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5.4 – The Quarter-Wave Transformer 
 
Reading Assignment: pp. 73-76, 240-243 
 
By now you’ve noticed that a quarter-wave length of 
transmission line ( 4λ= , 2β π= ) appears often in 
microwave engineering problems.   
 
Another application of the 4λ=  transmission line is as an 
impedance matching network. 
 
HO: THE QUARTER-WAVE TRANSFORMER 
 
HO: THE SIGNAL-FLOW GRAPH OF A QUARTER-WAVE 
TRANSFORMER 
 
 
Q:  Why does the quarter-wave matching network work—
after all, the quarter-wave line is mismatched at both ends? 
 
A: HO: MULTIPLE REFLECTION VIEWPOINT 
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The Quarter-Wave 
Transformer 

 
Say the end of a transmission line with characteristic 
impedance 0Z  is terminated with a resistive (i.e., real) load. 
 
 
 
 
 
 
 
Unless 0LR Z= ,  the resistor is mismatched to the line, and 
thus some of the incident power will be reflected. 
 
We can of course correct this situation by placing a matching 
network between the line and the load: 
 
 
 
 
 
 
 
 
In addition to the designs we have just studied (e.g., L-
networks, stub tuners), one of the simplest matching network 
designs is the quarter-wave transformer. 

 
RL 
 

Z0 

 
RL 
 

Z0 
Matching 
Network 
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The quarter-wave transformer is simply a transmission line with 
characteristic impedance Z1  and length 4λ=  (i.e., a quarter-
wave line).  
 
 
 
 
 
 
 
 
 
The 4λ  line is the matching network! 
 
Q:  But what about the characteristic impedance Z1 ;  what 
should its value be?? 
 
A: Remember, the quarter wavelength case is one of the special 
cases that we studied.  We know that the input impedance of 
the quarter wavelength line is: 
 

( ) ( )2 2
1 1

in
L L

Z Z
Z

Z R
= =  

 
Thus, if we wish for Zin to be numerically equal to Z0, we find: 
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Solving for Z1, we find its required value to be: 
 
 

( )
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In other words, the characteristic impedance of the quarter 
wave line is the geometric average of Z0 and RL! 
 
Therefore, a 4λ  line with characteristic impedance 

1 0 LZ Z R= will match a transmission line with characteristic 
impedance Z0 to a resistive load RL. 
 
 
 
 
 
 
 
 
 
Thus, all power is delivered to load RL ! 
 
Alas, the quarter-wave transformer (like all our designs) has a 
few problems! 
 
 

1 0 LZ Z R=  

4
λ=  

 
RL 
 

 

inZ =Z0 0Z  
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Problem #1 
 
The matching bandwidth is narrow ! 
 
In other words, we obtain a perfect match at precisely the 
frequency where the length of the matching transmission line is 
a quarter-wavelength.   
 

 But remember, this length can be a quarter-wavelength at 
just one frequency! 
 
Remember, wavelength is related to frequency as: 
 

1pv
f f LC

λ = =  

 
where vp is the propagation velocity of the wave . 
 
For example, assuming that vp = c (c = the speed of light in a 
vacuum), one wavelength at 1 GHz is 30 cm ( 0.3 mλ = ), while one 
wavelength at 3 GHz is 10 cm ( 0.1 mλ = ).  As a result, a 
transmission line length 7.5 cm=  is a quarter wavelength for a 
signal at 1GHz only.   
 
Thus, a quarter-wave transformer provides a perfect match 
( 0inΓ = ) at one and only one signal frequency! 
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As the signal frequency (i.e., wavelength) changes, the electrical 
length of the matching transmission line changes.  It will no 
longer be a quarter wavelength, and thus we no longer will have 
a perfect match. 
 
We find that the closer RL (Rin) is to characteristic impedance 
Z0, the wider the bandwidth of the quarter wavelength 
transformer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We will find that the bandwidth can be increased by adding 
multiple 4λ  sections!  
 
 

 

Figure 5.12  (p. 243) Reflection coefficient magnitude versus frequency 
for a single-section quarter-wave matching transformer with various load 
mismatches. 
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Problem #2 
 
Recall the matching solution was limited to loads that were 
purely real!  I.E.: 

0L LZ R j= +  
 
Of course, this is a BIG problem, as most loads will have a 
reactive component! 
 
Fortunately, we have a relatively easy solution to this problem, 
as we can always add some length  of transmission line to the 
load to make the impedance completely real: 
 
 
 
 
 
 
 
 
 
 
 
However, remember that the input impedance will be purely real 
at only one frequency! 
 
We can then build a quarter-wave transformer to match the 
line 0Z  to resistance inR : 
 
 
 

Lz ′  

1inr ′  2inr ′  0,Z β  
 
ZL 
 

Rin 

2 possible solutions! 
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Again, since the transmission lines are lossless, all of the 
incident power is delivered to the load LZ .  

