Reading Assignment: pp. 246-250

One way to maximize bandwidth is to construct a multisection matching network with a function $\Gamma(f)$ that is maximally flat.

Q: Maximally flat? What kind of function is maximally flat?

This function maximizes bandwidth by providing a solution that is **maximally flat**.

A: HO: MAXIMALLY FLAT FUNCTIONS

1. We can build a multisection matching network such that the function $\Gamma(f)$ is a **binomial function**.

2. The binomial function is maximally flat.

Q: Meaning?

A: Meaning the function $\Gamma(f)$ is maximally flat \rightarrow a wideband solution!

HO: THE BINOMIAL MULTI-SECTION MATCHING TRANSFORMER

Maximally Flat Functions

Consider some function f(x). Say that we know the value of the function at x=1 is 5:

$$f(x=1) = 5$$

This of course says something about the function f(x), but it doesn't tell us much!

We can additionally determine the **first derivative** of this function, and likewise evaluate this derivative **at** x = 1. Say that this value turns out to be **zero**:

$$\frac{df(x)}{dx}\bigg|_{x=1} = 0$$

Note that this does not mean that the derivative of f(x) is equal to zero, it merely means that the derivative of f(x) is zero **at the value** x = 1. Presumably, df(x)/dx is **non-zero** at **other** values of x.

Taking derivates: way too fun to stop!

So, we now have **two** pieces of information about the function f(x). We can add to this list by continuing to take higher-order derivatives and evaluating them at the single point x=1.

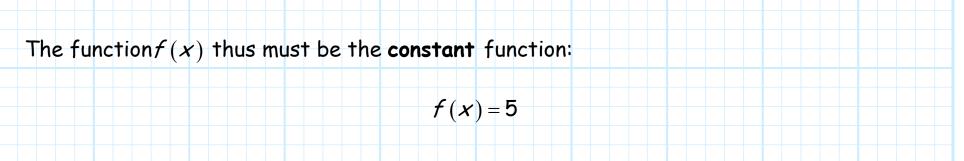
Let's say that the values of **all** the derivatives (at x=1) turn out to have a zero value:

$$\frac{df^{n}(x)}{dx^{n}}\Big|_{x=1} = 0 \text{ for } n = 1, 2, 3, \dots, \infty$$

We say that this function is **completely flat** at the point x=1.

Because **all** the derivatives are zero at x=1, it means that the function cannot change in value from that at x=1.

In other words, if the function has a value of 5 at x=1, (i.e., f(x=1)=5), then the function **must** have a value of 5 at **all** x !



A more realistic function

Now let's consider the following **problem**—say some function f(x) has the following form:

$$f(x) = a x^3 + b x^2 + c x$$

We wish to **determine** the values *a*, *b*, and *c* so that:

$$f(x = 1) = 5$$

and that the value of the function f(x) is as **close** to a value of 5 as possible in the region where x =1.

In other words, we want the function to have the value of 5 at x=1, and to **change** from that value as **slowly** as possible as we "move" from x=1.

Completely flat in not possible!

Q: Don't we simply want the **completely** flat function f(x) = 5?

A: That would be the **ideal** function for this case, but notice that solution is **not** an option. Note there are **no** values of *a*, *b*, and *c* that will make:

$$ax^3 + bx^2 + cx = 5$$

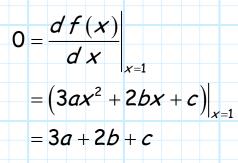
for **all** values x.

Q: So what do we do?

A: Instead of the completely flat solution, we can find the maximally flat solution!

The maximally flat solution comes from determining the values a, b, and c so that as many derivatives as possible are zero at the point x=1.

For example, we wish to make the **first derivate** equal to zero at x=1:



Likewise, we wish to make the second derivative equal to zero at x=1:

 $0 = \frac{d^2 f(x)}{d x^2} \Big|_{x=1}$ $= (6ax + 2b) \Big|_{x=1}$ = 6a + 2b

Here we must **stop** taking derivatives, as our solution only has **three degrees of design freedom** (i.e., 3 unknowns *a*, *b*, *c*).

