ∑  

 
 
This expression can be written in matrix form as: 
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=I VY  
 
Where I is the vector: 
 

[ ]1 2 3
T

NI ,I ,I , ,I=I "  
 
and V  is the vector: 
 

1 2 3
T

NV ,V ,V , ,V⎡ ⎤= ⎣ ⎦V …  
 

And the matrix Y  is called the admittance matrix: 
 

11 1

1

n

m mn

Y Y

Y Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y
…

# % #
"

 

 
The admittance matrix is a N  by N  matrix that completely 
characterizes a linear, N -port device.  Effectively, the 
admittance matrix describes a multi-port device the way that LY  
describes a single-port device (e.g., a load)! 
 

But beware! The values of the admittance matrix for a 
particular device or network, just like LY , are frequency 
dependent!  Thus, it may be more instructive to explicitly 
write: 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

Y Y

Y Y

ω ω
ω

ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y
…

# % #
"
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Q: You said earlier that 1mn mnY Z≠ .  Is there any relationship 
between the admittance and impedance matrix of a given 
device? 
 
A: I don’t know! Let’s see if we can figure it out. 
 
Recall that we can determine the inverse of a matrix.  Denoting 
the matrix inverse of the admittance matrix as 1−Y , we find: 
 

( )
( )

1 1

1 1

1

− −

− −

−

=

=

=

=

I V
I V

I V

I V

Y

Y Y Y

Y Y Y

Y

 

 
Meaning that: 

1−=V IY  
 

But, we likewise know that: 
 

=V IZ  
 

By comparing the two previous expressions, we can conclude: 
 
 

1 1and− −= =Y YZ Z  
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Reciprocal and  
Lossless Networks 

 
We can classify multi-port devices or networks as either 
lossless or lossy; reciprocal or non-reciprocal.  Let’s look at 
each classification individually: 
 
Lossless 
 
A lossless network or device is simply one that cannot absorb 
power.  This does not mean that the delivered power at every 
port is zero; rather, it means the total power flowing into the 
device must equal the total power exiting the device. 
 
A lossless device exhibits an impedance matrix with an 
interesting property.  Perhaps not surprisingly, we find for a 
lossless device that the elements of its impedance matrix will 
be purely reactive: 
 
 

{ } 0 for a device.mnRe Z = lossless  
 
 

If the device is lossy, then the elements of the impedance 
matrix must have at least one element with a real (i.e., 
resistive) component. 
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Moreover, we similarly find that if the elements of an 
admittance matrix are all purely imaginary (i.e., { } 0mnRe Y = ), 
then the device is lossless. 
 
Reciprocal 
 
Generally speaking, most passive, linear microwave 
components will turn out to be reciprocal—regardless of 
whether the designer intended it to be or not! 
 
Reciprocity is basically a “natural” effect of using simple 
linear materials such as dielectrics and conductors.  It results 
from a characteristic in electromagnetics called 
“reciprocity”—a characteristic that is difficult to prevent! 
 
But reciprocity is a tremendously important characteristic, as 
it greatly simplifies an impedance or admittance matrix! 
 
Specifically, we find that a reciprocal device will result in a 
symmetric impedance and admittance matrix, meaning that: 
 
 

mn nmZ Z=      mn nmY Y=     for reciprocal devices 
 
 
For example, we find for a reciprocal device that 23 32Z Z= , 
and 21 12Y Y= . 
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Let’s illustrate these concepts with four examples: 
 
 

2 0 1 3
1 1

4 2 0 5

j . j
j

.

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

Z             Neither lossless nor reciprocal. 

 
 

2 0 1 3
1 1

4 2 0 5

j j . j
j j j

j j j .

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

Z            Lossless, but not reciprocal. 

 
 

2 4
1 2

4 2 0 5

j j
j j

j j .

−⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

Z            Reciprocal, but not lossless. 

 
 

2 4
2

4 2 0 5

j j j
j j j

j j j .

−⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

Z            Both reciprocal and lossless. 
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0Z β,  

I1 

2R 0Z β,  

I2 

R  + 
V2  
 - 

 + 
V1  
 - 

Example: Evaluating the  
Admittance Matrix 

 
Consider the following two-port device: 
 
 
 
 
 
 
 
 
 
Let’s determine the admittance matrix of this device! 
 
Step 1:  Place a short at port 2. 
 
 
 
 
 
 
 
 

0Z β,  

I1 

2R 
 

I2 

R 
 

 + 
V2 =0 
 - 

 + 
V1  
 - 
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Step 2:  Determine currents I1  and I2 . 
 
Note that after the short was placed at port 2, both 
resistors are in parallel, with a potential V2  across each. 
 