1 0 inZ Z R=  

4
λ  

 
ZL 
 

inZ =Z0 
 

0Z  
0Z  

 

inR  
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The Signal Flow Graph of 
a Quarter-Wave 

Transformer 
 
First, let’s consider the scattering matrix of a perfect 
connector—an electrically very small two-port device that 
allows us to connect the ends of different transmission lines 
together. 
 
 
 
 
 
 
 
 
If the connector is ideal, then it will exhibit no series 
inductance nor shunt capacitance, and thus: 
 

1 2 1 2V V I I= = −  
 

The scattering matrix for such this ideal connector is 
therefore: 
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As a result, the perfect connector allows two transmission 
lines of identical characteristic impedance to be connected 
together into one “seamless” transmission line. 
 
 
 
 
 
 
Now, however, consider the case where the transmission lines 
connected together have dissimilar characteristic impedances 
(i.e., 0 1Z Z≠ ):  
 
 
 
 
 
 
 
 
 
 
Q:  Won’t the scattering matrix of this ideal connector 
remain the same?  After all, the device itself has not 
changed! 
 
A:  The impedance, admittance, and transmission matrix will 
remained unchanged—these matrix quantities do not depend 
on the characteristics of the transmission lines connected to 
the device. 
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But remember, the scattering matrix depends on both the 
device and the characteristic impedance of the transmission 
lines attached to it. 
 

After all, the incident and exiting waves are traveling on 
these transmission lines!  

 
The ideal connector in this case establishes a “seamless” 
interface between two dissimilar transmission lines. 
 
 
 
 
 
 
 
Remember, this is the same 
structure that we evaluated 
in an earlier handout! 
 
 
From the results of that analysis we can conclude that the 
scattering matrix of the ideal connector (when connecting 
dissimilar transmission lines) is: 
 

0 11 0
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0 1 0 1
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Or more compactly stated: 
 
 
 

          
Γ⎡ ⎤

= ⎢ ⎥−Γ⎣ ⎦
S�

Τ
Τ

 

 
 
where 
 

0 11 0

1 0 0 1

2 Z ZZ Z
Z Z Z Z

−
Γ = Τ =

+ +
 

 
For a quarter wave transformer, we set 1Z  such that: 
 

2 2
1 0 0 1L LZ Z R Z Z R= ⇒ =  

 
Inserting this into the expressions above, we find: 
 

11

1 1

2 LL

L L

R ZR Z
R Z R Z

−
Γ = Τ =

+ +
 

 
Since the device is lossless, we can conclude (and likewise 
show) that: 

2 2 2 21 = Γ + Τ = Γ + Τ  
 
where this last expression is (only) true because Γ and Τ are 
real valued.

1b  

1a  

Γ  

Τ  

2a  

2b  

−Γ  
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Now, a quarter wavelength of transmission line has the 
scattering matrix: 
 
 
 
 
 
 
 
 
 
      

       
0

0
j

j
⎡ ⎤
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⎣ ⎦

S�
−

−
 

 
 
While a load has a “scattering matrix” of: 
 
 
 
 
 
 
 

1

1

L
L

L

R Z
R Z
⎡ ⎤−

= = Γ⎢ ⎥+⎣ ⎦
S�  

 
Note that LΓ = Γ  !!! 
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4
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Of course, if we connect the ideal connector to a quarter 
wavelength of transmission line, and terminate the whole thing 
with load RL, we have formed a quarter wave matching 
network! 
 
 
 
 
 
 
 
We can likewise put the signal-flow graph pieces together to 
form the signal-flow graph of the quarter wave network: 
 
 
 
 
 
 
 
 
And simplifying: 
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Now, let’s see if we can reduce this graph to determine: 
 

1

1
in

b
a

Γ  

From the series rule: 
 
 
 
 
 
 
 
From the splitting rule: 
 
 
 
 
 
 
 
 
From the self-loop rule: 
 
 
 
 
 
 
 
 

1b  

1a  

Γ  

Τ  

2a  

2b  

−Γ  

Τ  

L−Γ  

2b  
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Γ  

Τ  

2a  
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Τ  

L−Γ  

1b  

1a  

Γ  

2a  

L

Τ
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Τ  

L−Γ  
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Again with the series rule: 
 
 
 
 
 
 
 
 
And finally with the parallel rule: 
 
 
 
 
 
 
 
 
So that: 

1

1

L
in

L

b
a

Γ
2Τ Γ

= Γ−
1−ΓΓ

 

 
Q:  Hey wait! If the quarter-wave transformer is a matching 
network, shouldn’t  0inΓ = ?? 
 
A:  Who says it doesn’t!   
 
