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4.5 – Signal Flow Graphs 
 

Reading Assignment: pp. 189-197 
 
Q:  Using individual device scattering parameters to analyze a 
complex microwave network results in a lot of messy math! 
Isn’t there an easier way? 
 
A: Yes! We can represent a microwave network with its signal 
flow graph.   
 
HO:  SIGNAL FLOW GRAPHS 
 
Then, we can decompose this graph using a set of standard 
rules. 
 
HO:  SERIES RULE 
 
HO:  PARALLEL RULE 
 
HO:  SELF-LOOP RULE 
 
HO:  SPLITTING RULE 
 
It’s sort of a graphical way to do algebra!  Let’s do some 
examples: 
EXAMPLE:  DECOMPOSITION OF SIGNAL FLOW GRAPHS 
 
EXAMPLE:  SIGNAL FLOW GRAPH ANALYSIS 
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Signal Flow graphs can likewise help us understand the 
fundamental physical behavior of a network or device.  It can 
even help us approximate the network in a way that makes it 
simpler to analyze and/or design! 
 
HO:  THE PROPAGATION SERIES 
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Signal Flow Graphs 
 
Consider a complex 3-port microwave network, constructed of 
5 simpler microwave devices: 
 
 
 
 
 
 
 
 
 
 
 
 
where nS  is the scattering matrix of each device, and S  is 
the overall scattering matrix of the entire 3-port network. 
 
Q:  Is there any way to determine this overall network 
scattering matrix S  from the individual device scattering 
matrices nS  ?  
 
A:  Definitely! Note the wave exiting one port of a device is a 
wave entering (i.e., incident on) another (and vice versa).  This 
is a boundary condition at the port connection between 
devices.   

1S  

5S  
4S  

3S  2S  

S  
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Add to this the scattering parameter equations from each 
individual device, and we have a sufficient amount of math to 
determine the relationship between the incident and exiting 
waves of the remaining three ports—in other words, the 
scattering matrix of the 3-port network! 
 
Q: Yikes! Wouldn’t that require a lot of tedious algebra! 
 
A:  It sure would!  We might use a computer to assist us, or 
we might use a tool employed since the early days of 
microwave engineering—the signal flow graph.  
 
Signal flow graphs are helpful in (count em’) three ways! 

 
Way 1 -  Signal flow graphs provide us with a graphical 
means of solving large systems of simultaneous equations. 
 

Way 2 –  We’ll see the a signal flow graph 
can provide us with a road map of the wave 
propagation paths throughout a microwave 
device or network.  If we’re paying 
attention, we can glean great physical 
insight as to the inner working of the 
microwave device represented by the graph. 

 
Way 3 - Signal flow graphs provide us with a 
quick and accurate method for approximating 
a network or device.  We will find that we can 
often replace a rather complex graph with a 
much simpler one that is almost equivalent. 
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We find this to be very helpful when designing microwave 
components.  From the analysis of these approximate graphs, 
we can often determine design rules or equations that are 
tractable, and allow us to design components with (near) 
optimal performance. 
 
Q: But what is a signal flow graph? 
 
A: First, some definitions! 
 
Every signal flow graph consists of a set of nodes.  These 
nodes are connected by branches, which are simply contours 
with a specified direction.  Each branch likewise has an 
associated complex value. 
 
 
 
 
 
 
 
Q: What could this possibly have to do with microwave 
engineering? 
 
A: Each port of a microwave device is represented by two 
nodes—the “a ” node and the “b ” node.  The “a ” node simply 
represents the value of the normalized amplitude of the wave 
incident on that port, evaluated at the plane of that port: 
 

j 
0.5 

-0.1 

-j0.2 

0.7 
0.1 
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( )
0

n n nP
n

n

V z za
Z

+ =
 

 
Likewise, the “b” node simply represents the normalized 
amplitude of the wave exiting that port, evaluated at the 
plane of that port: 

( )
0

n n nP
n

n

V z zb
Z

− =
 

 
 
Note then that the total voltage at a port is simply: 
 

( ) ( ) 0n n nP n n nV z z a b Z= = +  
 
The value of the branch connecting two nodes is simply the 
value of the scattering parameter relating these two voltage 
values: 
 
 
 
 
The signal flow graph above is simply a graphical 
representation of the equation:  
 

m mn nb S a=  
 
Moreover, if multiple branches enter a node, then the voltage 
represented by that node is the sum of the values from each 
branch.  For example, the signal flow graph: 

( )
0

n n nP
n

n

V z za
Z

+ =
 ( )

0

m m mP
m

m

V z z
b

Z

− =
 

mnS  
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is a graphical representation of the equation: 
 

1 11 1 12 2 13 3b S a S a S a= + +  
 

Now, consider a two-port device with a scattering matrix S : 
 

11 12

21 22

S S
S S
⎡ ⎤
⎢ ⎥
⎣ ⎦

=S  

So that: 
 

1 11 1 12 2

2 21 1 22 2

b S a S a

b S a S a

= +

= +

 

 
We can thus graphically represent a two-port device as: 
 
 

 
 

 
 
 
 

1b  

1a  
11S  

12S  
13S  

2a  
3a  

1b  

1a  

11S  

12S  

21S  

2a  

2b  

22S  
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Now, consider a case where the second port is terminated by 
some load LΓ :  
 
  
 
 
We now have yet another equation: 
 

( ) ( )2 2 2 2 2 2

2 2

P L P

L

V z z V z z
a b

+ −= = Γ =

= Γ
 

 
Therefore, the signal flow graph of this terminated network 
is: 
 
 
 
 
 
 
 
Now let’s cascade two different two-port networks 
 
 
 
 
 
Here, the output port of the first device is directly 
connected to the input port of the second device.  We 
describe this mathematically as: 
 

S  LΓ  

1b  

1a  

11S  

12S  

21S  

2a  

2b  

22S  

LΓ  

yS  LΓ  xS  
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1 2
y xa b=          and         1 2

y xb a=  
 

Thus, the signal flow graph of this network is: 
 
 
 
 
 
 
 
 
Q:  But what happens if the networks are connected with 
transmission lines? 
 