We're out of degrees of design freedom

Q: But we only have taken two derivatives, can't we take one more?

A: No! We already have a third "design" equation: the value of the function must be 5 at x=1: 5 - f(x-1)

$$= a(1)^{3} + b(1)^{2} + c(1)$$

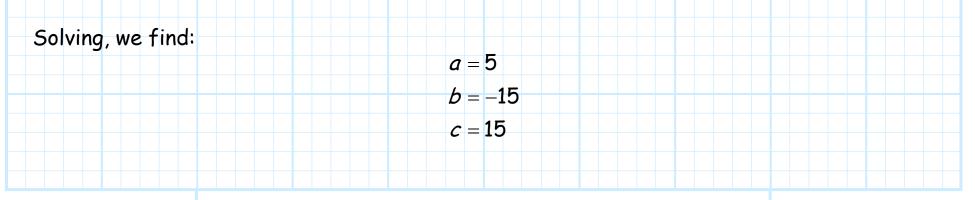
= a + b + c

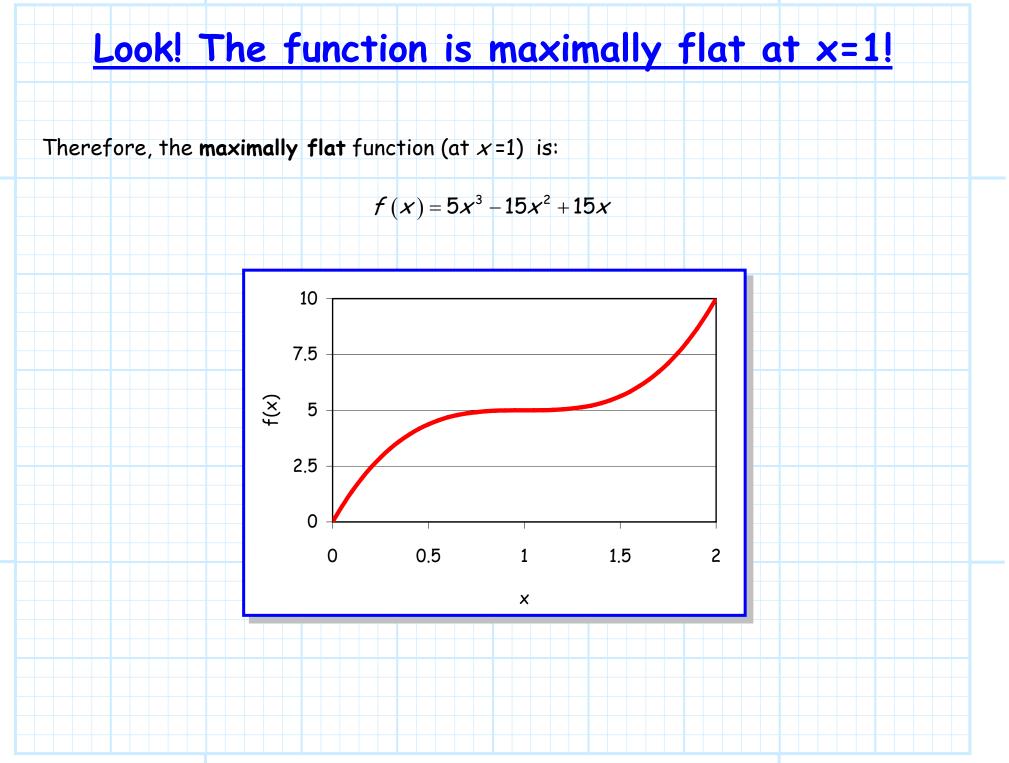
So, we have used the **maximally flat** criterion at x = 1 to generate **three** equations and **three** unknowns:

$$\mathbf{5} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

$$0 = 3a + 2b + c$$

$$0 = 6a + 2b$$





<u>The Binomial Multi-Section</u>

Transformer

Recall that a **multi-section matching network** can be described using the theory of small reflections as:

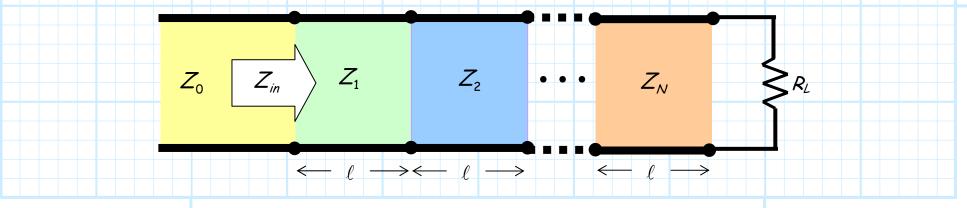
$$\Gamma_{in}(\omega) = \Gamma_0 + \Gamma_1 e^{-j2\omega T} + \Gamma_2 e^{-j4\omega T} + \dots + \Gamma_N e^{-j2N\omega T}$$
$$= \sum_{n=1}^{N} \Gamma_n e^{-j2n\omega T}$$

where:

$$\Gamma \doteq \frac{\ell}{\nu_p} = \text{propagation time through 1 section}$$

Note that for a multi-section transformer, we have N degrees of design freedom, corresponding to the N characteristic impedance values Z_n .

n=0



Behold the Binomial Function!

Q: What should the values of Γ_n (i.e., Z_n) be?

A: We need to define Nindependent design equations, which we can then use to solve for the Nvalues of characteristic impedance Z_n .

First, we start with a single **design frequency** ω_0 , where we wish to achieve a **perfect** match:

$$\Gamma_{in}\left(\omega=\omega_{0}\right)=0$$

That's just one design equation: we need N - 1 more!

These addition equations can be selected using **many** criteria—one such criterion is to make the function $\Gamma_{in}(\omega)$ **maximally flat** at the point $\omega = \omega_0$.

To accomplish this, we first consider the **Binomial Function**:

$$\Gamma(\theta) = \mathcal{A} \left(\mathbf{1} + \boldsymbol{e}^{-j2\theta} \right)^{\prime}$$

Jim Stiles

What's so special about the Binomial Function!

The Binomial Function has the desirable properties that:

Γ

$$ig(heta = \pi/2 ig) = A ig(1 + e^{-j\pi} ig)^N$$

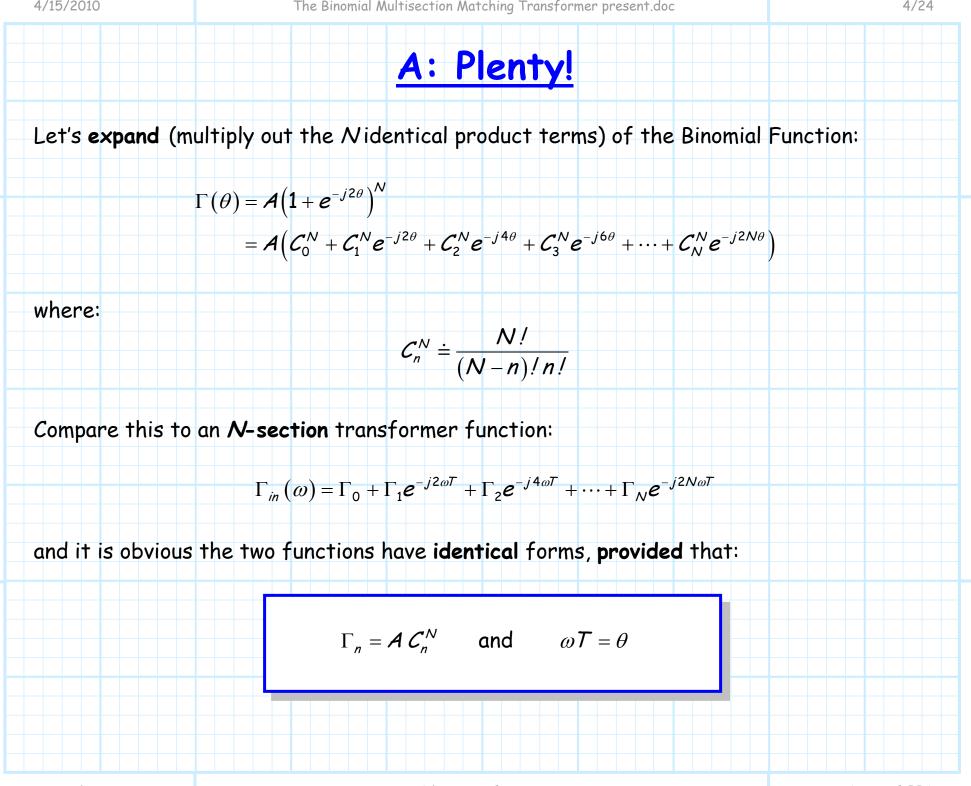
= $A ig(1 - 1 ig)^N$
= 0

and that:

$$\frac{d^n \Gamma(\theta)}{d\theta^n} \bigg|_{\theta=\frac{\pi}{2}} = 0 \text{ for } n = 1, 2, 3, \cdots, N-1$$

In other words, this Binomial Function is **maximally flat** at the point $\theta = \pi/2$, where it has a value of $\Gamma(\theta = \pi/2) = 0$.

Q: So? What does this have to do with our multi-section matching network?



See, the Binomial Function is very useful!

Moreover, we find that this function is very **desirable** from the standpoint of a matching network. Recall that $\Gamma(\theta) = 0$ at $\theta = \pi/2$ --a **perfect** match!

Additionally, the function is maximally flat at $\theta = \pi/2$, therefore $\Gamma(\theta) \approx 0$ over a wide range around $\theta = \pi/2$ --a wide bandwidth!

Q: But how does $\theta = \pi/2$ relate to frequency ω ?

A: Remember that $\omega T = \theta$, so the value $\theta = \pi/2$ corresponds to the frequency:

$$\omega_0 = \frac{1}{T} \frac{\pi}{2} = \frac{\nu_p}{\ell} \frac{\pi}{2}$$

This frequency (ω_0) is therefore our **design** frequency—the frequency where we have a **perfect** match.

What about the length of each section?

Note that the section-length ℓ has an interesting **relationship** with this frequency:

$$P = \frac{\nu_p}{\omega_0} \frac{\pi}{2} = \frac{1}{\beta_0} \frac{\pi}{2} = \frac{\lambda_0}{2\pi} \frac{\pi}{2} = \frac{\lambda_0}{4}$$

In other words, a **Binomial** Multi-section matching network will have a **perfect** match at the frequency where the section lengths ℓ are a **quarter wavelength**!

Thus, we have our first design rule:

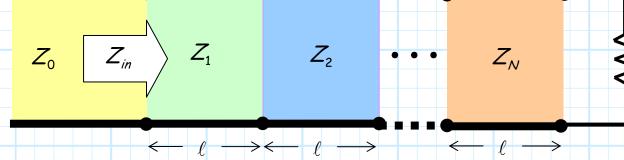
Set section lengths ℓ so that they are a **quarter-wavelength** $(\lambda_0/4)$ at the design frequency ω_0 .

And that pesky constant A?

Q: I see! And then we select all the values Z_n such that $\Gamma_n = A C_n^N$. But wait! What is the value of **A** ??

A: We can determine this value by evaluating a boundary condition!

