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5.5 – The Theory of Small Reflections 
 
Reading Assignment: pp. 244-246 
 
An important and useful approximation when considering 
multi-section matching networks is the Theory of Small 
Reflections. 
 
HO:  THE THEORY OF SMALL REFLECTIONS 
 
We can use the Theory of Small Reflections to provide an 
approximate analysis of a multi-section impedance 
transformer (i.e., multi-section matching network). 
 
HO:  THE MULTISECTION TRANSFORMER 
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The Theory of 
Small Reflections 

 
Recall that we analyzed a quarter-wave transformer using the 
multiple reflection view point.  
 
 
 
 
 
 
 
 
We found that the solution could be written as an infinite 
summation of terms: 
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where each term had a specific  physical interpretation, in 
terms of reflections, transmissions, and propagations.  
 
For example, the first term was ( ) ( )1V z V z− += − = Γ = − : 
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While the second term was: 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
Contrast these first two terms with the third term: 
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This third term is characterized by three reflections, and thus 
there is a product of three reflection coefficient values Γ in the   
term. In fact, all other terms in this infinite series will likewise 
describe mechanisms with multiple reflections. 
 
This is in contrast with the first two terms, which exhibit just a 
single reflection coefficient in the product.   
 
Q: How is this even remotely important? 
 
A:  This is an important observation when we consider the case 
where Z0 and RL are very close in value.  If this is true, then the 
value 0 LZ R  must likewise be close in value to both Z0 and RL. 
 
As a result, we find that the magnitudes of the marginal 
reflection coefficients  and LΓ Γ  will be very small: 
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 while the magnitudes of the marginal transmission coefficient 
Τ   will be approximately equal to one: 
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This means that all higher-order terms (those with multiple 
reflections and thus with products of multiple reflection 
coefficients) will be very, very small: 
 

0 2n for nΓ ≈ ≥  
   
The result is that these higher order terms make little 
difference in the final result—the first two (single reflection) 
terms are the dominant terms in the infinite series. 
 
Therefore IF Z0 and RL are very close in value, we find that we 
can approximate the reflected wave using only the first two 
terms of the infinite series:  
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Now, if we likewise apply the approximation that 1 0.Τ , we 
conclude for this quarter wave transformer (at the design 
frequency): 
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This approximation (using only single reflection terms) is known 
as the Theory of Small Reflections, and allows us to use the 
multiple reflection view point as an analysis tool (we don’t have 
to consider an infinite number of terms!). 
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Note that this result is provided from the signal flow graph: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, we can only use this approximation when the marginal 
reflection coefficient at each transition is very small (i.e., the 
change in impedance is slight). 
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The Multi-section 
Transformer 

 
Consider a sequence of N transmission line sections; each 
section has equal length , but dissimilar characteristic 
impedances: 
 
 
 
 
 
 
 
 
 
 
Where the marginal reflection coefficients are: 
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If the load resistance LR  is less than 0Z , then we should design 
the transformer such that: 
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Conversely, if LR  is greater than 0Z , then we will design the 
transformer such that: 
 

0 1 2 3 N LZ Z Z Z Z R< < < < <  
 
In other words, we gradually transition from Z0 to RL ! 
 
Note that since RL is real, and since we assume lossless 
transmission lines, all nΓ  will be real (this is important!). 
 
Likewise, since we gradually transition from one section to 
another, each value: 
 

1 nnZ Z+ −  
will be small. 
 
As a result, each marginal reflection coefficient nΓ  will be real 
and have a small magnitude. 
 
This is also important, as it means that we can apply the “theory 
of small reflections” to analyze this multi-section transformer! 
 
The theory of small reflections allows us to approximate the 
input reflection coefficient of the transformer as: 
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Q:  So why is the input reflection coefficient a function of β ?  
Isn’t β  a constant? 
 
A:   Nope.  Recall that for a lossless line: 
 

LCβ ω=  
 
In other words, beta (and thus the electrical length of each 
transmission line section) is a function of frequency! Recall: 
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p
T

v
β ω ω= =  

where: 
 

propagation time through 1 section
p

T
v

=  

 
Therefore, we can alternatively express the input reflection 
coefficient as a function of frequency: 
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We see that the function ( )in ωΓ  is expressed as a weighted set 
of N  basis functions! I.E., 
 

( ) ( )
0

N

in n
n

cω ω
=

Γ = Ψ∑  

where: 
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We find, therefore, that by selecting the proper values of basis 
weights nc  (i.e., the proper values of reflection coefficients nΓ ), 
we can synthesize any function ( )in ωΓ  of frequency ω , provided 
that: 
 

1.  ( )in ωΓ  is periodic in 1 2Tω =  
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2.  we have sufficient number of sections N. 
 
Q:  What function should we synthesize? 
 
A:  Ideally, we would want to make ( ) 0in ωΓ =  (i.e., the 
reflection coefficient is zero for all frequencies). 
 
Bad news:  this ideal function ( ) 0in ωΓ =  would require an 
infinite number of sections (i.e., N = ∞ )! 
 
Instead, we seek to find an “optimal” function for ( )in ωΓ , given 
a finite number of N  elements. 
 
Once we determine these optimal functions, we can find the 
values of coefficients nΓ  (or equivalently, nZ ) that will result in 
a matching transformer that exhibits this optimal frequency 
response. 
  
To simplify this process, we can make the transformer 
symmetrical, such that: 
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Note that this does NOT mean that: 
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We find then that: 
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and since: 

( )2 cosj x j xe e x−+ =  
 
we can write for N even: 
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whereas for N odd: 
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The remaining question then is this: given an optimal and 
realizable function ( )in ωΓ , how do we determine the necessary 
number of sections N, and how do we determine the values of all 
reflection coefficients nΓ ?? 