The current I1  is thus simply the sum of the two currents 
through each resistor: 

11 1
1

3
2 2

VV VI
R R R

= + =  

 
The current I2 is simply the opposite of the current through 
R: 

1
2

VI
R

= −  

 
Step 3:  Determine trans-admittance Y11 and Y21 . 
 

1
11

1

3
2

IY
V R

= =  

 
 

2
21

1

1IY
V R

= = −  

 
Note that 21Y  is real—but negative!   
 
This is still a valid physical result, although you will find that 
the diagonal terms of an impedance or admittance matrix 
(e.g., 22Y , 11Z , 44Y ) will always have a real component that is 
positive. 
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To find the other two trans-admittance parameters, we must 
move the short and then repeat each of our previous steps! 
 
Step 1:  Place a short at port 1. 
 
 
 
 
 
 
 
 
Step 2:  Determine currents I1 and I2 . 
 
Note that after a short was placed at port 1, resistor 2R has 
zero voltage across it—and thus zero current through it! 
 
Likewise, from KVL we find that the voltage across resistor R 
is equal to V2. 
 
Finally, we see from KCL that 1 2I I= . 
 
The current I2  thus:  

2
2

VI
R

=  

 
and thus: 

2
1

VI
R

= −  

 

I1 

2R 
 

0Z β,  

I2 

R 
     + 

V1 =0 
    - 

 + 
V2  
 - 
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Step 3:  Determine trans-admittance Y12 and Y22 . 
 

1
12

2

1IY
V R

= = −  

 
2

22
2

1IY
V R

= =  

 
The admittance matrix of this two-port device is therefore: 
 

1 5 11
1 1
.

R
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
Y  

 
Note this device (as you may have suspected) is lossy and 
reciprocal. 
 
Q:  What about the impedance matrix?  How can we 
determine that? 
 
A:  One way is simply determine the inverse of the 
admittance matrix above. 
 

1

11 5 1
1 1

2 2
2 3

.
R

R

−

−

=

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

YZ
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A: Another way to determine the impedance matrix is simply 
to apply the definition of trans-impedance to directly 
determine the elements of the impedance matrix—similar to 
how we just determined the admittance matrix! 
 
Specifically, follow these steps: 
 
Step 1:  Place an open at port 2 (or 1) 
 
Step 2:  Determine voltages V1 and V2 . 
 
Step 3: Determine trans-impedance Z11 and Z21  (or Z12 and 

Z22  ). 
 
You try this procedure on the circuit of this example, and 
make sure you get the same result for Z  as we determined on 
the previous page (from matrix inversion)—after all, you want 
to do well on my long, scary, evil exam! 

Q: But I don’t know how to 
invert a matrix!  How can I 
possibly pass one of your 
long, scary, evil exams? 
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Example: Using the 
Impedance Matrix 

 
Consider the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where the 3-port device is characterized by the impedance 
matrix: 
 

2 1 2
1 1 4
2 4 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z  

 
Let’s now determine all port voltages  1 2 3V ,V ,V  and all currents 

1 2 3I ,I ,I . 

1I  

3I  

2V
+

−
 1V

+

−
 

3V+ −  

2I  

Z  + 
- 

1 

16 

1 
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A:  We don’t need to know what’s inside that box!  We know 
its impedance matrix, and that completely characterizes the 
device (or, at least, characterizes it at one frequency). 
 
Thus, we have enough information to solve this problem.  From 
the impedance matrix we know: 
 

1 1 2 3

2 1 2 3

3 1 2 3

2 2

4

2 4

V I I I

V I I I

V I I I

= + +

= + +

= + +

 

 
 
 
 
 
 
 
A:  True!  The impedance matrix describes the device in the 
box, but it does not describe the devices attached to it.  We 
require more equations to describe them. 

 

Q: How can we do that—we 
don’t know what the device 
is made of!  What’s inside 
that box? 

 

Q: Wait! There are 
only 3 equations 
here, yet there are 
6 unknowns!? 
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1.  The source at port 1 is described by the equation: 
 

( )1 116 0 1V . I= −  
 

2.  The short circuit on port 2 means that: 
 

2 0V =  
 

3.  While the load on port 3 leads to: 
 
                                            ( )3 31V I= −    (note the minus sign!) 

 
Now we have 6 equations and 6 unknowns! Combining equations, 
we find: 
 

1 1 1 2 3

1 2 3

16 2 2
16 3 2

V I I I I
I I I

= − = + +

∴ = + +
 

 
2 1 2 3

1 2 3

0 4
0 4

V I I I
I I I

= = + +

∴ = + +
 

 
3 3 1 2 3

1 2 3

2 4
0 2 4 2

V I I I I
I I I

= − = + +

∴ = + +
 

 
Solving, we find (I’ll let you do the algebraic details!): 
 

1 7 0I .=             2 3 0I .= −           3 1 0I .= −  
 

1 9 0V .=                2 0 0V .=              3 1 0V .=  