Specifically, we can **easily** determine the value of $\Gamma(\omega)$ at $\omega = 0$.



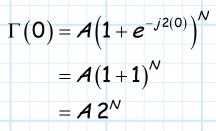
Note as ω approaches **zero**, the electrical length $\beta \ell$ of each section will **likewise** approach zero. Thus, the input impedance Z_{in} will simply be equal to R_L as $\omega \to 0$.

As a result, the input reflection coefficient $\Gamma(\omega = 0)$ must be:

$$\Gamma(\omega=0) = \frac{Z_{in}(\omega=0) - Z_{0}}{Z_{in}(\omega=0) + Z_{0}} = \frac{R_{L} - Z_{0}}{R_{L} + Z_{0}}$$

Aren't boundary conditions great ?

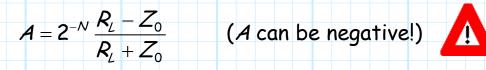
However, we likewise know that:



Equating the two expressions:

$$\Gamma(0) = A 2^{N} = \frac{R_{L} - Z_{0}}{R_{L} + Z_{0}}$$

And therefore:



We now have a form to calculate the required marginal reflection coefficients Γ_n :

$$\Gamma_n = AC_n^N = \frac{AN!}{(N-n)!n!}$$

How do I determine characteristic impedance?

Of course, we **also** know that these marginal reflection coefficients are physically related to the characteristic impedances of each section as:

$$\Gamma_n = \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n}$$

Equating the two and solving, we find that that the section characteristic impedances must satisfy:

$$Z_{n+1} = Z_n \frac{1+\Gamma_n}{1-\Gamma_n} = Z_n \frac{1+AC_n^N}{1-AC_n^N}$$

Note this is an **iterative** result—we determine Z_1 from Z_0 , Z_2 from Z_1 , and so forth.

Q: This result **appears** to be our second design equation. Is there some reason why you didn't draw a big blue box around it?

A: Alas, there is a **big problem** with this result.

The BIG problem with this result!

Note that there are N+1 coefficients Γ_n (i.e., $n \in \{0, 1, \dots, N\}$) in the Binomial series, yet there are only N design degrees of freedom (i.e., there are only N transmission line sections!).

Thus, our design is a bit over constrained, a result that manifests itself the finally marginal reflection coefficient Γ_N .

Note from the iterative solution above, the **last** transmission line impedance Z_N is selected to satisfy the **mathematical** requirement of the **penultimate** reflection coefficient Γ_{N-1} :

$$\Gamma_{N-1} = \frac{Z_{N} - Z_{N-1}}{Z_{N} + Z_{N-1}} = A C_{N-1}^{N}$$

Thus the last impedance must be:

$$Z_{N} = Z_{N-1} rac{1 + A C_{N-1}^{N}}{1 - A C_{N-1}^{N}}$$

Jim Stiles

Our degrees of freedom have run out!

But there is **one more** mathematical requirement! The last marginal reflection coefficient **must** likewise satisfy:

$$\Gamma_{N} = A C_{N}^{N} = 2^{-N} \frac{R_{L} - Z_{0}}{R_{L} + Z_{0}}$$

where we have used the fact that $C_N^N = 1$.

But, we just selected Z_N to satisfy the requirement for Γ_{N-1} ,—we have no physical design parameter to satisfy this last mathematical requirement!

As a result, we find to our great consternation that the last requirement is not satisfied:

$$\Gamma_{N} = \frac{R_{L} - Z_{N}}{R_{L} + Z_{N}} \neq A C_{N}^{N} \quad \text{IIIII}$$

Т

Q: Yikes! Does this mean that the resulting matching network will **not** have the desired Binomial frequency response?

A: That's exactly what it means!