A:  Recall that a length  of transmission line with 
characteristic impedance Z0  is likewise a two-port device. Its 
scattering matrix is: 
 

0
0

j

j

e
e

β

β

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=S  

 
Thus, if the two devices are connected by a length of 
transmission line: 
 
 
 
 
 
 

1
yb  

1
ya  

11
yS  

12
yS  

21
yS  

2
ya  

2
yb  

22
yS  

LΓ  
1
xb  

1
xa  

11
xS  

12
xS  

21
xS  

2
xa  

2
xb  

22
xS  

1 

1 

LΓ  yS  xS  

 

1
xa  2

xb  
1
ya  

2
yb  

1
xb  2

xa  
1
yb  

2
ya  0Z  
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1 2 2 1
j jy yx xa e b a e bβ β− −= =  

 
so the signal flow graph is: 
 
 
 
 
 
 
 
 
Note that there is one (and only one) independent variable in 
this representation.   
 

This independent variable is node 1
xa . 

 
This is the only node of the sfg that does not have any 
incoming branches.  As a result, its value depends on no other 
node values in the sfg.   
 

 From the standpoint of a sfg, independent nodes are 
essentially sources! 

 
Of course, this likewise makes sense physically (do you see 
why?).  The node value 1

xa  represents the complex amplitude 
of the wave incident on the one-port network.  If this value is 
zero, then no power is incident on the network—the rest of 
the nodes (i.e., wave amplitudes) will likewise be zero! 
 
 

1
yb  

1
ya  

11
yS  

12
yS  

21
yS  

2
ya  

2
yb  

22
yS  

LΓ  
1
xb  

1
xa  

11
xS  

12
xS  

21
xS  

2
xa  

2
xb  

22
xS  

je β−  

je β−  
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Now, say we wish to determine, for example: 
 

1. The reflection coefficient inΓ  of the one-port device. 
 

2. The total current at port 1 of second network (i.e., 
network y). 

 
3. The power absorbed by the load at port 2 of the 

second (y) network. 
 
In the first case, we need to determine the value of 
dependent node 1

xb : 
1

1

x

in x
b
a

Γ =  

 
For the second case, we must determine the value of wave 
amplitudes 1

ya  and 1
yb : 

1 1
1

0

y y
y a bI

Z
−

=  

 
And for the third and final case, the values of nodes 2

ya  and 
2
yb  are required: 

2 2
2 2

2

y y

abs
b a

P
−

=  

 
Q:  But just how the heck do we determine the values of 
these wave amplitude “nodes”? 
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A:  One way, of course, is to solve the simultaneous equations 
that describe this network.   
 
From network x and network y: 
 

1 11 1 12 2

2 21 1 22 2

x x x x x

x x x x x

b S a S a

b S a S a

= +

= +

                  
1 11 1 12 2

2 21 1 22 2

y y y y y

y y y y y

b S a S a

b S a S a

= +

= +

 

 
From the transmission line: 
 

1 2 2 1
j jy yx xa e b a e bβ β− −= =  

 
And finally from the load: 

2 2La b= Γ  
 
But another, EVEN BETTER way to determine these values is 
to decompose (reduce) the signal flow graph! 
 
Q:  Huh? 
 
A:  Signal flow graph reduction is a method for simplifying 
the complex paths of that signal flow graph into a more direct 
(but equivalent!) form. 
 
Reduction is really just a graphical method of decoupling the 
simultaneous equations that are described by the sfg. 
 
For instance, in the example we are considering, the sfg : 
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might reduce to: 
 
 
 
 
 
 
 
 
From this graph, we can directly determine the value of each 
node (i.e., the value of each wave amplitude), in terms of the 
one independent variable 1

xa . 
 

8

1 1

2 1 2 1

1 1 1 1

2 1 2 1

0 2
0 6 0 1

0 05 0 1
0 3 0 2

.

. .

. .

. .

π

x x

x x x x

jy yx x

y yx x

b a
b a a j a
b a a e a
b a a a

−

= −

= − =

= =

= = −

 

 
And of course, we can then determine values like: 
 

1.           11

1 1

0 2 0 2.
.

xx

in x x
ab

a a
−

Γ = = = −  

1
yb  

1
ya  

11
yS  

12
yS  

21
yS  

2
ya  

2
yb  

22
yS  

LΓ  
1
xb  

1
xa  

11
xS  

12
xS  

21
xS  

2
xa  

2
xb  

22
xS  

je β−  

je β−  

0 2.−  

1
yb  

1
ya  

0 2j .−  
0 3.  

2
ya  

2
yb  

0 05.  

0 6.−  

1
xb  

1
xa  

2
xa  

2
xb  

0 1j .  

80 1 j. e − π  
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2.           
8

1 1
1 1

0 0

0 1 0 05. .πjy y
y xea bI a

Z Z

− −−
= =  

 

3.       ( ) ( )
2 2 2 2

22 2
1

0 3 0 2
2 2

. .y y
x

abs
b a

P a
− −

= =   

 
Q: But how do we reduce the sfg to its simplified state?  
Just what is the procedure? 
 
A: Signal flow graphs can be reduced by sequentially applying 
one of four simple rules.   
 