Recall that for the quarter-wave transformer, we found that 

LΓ = Γ , thus: 
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L
in

L
Γ

=

2

2

2

Τ Γ
= Γ−

1−ΓΓ
Τ Γ

Γ−
1−Γ

 

 
And likewise since 2 21Τ = − Γ : 
 

inΓ =

=
Τ

=

2

2

2

2

Τ Γ
Γ−
1−Γ
Τ Γ

Γ−

Γ−Γ
= 0

 

 
A perfect match! 
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Multiple Reflection 
Viewpoint 

 
The quarter-wave transformer brings up an interesting 
question in µ-wave engineering. 
 
 
 
 
 
 
 
 
 
 
 

Q:  Why is there no reflection at z = −  ?  It appears 
that the line is mismatched at both 0z =  and z = − . 
 
A:  In fact there are reflections at these mismatched 
interfaces—an infinite number of them! 
 
 
 

We can use our signal flow graph to in fact determine all the 
propagation paths through the quarter-wave transformer.

1 0 LZ Z R=  

4
λ=  

 
RL 
 

0Z  0inΓ =  

z = −  0z =  
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Now let’s try to interpret what physically happens when the 
incident voltage wave: 
 
 
 
 
 
 
 
 
reaches the interface at z = − . 
 
 

1 0 LZ Z R=  

4
λ=  

 
RL 
 

0Z  −Γ ΓL Γ 

Τ 
Τ 

( )V z+  

( )V z−  
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1

a V z
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+

−
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1.   At z = − , the characteristic impedance of the transmission 
line changes from Z0 to Z1.  This mismatch creates a reflected 
wave, a wave that we shall call ( )1V z− : 
 
 
 
 
 
 
 
so  ( ) ( )1V z V z− += − = Γ = − . 
 
 
 
 
 
 
 
2.   However, a portion of the incident wave is transmitted (Τ ) 
across the interface at z = − , this wave travels a distance of 

90β =  to the load at 0z = , where a portion of it is reflected 
( LΓ ).  This wave travels back 90β =  to the interface at 
z = − , where a portion is again transmitted (Τ) across into the 
Z0 transmission line—another reflected wave ( ( )2V z− )!  
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where we have found that traveling 2 180β =  has produced a 
minus sign in our result:  
 

( ) ( )
( )

90 90
2

2

j j
L

L

V z e e V z
V z

− −− +

+

= − = Τ Γ Τ = −

= −Τ Γ = −
 

 
 
 
 
 
 
 
 
 
3.  However, a portion of this second wave is also reflected (Γ ) 
back into the Z1 transmission line at z = − , where it again 
travels to 90β =  the load, is partially reflected ( LΓ ), travels 

90β = back to  z = − , and is partially transmitted into Z0 
(Τ)—our third reflected wave! 
 
 
 
 
 
 
where: 
 

( ) ( ) ( )

( ) ( )

90 90 90 90
3
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j j j j
L L
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V z e e e e V z
V z

− − − −− +

+
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= −Τ Γ Γ = −
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n.  We can see that this “bouncing” back and forth can go on 
forever, with each trip launching a new reflected wave into the 
Z0 transmission line.  
 
Note however, that the power associated with each successive 
reflected wave is smaller than the previous, and so eventually, 
the power associated with the reflected waves will diminish to 
insignificance! 
 
Q:   But, why then is  0Γ =  ? 
 
A:    Each reflected wave ( )nV z− is a coherent wave.  That is, 
they all oscillate at same frequency ω ; the reflected waves 
differ only in terms of their magnitude and phase.   
 
Therefore, to determine the total reflected wave, we must 
perform a coherent summation of each reflected wave—a 
operation easily performed since we have expressed our waves 
with complex notation: 
 

( ) ( )
1

n
n

V z V z
∞

− −

=

= ∑  
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It can be shown that this infinite series converges, with the 
result: 

( ) ( )
2 2

21
L LV z V z− +⎛ ⎞Γ − Γ Γ − Τ Γ

= − = = −⎜ ⎟− Γ⎝ ⎠
 

 
Thus, the total reflection coefficient is: 
 

2 2

21
L L

in
Γ − Γ Γ − Τ Γ

Γ =
− Γ

 

 
Using our definitions, it can likewise be shown that the 
numerator of the above expression is: 
 

( )
( ) ( )

2
1 02 2

1 0 1

2 L
L L

L

Z Z R
Z Z R Z

−
Γ − Γ Γ − Τ Γ =

+ +
 

 
It is evident that the numerator  (and therefore Γ ) will be zero 
if: 

2
1 0 1 0L LZ Z R Z Z R− ⇒ =  

 
Just as we expected! 
 
Physically, this results insures that all the reflected waves add 
coherently together to produce a zero value! 
 
Note all of our transmission line analysis has been steady-state 
analysis.  We assume our signals are sinusoidal, of the form 
exp( )j tω .  Note this signal exists for all time t—the signal is 
assumed to have been “on” forever, and assumed to continue on 
forever.   
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In other words, in steady-state analysis, all the multiple 
reflections have long since occurred, and thus have reached a 
steady state—the reflected wave is zero!  
 