Jim Stiles

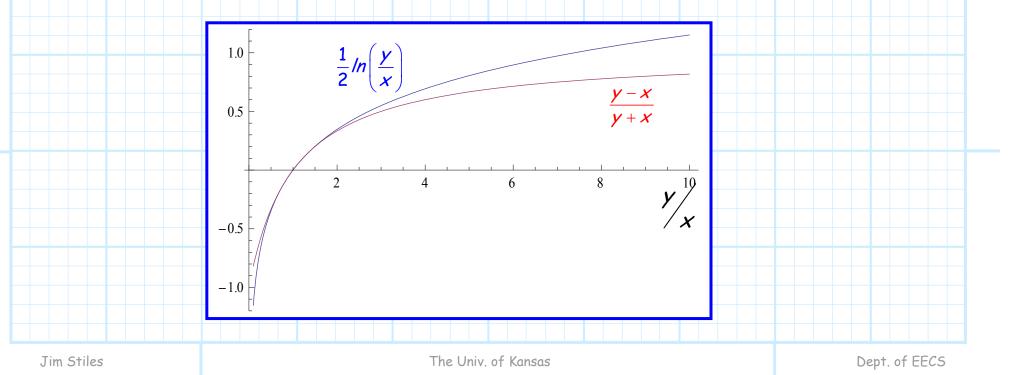
<u>&*#@*!&!!!!!</u>

Q: You big #%@#\$%&!!!! **Why** did you **waste** all my time by discussing an overconstrained design problem that can't be built?

A: Relax; there is a solution to our dilemma—albeit an approximate one. You undoubtedly have previously used the approximation:

$$\frac{y-x}{y+x}\approx\frac{1}{2}\ln\left(\frac{y}{x}\right)$$

An approximation that is especially **accurate** when |y - x| is small (i.e., when $\frac{y}{x} \simeq 1$).



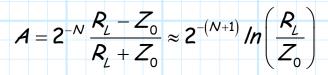
Use this approximation for value A!

Now, we know that the values of Z_{n+1} and Z_n in a multi-section matching network are typically **very close**, such that $|Z_{n+1} - Z_n|$ is small.

Thus, we use the approximation:

$$\Gamma_{n} = \frac{Z_{n+1} - Z_{n}}{Z_{n+1} + Z_{n}} \approx \frac{1}{2} \ln \left(\frac{Z_{n+1}}{Z_{n}} \right)$$

Likewise, we can **also** apply this approximation (although not as accurately) to the value of



A:

Let's try this again—with approximations!

So, let's **start over**, only this time we'll use these **approximations**. First, determine A:

$$A \approx 2^{-(N+1)} ln \left(\frac{R_L}{Z_0}\right)$$

(A can be negative!)

Now use this result to calculate the **mathematically required** marginal reflection coefficients Γ_n :

$$\Gamma_n = \mathcal{A} \mathcal{C}_n^{\mathcal{N}} = \frac{\mathcal{A} \mathcal{N}!}{(\mathcal{N} - n)!n!}$$

Here's (finally) our second design rule!

Of course, we **also** know that these marginal reflection coefficients are **physically** related to the **characteristic impedances** of each section as:

$$\Gamma_n \approx \frac{1}{2} \ln \left(\frac{Z_{n+1}}{Z_n} \right)$$

Equating the two and solving, we find that that the section characteristic impedances **must** satisfy:

$$Z_{n+1} = Z_n exp[2\Gamma_n]$$

Now this is our second design rule. Note it is an iterative rule—we determine Z_1 from Z_0 , Z_2 from Z_1 , and so forth.

I don't understand what just happened

Q: Huh? How is this any better? How does applying **approximate** math lead to a **better** design result??