Q:  Can these rules be applied in any order? 
 
A:  No! The rules can only be applied when/where the 
structure of the sfg allows.  You must search the sfg for 
structures that allow a rule to be applied, and the sfg will 
then be (a little bit) reduced.  You then search for the next 
valid structure where a rule can be applied.   
Eventually, the sfg will be completely reduced! 
 
Q: ???? 
 
A:  It’s a bit like solving a puzzle.  Every sfg is 
different, and so each will require a different 
reduction procedure.  It requires a little thought, 
but with a little practice, the reduction procedure is 
easily mastered. 
 
You may even find that it’s kind of fun! 
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Series Rule 
 
Consider these two complex equations: 
 

1 1 2 1b a a bα β= =  
 

where α and β are arbitrary complex constants.  Using the 
associative property of multiplication, these two equations 
can combined to form an equivalent set of equations:  
 

( ) ( )1 1 2 1 1 1b a a b a aα β β α αβ= = = =  
 

Now let’s express these two sets of equations as signal flow 
graphs! 
 
The first set provides: 
 
 
 
While the second is: 
 
 
 
 
 
Q:  Hey wait! If the two sets of equations are equivalent, 
shouldn’t the two resulting signal flow graphs likewise be 
equivalent? 
 

α  β  a1 b1 a2 

αβ  

α  
a1 

a2 b1 

1 1

2 1

b a
a b

α
β

=

=
 

1 1

2 1

b a
a a

α
αβ

=
=
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A:  Absolutely! The two signal flow graphs are indeed 
equivalent. 
 
This leads us to our first signal flow graph reduction rule: 
 

 
Rule 1 -  Series Rule 

 
If a node has one (and only one!) incoming branch, and 
one (and only one!) outgoing branch, the node can be 
eliminated and the two branches can be combined, with 
the new branch having a value equal to the product of 
the original two. 

 
 
 
For example, the graph: 
 
 
 
 
can be reduced to: 
 
 
 
 
 
 

 

0 3.  j−  

a1 b1 a2 

0 3j .−  

0 3.  
a1 

a2 b1 

1 1

2 1

0 3
0 3

b . a
a j . a
=

= −
 

1 1

2 1

0 3b . a
a j b
=

= −
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Parallel Rule 
 
Consider the complex equation: 
 

1 1 1b a aα β= +  
 

where α and β are arbitrary complex constants.  Using the 
distributive property, the equation can equivalently  be 
expressed as:  

( )1 1b aα β= +  
 

Now let’s express these two equations as signal flow graphs! 
 
The first is: 
 
 
 
 
 
With the second: 
 
 
 
 
Q:  Hey wait! If the two equations are equivalent, shouldn’t 
the two resulting signal flow graphs likewise be equivalent? 
 

β  

α  a1 
b1 

1 1 1b a aα β= +  

α β+  
a1 

b1 ( )1 1b aα β= +  
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A:  Absolutely! The two signal flow graphs are indeed 
equivalent. 
 
This leads us to our second signal flow graph reduction rule: 
 
 

 
Rule 2 - Parallel Rule 

 
If two nodes are connected by parallel branches—and 
the branches have the same direction—the branches 
can be combined into a single branch, with a value equal 
to the sum of each two original branches. 

 
 
 
For example, the graph: 
 
 
 
 
 
 
Can be reduced to: 
 
 
 
 
 
 

0 3.  

0 2.  a1 
b1 

1 1 10 3 0 2b . a . a= +  

( )1 1

1

0 3 0 2
0 5

b . . a
. a

= +

=
 

0 5.  b1 
a1 
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Q:  What about this signal flow graph? 
 
 
 
 
 
 
 
 
Can I rewrite this as: 
 
 
 
 
 
 
so that (since 0.3-0.2=0.1): 
 
 
 
 
A:  Absolutely not!  NEVER DO THIS!!   
 
Q: Maybe I made a mistake. Perhaps I should have rewritten: 
 
 
 
 
 
 

0 3.  

0 2.  a1 
b1 

note 
direction! 

0 3.  

-0 2.  a1 
b1 

0 1.  b1 
a1 ??? 

0 3.  

0 2.  a1 
b1 

note 
direction! 
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as this: 
 
 
  
 
 
so that (since 5.0+0.3=5.3): 
 
 
 
 
A:  Absolutely not!  NEVER DO THIS EITHER!!   
 
From the signal flow graph below, we can only conclude that 

1 10.3b a=  and 1 10.2a b= .   
 
 
 
 
Using the series rule (or little bit of algebra), we can conclude 
that an equivalent signal flow graph to this is: 
 

1 1

1 1

0.06
0.3

a a
b a

=

=
 

 
 
 
 
Q: Yikes! What kind of goofy branch begins and ends at 
the same node?  

0 3.  

0 06.  

a1 
b1 

0 3.  

1
0 25 .=  a1 

b1 

5 3.  b1 
a1 ??? 

0 3.  

0 2.  a1 
b1 
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A: Branches that begin and end at the same node 
are called self-loops. 
 

 
Q:  Do these self-loops actually appear in signal flow graphs? 
 
A:  Yes, but the self-loop node will always have at least one 
other incoming branch.  For example: 
 

1 1 2

1 1

0.06
0.3

a a j b
b a

= −

=
 

 
 
 
 
 
 
 
Q:  But how do we reduce a signal flow graph containing a 
self-loop? 
 
A:  See rule 3 ! 

 

0 3.  

0 06.  

a1 
b1 

b2 j−  
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Self-Loop Rule 
 
Now consider the equation: 
 

21 11a ab bα β γ= + +  
 

A little dab of algebra allows us to determine the value of 
node 1b : 

( )

1 1 2 1

1 1 1 2

1 1 2

1 1 2

1

1 1

b a

b

a b

b b a a

b a

a a

a

α β γ

γ α β

α β
γ

γ α

γ

β

= + +

− = +

− =

= +
− −

+

 

 
The signal flow graph of the first equation is: 
 
 
 
 
 
 
 
 
 
 

γ  
α  

β  a1 
b1 a2 

1 1 2 1b a a bα β γ= + +  
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While the signal flow graph of the second is: 
 
 
 
 
 
These two signal flow graphs are equivalent! 
 
Note the self-loop has been “removed” in the second graph.  
Thus, we now have a method for removing self-loops.  This 
method is rule 3. 
 
 

 
Rule 3 – Self-Loop Rule 

 
A self-loop can be eliminate by multiplying all of the 
branches “feeding” the self-loop node by ( )1 1 slS− , 
where slS  is the value of the self loop branch. 

 
 
 
For example: 
 
 
 
 
 
 

0 2.  
0 6.  

0 4j .  

b1 

a1 a2 

1 1 2 10 6 0 4 0 2b . a j . a . b= + +  

1
α
γ−

 
a1 

a2 
b1 

1
β
γ−

 
1 1 21 1

b a aα β
γ γ

= +
− −
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can be simplified by eliminating the self-loop.   We multiply 
both of the two branches feeding the self-loop node by: 
 

1 1 1 25
1 1 0 2sl

.
S .

= =
− −

 

 
Therefore: 
 
 
 
 
 
And thus: 
 
 
 
 
 
 
Or another example: 
 
 

1 1 2

1 1

0.06
0.3

a a j b
b a

= −

=
 

 
 
 
 
 
 

( )0 6 1 25. .  

( )0 4 1 25j . .  

a1 a2 
b1 

0 75.  

0 5j .  

a1 a2 
b1 

1 1 20 75 0 5b . a j . a= +  

0 3.  

0 06.  

a1 
b1 

b2 j−  
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becomes after reduction using rule 3: 
 

1 2

1 1

0.94

0.3

ja b

b a

−
=

=

 

 
 
Q:  Wait a minute! I think you forgot something.  Shouldn’t 
you also divide the 0.3 branch value by 1 0.06 0.94− = ?? 
 

A:  Nope!  The 0.3 branch is exiting the self-loop node a1. 
Only incoming branches (e.g., the –j branch) to the self-
loop node are modified by the self-loop rule! 

 
 

0 3.  

a1 
b1 

b2 
0 94

j
.
−  
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Splitting Rule 
 
Now consider these three equations: 
 

1 1

2 1

3 1

b a
a b
a b

α
β
γ

=

=

=

 

 
Using the associative property, we can likewise write an 
equivalent set of equations: 
 

1 1

2 1

3 1

b a
a a
a b

α
αβ
α

=
=

=

 

 
The signal flow graph of the first set of equations is: 
 
 
 
 
 
 
While the signal flow graph of the second is: 
 
 
 
 
 

β  

α  

γ  

a1 

a2 

b1 

a3 

αβ  

γ  α  
a1 

b1 

a2 

a3 
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Rule 4 – Splitting Rule  

 
If a node has one (and only one!) incoming branch, and 
one (or more) exiting branches, the incoming branch 
can be “split”, and directly combined with each of the 
exiting branches. 
 

 
 
 
For example: 
 
 
 
 
 
can be rewritten as: 
 
 
 
 
 
 
 
 
 
 
 

0 3.  

j−  

0 2.−  

a1 

a2 

b1 

a3 

0 3j .−  

0 2.−  j−  
a1 

b1 

a2 

a3 

1 1

2 1

3 1

0 3
0 2

b j a
a . b
a . b

= −

=

= −

 

1 1

2 1

3 1

0 3
0 2

b j a
a j . a
a . b

= −

= −

= −
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Of course, from rule 1 (or from rule 4!), this graph can be 
further simplified as: 
 
 
 
 
 
 
 
The splitting rule is particularly useful when we encounter 
signal flow graphs of the kind: 
 
 
 
 
 
 
 
We can split the -0.2 branch, and rewrite the graph as: 
 
 
 
 
 
 
Note we now have a self-loop, which can be eliminated using 
rule #3: 
 
 
 

0 3.  
j−  

0 2.−  

0 1j .  

0 3j .−  

0 2j .  

a1 b1 

a2 

a3 

j−  1 1

2 1

3 1

0 3
0 2

b j a
a j . a
a j . a

= −

= −

=

 

Note this node has only 
one incoming branch !! 

( )0 2 0 3. .−  

j−  

0 2.−  
0 1j .  

0 2.−  0 1j .  1 0 06
j
.

−
+

 

Note this node has two 
incoming branches !!  
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Note that this graph can be further simplified using rule #1. 
 
 
 
 
 
 
Q: Can we split the other branch of the loop?  Is this signal 
flow graph: 
 
 
 
 
 
Likewise equivalent to this one ??: 
 
 
 
 
 
 

A:  NO!! Do not make this mistake! We cannot split 
the 0.3 branch because it terminates in a node with 
two incoming branches (i.e., -j and 0.3).  This is a 
violation of rule 4. 

 
Moreover, the equations represented by the two signal flow 
graphs are not equivalent—they two graphs describe two 
different sets of equations! 
 

0 1j .  
0 94j .−  

1 89j .−  

( )0 2 0 3. .−  

j−  

0 2.−  
0 1j .  

0 3.  
j−  

0 2.−  

0 1j .  
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It is important to remember that there is no “magic” behind 
signal flow graphs. They are simply a graphical method of 
representing—and then solving—a set of linear equations.  
 