A: Applying these approximations help **resolve** our over-constrained problem. Recall that the over-constraint resulted in:

$$\Gamma_{N} = \frac{R_{L} - Z_{N}}{R_{L} + Z_{N}} \neq A C_{N}^{N}$$

But, as it turns out, these approximations leads to the happy situation where:

$$\Gamma_N \approx \frac{1}{2} ln \left(\frac{R_L}{Z_N} \right) = A C_N^N \quad \leftarrow \quad \text{A Sanity check!!}$$

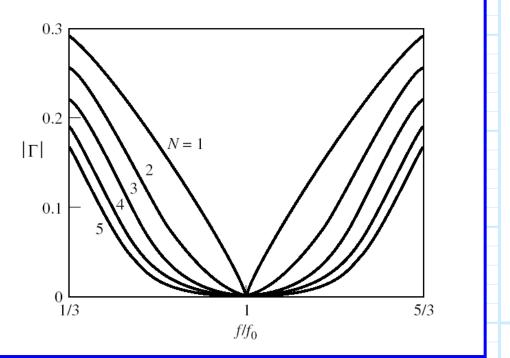
provided that the value A is likewise the approximation given above.

I still don't understand what just happened

ANA

Effectively, these approximations couple the results, such that each value of characteristic impedance Z_n approximately satisfies both Γ_n and Γ_{n+1} . Summarizing:

- * If you use the "exact" design equations to determine the characteristic impedances Z_n , the last value Γ_N will exhibit a significant numeric error, and your design will not appear to be maximally flat.
- If you instead use the "approximate" design equations to determine the characteristic impedances Z_n, all values Γ_n will exhibit a slight error, but the resulting design will appear to be maximally flat, Binomial reflection coefficient function Γ(ω)!



Note that as we **increase** the number of **sections**, the matching **bandwidth** increases.

Bandwidth: How do we define it?

band·width (band'width', -witth') - noun

1. the range of frequencies within a

Can we determine the value of this bandwidth?

A: Sure! But we first must define what we mean by bandwidth.

As we move from the design (perfect match) frequency f_0 the value $|\Gamma(f)|$ will increase. At some frequency (f_m , say) the magnitude of the reflection coefficient will increase to some unacceptably high value (Γ_m , say). At that point, we no longer consider the device to be matched.



Bandwidth: How do we calculate it?

Note there are two values of frequency f_m —one value less than design frequency f_0 , and one value greater than design frequency f_0 .

These two values define the **bandwidth** Δf of the matching network:

$$\Delta f = f_{m2} - f_{m1} = 2(f_0 - f_{m1}) = 2(f_{m2} - f_0)$$

Q: So what is the **numerical** value of Γ_m ?

A: I don't know—it's up to you to decide!

Every engineer must determine what they consider to be an acceptable match (i.e., decide

This decision depends on the **application** involved, and the **specifications** of the overall microwave system being designed.

However, we **typically** set Γ_m to be 0.2 or less.

 Γ_m).

 f_m ?

We get to perform some Algebra!!

Q: OK, after we have selected Γ_m , can we determine the **two** frequencies

A: Sure! We just have to do a little algebra.

We start by **rewriting** the Binomial function:

$$\Gamma(\theta) = \mathcal{A} \left(1 + e^{-j^{2}\theta} \right)^{N}$$
$$= \mathcal{A} e^{-jN\theta} \left(e^{+j\theta} + e^{-j\theta} \right)^{N}$$
$$= \mathcal{A} e^{-jN\theta} \left(e^{+j\theta} + e^{-j\theta} \right)^{N}$$
$$= \mathcal{A} e^{-jN\theta} \left(2\cos\theta \right)^{N}$$

Now, we take the magnitude of this function:

$$\Gamma(\theta) = 2^{N} |\mathcal{A}| e^{-jN\theta} |\cos\theta|^{N}$$

 $= 2^{N} |A| |\cos \theta|^{N}$

It gets better—even more algebra!!

Now, we **define** the values θ where $|\Gamma(\theta)| = \Gamma_m$ as θ_m . I.E., :

$$\Gamma_{m} = \left| \Gamma \left(\theta = \theta_{m} \right) \right|$$
$$= 2^{N} \left| \mathcal{A} \right| \left| \cos \theta_{m} \right|^{N}$$

We can now solve for θ_m (in **radians**!) in terms of Γ_m :

Note that there are **two solutions** to the above equation (one less that $\pi/2$ and one greater than $\pi/2$)!