As such, the four basic rules of analyzing a signal flow graph 
represent basic algebraic operations.  In fact, signal flow 
graphs can be applied to the analysis of any linear system, not 
just microwave networks. 
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Example: Decomposition of 
Signal Flow Graphs 

 
Consider the basic 2-port network, terminated with load LΓ . 
 
 
 
 
 
 
 
 
Say we want to determine the value: 
 

( )
( )

1 1 1
1

1 1 1

P

P

V z z b
V z z a

−

+

=
Γ =

=
   ?? 

 
In other words, what is the reflection coefficient of the 
resulting one-port device? 
 
Q:  Isn’t this simply S11 ? 
 
A:  Only if 0LΓ =  (and it’s not)!! 
 
So let’s decompose (simplify) the signal flow graph and find out! 
 

1b  

1a  

11S  

12S  

21S  

2a  

2b  

22S  

LΓ  

S  LΓ  1 2 
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Step 1:   Use rule #4 on node a2 

 

 

 

 

 

 

 

 

Step 2:  Use rule #3 on node b2 
 
 
 
 
 
 
 
 
 
 
Step 3:  And then using rule #1: 
 
 
 
 
 
 
 
 
 
 

1b  

1a  

11S  

21S  

2a  

2b  

LΓ  
12S  

22 LS Γ  

1b  

1a  

11S  

2a  

2b  

LΓ  

21

221 L

S
S− Γ

 

12S  

1b  

1a  

11S  

21 12

221
L

L

S S
S

Γ
− Γ

 

21

221 L

S
S− Γ

 
2b  

2a  

21

221
L

L

S
S
Γ

− Γ
 



 

3/13/2009 Example Decomposition of Signal Flow Graph 3/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Step 4:  Use rule 2 on nodes a1 and b1 
 
 
 
 
 
 
 
 
 
Therefore: 
 

21 121
1 11

1 221
L

L

S Sb S
a S

Γ
Γ = = +

− Γ
 

 
 
Note if 0LΓ = , then 1

11
1

b Sa =   ! 

1b  

1a  

21 12
11

221
L

L

S SS
S

Γ
+

− Γ
 21

221
L

L

S
S
Γ

− Γ
 

21

221 L

S
S− Γ

 
2b  

2a  
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Example: Analysis Using 
Signal Flow Graphs 

 
Below is a single-port device (with input at port 1a) constructed 
with two two-port devices ( xS and yS ), a quarter wavelength 
transmission line, and a load impedance. 
 
 
 
 
 
 
 
 
Where 0 50Z = Ω . 
 
The scattering matrices of the two-port devices are: 
 

0.35 0.5
0.5 0x

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

S                 
0 0.8

0.8 0.4y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S  

 
Likewise, we know that the value of the voltage wave incident on 
port 1 of device xS  is: 
 

( )01 1 1
1

0

2 2
550

x x xP
x

V z z j ja V
Z

+ =
= =  

 

yS  0 5L .Γ =  
0Z  

4λ=  

xS  

port 1x 
(input) 

port 2x port 1y port 2y 

0Z  

j2 
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Now, let’s draw the complete signal flow graph of this circuit, 
and then reduce the graph to determine: 
 
 a)  The total current through load ΓL . 
 
 b)  The power delivered to (i.e., absorbed by ) port 1x. 
 
The signal flow graph describing this network is: 
 
 
 
 
 
 
 
 
 
 
Inserting the numeric values of branches: 
 
 
 
 
 
 
 
 
 
 
 
 

1xa  

11yS  

12yS  

21yS  
2yb  

22yS  

LΓ  

11xS  

12xS  

21xS  

22xS  

1xb  

2xb  

2xa  

1ya  

1yb  2ya  

je β−  

je β−  

2
51xa j=  

0 0.  

0 8.  

0 8.  
2yb  

0 4.  

0 5.  

0 35.  

0 5.  

0 5.  

0 0.  

1xb  

2xb  

2xa  

1ya  

1yb  2ya  

j−  

j−  
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Removing the zero valued branches:  
 
 
 
 
 
 
 
 
 
And now applying “splitting” rule 4: 
 
 
 
 
 
 
 
 
 
Followed by the “self-loop” rule 3: 
 
 
 
 
 
 
 
 
 
 

2
51xa j=  

0 8.  

0 8.  
2yb  

0 4.  

0 5.  

0 35.  

0 5.  

0 5.  

1xb  

2xb  

2xa  

1ya  

1yb  2ya  

j−  

j−  

2
51xa j=  

0 8.  

0 8.  2yb  

( )0 4 0 5 0 2. . .=  
0 5.  

0 35.  

0 5.  

0 5.  

1xb  

2xb  

2xa  

1ya  

1yb  2ya  

j−  

j−  

2
51xa j=  

0 8.  

2yb  
0 8 1 0

1 0 2
. .

.
=

−
 

0 5.  

0 35.  

0 5.  

0 5.  

1xb  

2xb  

2xa  

1ya  

1yb  2ya  

j−  

j−  
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Now, let’s used this simplified signal flow graph to find the 
solutions to our questions! 
 
a)  The total current through load ΓL . 
 
The total current through the load is: 
 

( )
( ) ( )
2 2

02 2 2 02 2 2

0

2 2

0

2 2

50

L y yP

y y yP y y yP

y y

y y

I I z z

V z z V z z
Z

a b
Z

b a

+ −

= − =

= − =
= −

−
= −

−
=

 

 
Thus, we need to determine the value of nodes a2y and b2y. Using 
the “series” rule 1 on our signal flow graph: 
 
 
 
 
 
 
 
 
 
From this graph we can conclude: 
 

2
51xa j=  

0 4j .−  

2yb  0 5j .−  

0 5.  

0 35.  

1xb  
2ya  

Note we’ve simply 
ignored (i.e., 
neglected to plot) 
the node for 
which we have no 
interest! 
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2 1
20 5 0 5 0 1 2

5y x
jb j . a j . .

⎛ ⎞
= − = − =⎜ ⎟⎜ ⎟

⎝ ⎠
 

and: 
( )2 20 5 0 5 0 1 2 0 05 2y ya . b . . .= = =  

 
Therefore:  
 

( )2 2 0 1 0 05 2 0 05 10 0
550 50

y y
L

b a . . .I . mA
− −

= = = =  

 
b)  The power delivered to (i.e., absorbed by ) port 1x. 
 
The power delivered to port 1x is: 
 

( ) ( )2 2
1 1 1 1 1 1

0 0
22

1 1

2 2

2

abs

x x xP x x xP

x x

P P P

V z z V z z
Z Z

a b

+ −

+ −

= −

= =
= −

−
=

 

Thus, we need determine the values of nodes a1x and b1x.  Again 
using the series rule 1 on our signal flow graph: 
 

 
 
 
 
 
 
 

2
51xa j=  

0 1.−  

0 35.  

1xb  

Again we’ve 
simply ignored 
(i.e., neglected to 
plot) the node for 
which we have no 
interest! 
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And then using the “parallel” rule 2: 
 
 
 
 
 
 
 
 
 
Therefore: 

( )2
51 10 25 0 25 0 05 2x xb . a . j j .= = =  

 
and: 

 
222

5 0 05 2 0 08 0 005 37 5
2 2abs

j j . . .P . mW
− −

= = =  

2
51xa j=  

0 25 0 35 0 1. . .= −  

1xb  
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The Propagation Series 
 
Q:  You earlier stated that signal flow graphs are helpful in 
(count em’) three ways. I now understand the first way: 

 
Way 1 -  Signal flow graphs provide us with a graphical 
means of solving large systems of simultaneous equations. 
 
But what about ways 2 and 3 ?? 
 

“Way 2 –  We’ll see the a signal flow graph 
can provide us with a road map of the wave 
propagation paths throughout a microwave 
device or network.”   

 
“Way 3 - Signal flow graphs provide us with 
a quick and accurate method for 
approximating a network or device.”  
 
A:  Consider the sfg below: 
 
 
 
 
 
 
  
 
 

1a  

1b  

2b  

2a  

3a  

3b  

4b  

4a  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  
0 144.  0 35.  

j  
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Note that node 1a  is the only independent node. This signal 
flow graph is for a rather complex single-port (port 1) device. 
 
Say we wish to determine the wave amplitude exiting port 1.  
In other words, we seek: 

1 1inb a= Γ  
 

Using our four reduction rules, the signal flow graph above is 
simplified to: 
 
 
 
 
 
 
 
 
Q:  Hey, node 1b  is not connected to anything.  What does 
this mean? 
 
A:  It means that 1 0b = —regardless of the value of incident 
wave 1a .  I.E.,: 

1

1

0in
b
a

Γ = =  

 
In other words, port 1 is a matched load! 
 
Q: But look at the original signal flow graph; it doesn’t look 
like a matched load. How can the exiting wave at port 1 be 
zero? 

1a  

1b  

2b  

2a  

3a  

3b  

4b  

4a  

0 5.  

0 36.−  0 36j .  0 2j .  

0 4j .  

0 5j .  
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A:  A signal flow graph provides a bit of a propagation road 
map through the device or network. It allows us to 
understand—often in a very physical way—the propagation of 
an incident wave once it enters a device.   
 
We accomplish this by identifying from the sfg propagation 
paths from an independent node to some other node (e.g., an 
exiting node).  These paths are simply a sequence of branches 
(pointing in the correct direction!) that lead from the 
independent node to this other node. 
 
Each path has value that is equal to the product of each 
branch of the path. 
 
Perhaps this is best explained with some examples.   
 
One path between independent (incident wave) node 1a  and 
(exiting wave) node 1b  is shown below: 
 
 
 
 
 
 
 
 
 
We’ll arbitrarily call this path 2, and its value: 
 

( ) ( ) ( )2 0.5 0.4 0.5 0.1p j j= = −  

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  
0 144.  0 35.  

j  
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Another propagation path (path 5, say) is: 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5

2 34

0.5 0.4 0.35 0.8 0.5 0.8 0.5

0.35 0.4 0.8 0.5
0.0112

p j j j j
j

=

=

=

 

 
Q:  Why are we doing this? 
 
A: The exiting wave at port 1 (wave amplitude 1b ) is simply the 
superposition of all the propagation paths from incident node 

1a !  Mathematically speaking: 
 

1
1 1

1
n in n

n n

bb a p p
a

= ⇒ Γ = =∑ ∑  

 
Q:  Won’t there be an awful lot of propagation paths? 
 
A:  Yes! As a matter of fact there are an infinite number of 
paths that connect node 1a   and 1b .  Therefore: 
 

1
1 1

1
n in n

n n

bb a p p
a

∞ ∞

= ⇒ Γ = =∑ ∑  

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  
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Q: Yikes!  Does this infinite series converge? 
 
A:  Note that the series represents a finite physical value 
(e.g., inΓ ), so that the infinite series must converge to the 
correct finite value. 
 
Q:  In this example we found that 0inΓ = .  This means that 
the infinite propagation series is likewise zero: 
 

0in n
n

p
∞

Γ = =∑  

 
Do we conclude from this that all propagation paths are zero: 
 

0np =    ????? 
 