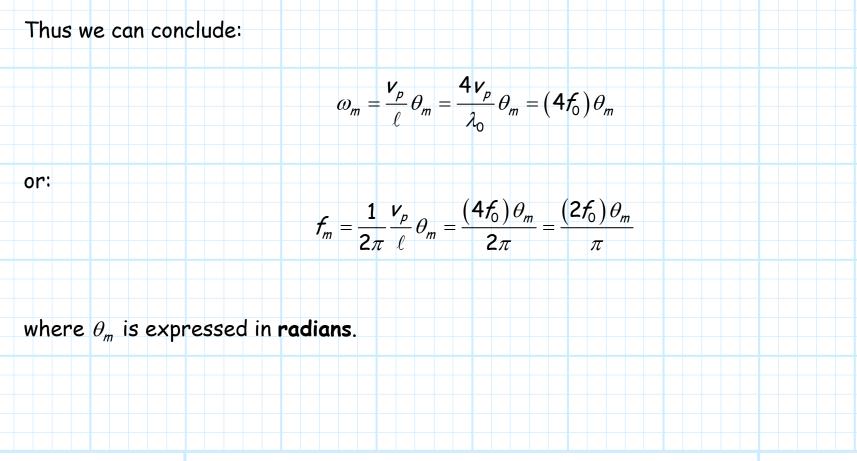
Now, we can **convert** the values of θ_m into specific **frequencies**.

Converting θ_m to f_m

Recall that $\omega T = \theta$, therefore:

$$\omega_m = \frac{1}{T} \theta_m = \frac{\nu_p}{\ell} \theta_m$$

But recall also that $\ell = \lambda_0/4$, where λ_0 is the wavelength at the **design frequency** f_0 (not $f_m!$), and where $\lambda_0 = v_p/f_0$.



And thus the bandwidth is...

Therefore:

$$f_{m1} = \frac{2f_0}{\pi} \cos^{-1} \left[+\frac{1}{2} \left(\frac{\Gamma_m}{|\mathcal{A}|} \right)^{1/N} \right] \qquad f_{m2} = \frac{2f_0}{\pi} \cos^{-1} \left[-\frac{1}{2} \left(\frac{\Gamma_m}{|\mathcal{A}|} \right)^{1/N} \right]$$

Thus, the **bandwidth** of the binomial matching network can be determined as:

$$\Delta f = 2(f_0 - f_{m1})$$
$$= 2f_0 - \frac{4f_0}{\pi} \cos^{-1} \left[+ \frac{1}{2} \left(\frac{\Gamma_m}{|\mathcal{A}|} \right)^{1/N} \right]$$

Note that this equation can be used to determine the **bandwidth** of a binomial matching network, given Γ_m and number of sections N.

However, it can likewise be used to determine the **number of sections** Nrequired to meet a specific bandwidth requirement!

Jim Stiles

In summary, our design steps

Finally, we can list the **design steps** for a binomial matching network:

- **1.** Determine the value N required to meet the bandwidth (Δf and Γ_m) requirements.
- **2.** Determine the **approximate** value A from Z_0, R_1 and N.
- **3**. Determine the marginal reflection coefficients $\Gamma_n = AC_n^N$ required by the **binomial** function.
- 4. Determine the characteristic impedance of each section using the **iterative approximation**:

$$Z_{n+1} = Z_n \exp\left[2\Gamma_n\right]$$

5. Perform the sanity check:

$$\Gamma_{N} \approx \frac{1}{2} \ln \left(\frac{R_{L}}{Z_{N}} \right) = \mathcal{A} C_{N}^{N}$$

6. Determine section length $\ell = \lambda_0/4$ for design frequency f_0 .

Jim Stiles