A: Absolutely not!  Remember, we have already determined 
that 2 0.1p = −  and 4 0.0112p = —definitely not zero-valued!  In 
fact for this example, none of the propagation paths np  are 
precisely equal to zero!  
 
Q:  But then why is: 

0n
n

p
∞

=∑  ??? 

 
A: Remember, the path values np  are complex.  A sum of non-
zero complex values can equal zero (as it apparently does in 
this case!). 
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Thus, a perfectly rational way of viewing this network is to 
conclude that there are an infinite number of non-zero 
waves exiting port 1: 
 

where 0in n n
n

p p
∞

Γ = ≠∑  

 
 It just so happens that these waves coherently add together 
to zero: 

0in n
n

p
∞

Γ = =∑  

 
—they essentially cancel each other out ! 
 
Q:  So, I now appreciate the fact that signal flow graphs: 1) 
provides a graphical method for solving linear equations and 
2) also provides a method for physically evaluating the wave 
propagation paths through a network/device.  
 
But what about helpful Way 3: 
 
“Way 3 - Signal flow graphs provide us with 
a quick and accurate method for 
approximating a network or device.”  ?? 
 
A:  The propagation series of a microwave network is very 
analogous to a Taylor Series expansion: 
 

( ) ( ) ( )
0

n
n

n
n x a

d f xf x x a
d x

∞

= =

= −∑  
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Note that there likewise is a infinite number of terms, yet 
the Taylor Series is quite helpful in engineering. 
 
Often, we engineers simply truncate this infinite series, 
making it a finite one: 
 

( ) ( ) ( )
0

nN
n

n
n x a

d f xf x x a
d x= =

≈ −∑  

 
Q:  Yikes! Doesn’t this result in error? 
 
A: Absolutely! The truncated series is an approximation.   
 
We have less error if more terms are retained; more error if 
fewer terms are retained.   
 
The trick is to retain the “significant” terms of the infinite 
series, and truncate those less important “insignificant” 
terms.  In this way, we seek to form an accurate 
approximation, using the fewest number of terms. 
 
Q:  But how do we know which terms are significant, and 
which are not? 
 
A:  For a Taylor Series, we find that as the order n 
increases, the significance of the term generally (but not 
always!) decreases.   
 
Q:  But what about our propagation series?  How can we 
determine which paths are “significant” in the series? 
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A: Almost always, the most significant paths in a propagation 
series are the forward paths of a signal flow graph. 
 
 

forward  path ‐ \ˈfo ̇r‐wərdˈ päth\  ‐noun   
 
A path through a signal flow graph that passes through any given node 
no more than once.  A path that passes through any node two times (or 
more) is therefore not a forward path.  

 
 
 
In our example, path 2 is a forward path.  It passes through 
four nodes as it travels from node 1a  to node 1b , but it passes 
through each of these nodes only once: 
 
 
 
 
 
 
 
 
Alternatively, path 5 is not a forward path: 
 
 
 
 
 
 
 

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  
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We see that path 5 passes through six different nodes as it 
travels from node 1a  to node 1b .  However, it twice passes 
through four of these nodes.   
 
The good news about forward paths is that there are always a 
finite number of them.  Again, these paths are typically the 
most significant in the propagation series, so we can 
determine an approximate value for sfg nodes by considering 
only these forward paths in the propagation series: 
 

1

N
fp

n n
n n

p p
∞

=

≈∑ ∑  

 
where fp

np  represents the value of one of the N  forward 
paths.  
 
Q: Is path 2 the only forward path in our example sfg ? 
 
A:  No, there are three. Path 1 is the most direct:  
 

1 0.144p =  
 
 
 
 
 
 
 
 
Of course we already have identified path 2: 

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  
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2 0.1p = −  
 
 
 
 
 
 
 

And finally, path 3 is the longest forward path: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

3
2 32

0.5 0.8 0.5 0.8 0.5

0.8 0.5
0.08

p j j
j

=

=

= −

 

 
 
 
 
 
 
 

Thus, an approximate value of inΓ is: 
 

1

1
3

1

1 2 3

0.144 0.1 0.08
0.036

in

fp
n

n

b
a

p

p p p
=

Γ =

≈

= + +

= − −

= −

∑
 

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  
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Q:  Hey wait! We determined earlier that 0inΓ = , but now 
your saying that 0.036inΓ =− .  Which is correct?? 
 
A:  The correct answer is 0inΓ = .  It was determined using 
the four sfg reduction rules—no approximations were 
involved! 
 
Conversely, the value 0.036inΓ =−  was determined using a 
truncated form of the propagation series—the series was 
limited to just the three most significant terms (i.e., the 
forward paths).  The result is easier to obtain, but it is just 
an approximation (the answers will contain error!). 
 
For example, consider the reduced signal flow graph (no 
approximation error): 
 
 

 
 
 
 
 

Compare this to the same sfg, computed using only the 
forward paths: 

 
 
 
 

1a  

1b  

2b  

2a  

3a  

3b  

4b  

4a  

0 4.  

0 288.−  

0 0.  

0 288j .  0 16j .  

0 32j .  

0 4j .  

1a  

1b  

2b  

2a  

3a  

3b  

4b  

4a  

0 5.  

0 36.−  

0 036.−  

0 36j .  0 2j .  

0 4j .  

0 5j .  

Exact SFG 

Approx. SFG 
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No surprise, the approximate sfg (using forward paths only) is 
not the same as the exact sfg (using reduction rules).   
 
The approximate sfg contains error, but note this error is not 
too bad.  The values of the approximate sfg are certainly 
close to that of the exact sfg. 
 
Q: Is there any way to improve the accuracy of this 
approximation? 
 
A: Certainly.  The error is a result of truncating the infinite 
propagation series.  Note we severely truncated the series—
out of an infinite number of terms, we retained only three 
(the forward paths).  If we retain more terms, we will likely 
get a more accurate answer. 
 
Q:  So why did these approximate answers turn out so well, 
given that we only used three terms? 
 
A: We retained the three most significant terms, we will find 
that the forward paths typically have the largest magnitudes 
of all propagation paths. 
 
Q:  Any idea what the next most significant terms are? 
 
A:  Yup.  The forward paths are all those propagation paths 
that pass through any node no more than one time.  The next 
most significant paths are almost certainly those paths that 
pass through any node no more than two times.   
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Path 4 is an example of such a path: 
 
 
 
 

 
 
 

There are three more of these paths (passing through a node 
no more than two times)—see if you can find them! 
 
After determining the values for these paths, we can add 4 
more terms to our summation (now we have seven terms!): 

 

( ) ( )
( ) ( )

1

1
7

1

1 2 3 5 6 74

0.036 0.014 0.0112 0.0112 0.0090
0.0094

in

n
n

b
a

p

p p p p p p p
=

Γ =

≈

= + + + + + +

= − + + + +

=

∑
 

 
Note this value is closer to the correct value of zero than 
was our previous (using only three terms) answer of -0.036.   
 
As we add more terms to the summation, this approximate 
answer will get closer and closer to the correct value of zero.   
However, it will be exactly zero (to an infinite number of 
decimal points) only if we sum an infinite number of terms! 

1a  

1b  

0 5.  
j  

0 8.  

0 8.  0 5.  

0 4.  0 5.  0 35.  
j  

0 144.  
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Q:  The significance of a given path seem to be inversely 
proportional to the number of times it passes through any 
node.  Is this true? If so, then why is it true? 
 
A:  It is true (generally speaking)!  A propagation path that 
travels though a node ten times is much less likely to be 
significant to the propagation series (i.e., summation) than a 
path that passes through any node no more than (say) four 
times. 
 
The reason for this is that the significance of a given term in 
a summation is dependent on its magnitude (i.e., np ).  If the 
magnitude of a term is small, it will have far less affect (i.e., 
significance) on the sum than will a term whose magnitude is 
large. 
 
Q:  You seem to be saying that paths traveling through fewer 
nodes have larger magnitudes than those traveling through 
many nodes.  Is that true? If so why? 
 
A:  Keep in mind that a microwave sfg relates wave 
amplitudes.  The branch values are therefore always 
scattering parameters.  One important thing about scattering 
parameters, their magnitudes (for passive devices) are always 
less than or equal to one! 
 

1mnS ≤  
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Recall the value of a path is simply the product of each branch 
that forms the path.  The more branches (and thus nodes), 
the more terms in this product.   
 
Since each term has a magnitude less than one, the magnitude 
of a product of many terms is much smaller than a product of 
a few terms.  For example: 
 

30.7 0.343j− =         and         100.7 0.028j− =  
 

 In other words, paths with more branches (i.e., more 
nodes) will typically have smaller magnitudes and so are 
less significant in the propagation series. 

 
Note path 1 in our example traveled along one branch only: 

 
1 0.144p =  

 
Path 2 has five branches:  
 

2 0.1p = −  
 
Path 3 seven branches: 
 

3 0.08p = −  
 

Path 4 nine branches: 
 

4 0.014p =  
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Path 5 eleven branches: 
 

5 0.0112p =  
 

Path 6 eleven branches: 
 

6 0.0112p =  
 

Path 7 thirteen branches: 
 

7 0.009p =  
 

Hopefully it is evident that the magnitude diminishes as the 
path “length” increases.  
 
Q:  So, does this mean that we should abandon our four 
reduction rules, and instead use a truncated propagation 
series to evaluate signal flow graphs?? 
 
A:  Absolutely not! 
 
Remember, truncating the propagation series always results in 
some error.  This error might be sufficiently small if we 
retain enough terms, but knowing precisely how many terms to 
retain is problematic.   
 
We find that in most cases it is simply not worth the 
effort—use the four reduction rules instead (it’s not like 
they’re particularly difficult!). 
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Q:  You say that in “most cases” it is not worth the effort.  
Are there some cases where this approximation is actually 
useful?? 
 
A:  Yes.  A truncated propagation series (typically using only 
the forward paths) is used when these three things are true: 
 

1.  The network or device is complex (lots of nodes and 
branches). 
 
2.  We can conclude from our knowledge of the device 
that the forward paths are sufficient for an accurate 
approximation  (i.e., the magnitudes of all other paths in 
the series are almost certainly very small). 
 
3.  The branch values are not numeric, but instead are 
variables that are dependent on the physical parameters 
of the device (e.g., a characteristic impedance or line 
length). 

 
The result is typically a tractable mathematical equation that 
relates the design variables (e.g., 0Z  or ) of a complex 
device to a specific device parameter. 
 
For example, we might use a truncated propagation series to 
approximately determine some function: 
 

( )01 1 02 2, , ,in Z ZΓ  
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If we desire a matched input (i.e.,  ( )01 1 02 2, , , 0in Z ZΓ = ) we 
can solve this tractable design equation for the (nearly) 
proper values of 01 1 02 2, , ,Z Z . 
 
We will use this technique to great effect for designing 
multi-section matching networks and multi-section coupled 
line couplers. 
 
 
 
 
 
 
 
 
 
 
 

The signal flow graph of a three-section coupled-line coupler. 
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