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5.6 – Binomial Multi-section 
Matching Transformer 

 
Reading Assignment: pp. 246-250 
 
One way to maximize bandwidth is to construct a multisection 
matching network with a function ( )fΓ  that is maximally flat. 
 
Q:  Maximally flat?  What kind of function is maximally flat?  
 
This function maximizes bandwidth by providing a solution 
that is maximally flat. 
 
A:  HO:  MAXIMALLY FLAT FUNCTIONS 
 

1.  We can build a multisection matching network such 
that the function ( )fΓ  is a binomial function. 
 
2.  The binomial function is maximally flat. 

 
Q:  Meaning? 
 
A:  Meaning the function ( )fΓ  is maximally flat  a wideband 
solution! 
 
HO:  THE BINOMIAL MULTI-SECTION MATCHING TRANSFORMER 
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Maximally Flat Functions 
 
Consider some function ( )f x .  Say that we know the value of the function at x =1 is 5: 
 

( )1 5f x = =  
 
This of course says something about the function ( )f x , but it doesn’t tell us much! 
 
We can additionally determine the first derivative of this function, and likewise evaluate 
this derivative at x =1. Say that this value turns out to be zero: 
 

( )

1

0
x

d f x
d x

=

=  

 
Note that this does not mean that the derivative of ( )f x  is equal to zero, it merely 
means that the derivative of ( )f x  is zero at the value 1x = .  Presumably, ( )d f x dx  is 
non-zero at other values of x. 
 
 
 
 
 



 

4/14/2010 Maximally Flat Transformer Functions present 2/7 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Taking derivates: way too fun to stop! 
 

So, we now have two pieces of information about the function ( )f x .  We can add to this 
list by continuing to take higher-order derivatives and evaluating them at the single point 
x =1. 
 
Let’s say that the values of all the derivatives (at x =1) turn out to have a zero value: 
 

( )

1

0
n

n
x

d f x
d x

=

=   for 1 2 3n , , , ,= ∞  

 
We say that this function is completely flat at the point x=1. 
 
Because all the derivatives are zero at x =1, it means that the function cannot change in 
value from that at x =1. 
 
In other words, if the function has a value of 5 at x =1, (i.e., ( )1 5f x = = ), then the 
function must have a value of 5 at  all x  !   
 
The function ( )f x  thus must be the constant function: 
 

( ) 5f x =  
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A more realistic function 
 
 
Now let’s consider the following problem—say some function ( )f x  has the following form: 
 

( ) 3 2f x a x b x c x= + +  
 

We wish to determine the values a, b, and c  so that: 
 

( )1 5f x = =  
 

and that the value of the function ( )f x  is as close to a value of 5 as possible in the 
region where x =1. 
 
In other words, we want the function to have the value of 5 at x =1, and to change from 
that value as slowly as possible as we “move” from x =1. 
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Completely flat in not possible! 
 

Q:  Don’t we simply want the completely flat function ( ) 5f x = ? 
 
A: That would be the ideal function for this case, but notice that solution is not an option.  
Note there are no values of a, b, and c that will make: 
 

3 2 5a x b x c x+ + =  
 
for all values x. 
 
Q:  So what do we do? 
 
A: Instead of the completely flat solution, we can find the maximally flat solution! 
 
The maximally flat solution comes from determining the values a, b, and c so that as many 
derivatives as possible are zero at the point x=1. 
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How many derivatives can be zero? 
 
For example, we wish to make the first derivate equal to zero at x =1: 
 

( )

( )
1

2

1

0

3 2

3 2

x

x

d f x
d x

ax bx c
a b c

=

=

=

= + +

= + +

 

 
Likewise, we wish to make the second derivative equal to zero at x =1: 
 

( )

( )

2

2
1

1

0

6 2
6 2

x

x

d f x
d x
ax b

a b

=

=

=

= +

= +

 

 
Here we must stop taking derivatives, as our solution only has three degrees of design 
freedom (i.e., 3 unknowns a, b, c). 
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We’re out of degrees of design freedom 
 
Q: But we only have taken two derivatives, can’t we take one more? 
 
A:  No! We already have a third “design” equation:  the value of the function must be 5 at 
x =1: 

( )
( ) ( ) ( )3 2

5 1

1 1 1

f x
a b c
a b c

= =

= + +

= + +

 

 
So, we have used the maximally flat criterion at x =1 to generate three equations and 
three unknowns: 

5 a b c= + +  
 

0 3 2a b c= + +  
 

0 6 2a b= +  
 

Solving, we find: 
5
15

15

a
b
c

=

= −

=
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Look! The function is maximally flat at x=1! 
 
 
Therefore, the maximally flat function (at x =1)  is: 
 

( ) 3 25 15 15f x x x x= − +  
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The Binomial Multi-Section 
Transformer 

 
Recall that a multi-section matching network can be described using the theory of small 
reflections as: 
 

( ) 2 4 2
0 1 2

2

0

j T j T j N T
in N

N
j n T

n
n

e e e

e

ω ω ω

ω

ω − − −

−

=

Γ = Γ + Γ + Γ + + Γ

= Γ∑
 

where: 

propagation time through 1 section
p

T
v

=  

 
Note that for a multi-section transformer, we have N  degrees of design freedom, 
corresponding to the N characteristic impedance values nZ . 
 

 
RL 
 

 

0Z   1Z  2Z  NZ  

  

inZ  
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Behold the Binomial Function! 
 

Q:  What should the values of nΓ  (i.e., nZ ) be? 
 
A:  We need to define N independent design equations, which we can then use to 
solve for the N values of characteristic impedance nZ . 

 
First, we start with a single design frequency 0ω , where we wish to achieve a perfect 
match: 

( )0 0in ω ωΓ = =  
 
That’s just one design equation: we need N -1 more! 
 
These addition equations can be selected using many criteria—one such criterion is to 
make the function ( )in ωΓ  maximally flat at the point 0ω ω= . 
 
To accomplish this, we first consider the Binomial Function: 
 

( ) ( )21
NjA e θθ −Γ = +
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What’s so special about the Binomial Function!  
 

The Binomial  Function has the desirable properties that: 
 

( ) ( )
( )

2 1

1 1
0

Nj

N

A e

A

πθ π −Γ = = +

= −

=

 

and that: 
 

( )

2

0
n

n
d

d πθ

θ
θ

=

Γ
=  for 1 2 3 1n , , , ,N= −  

 
In other words, this Binomial Function is maximally flat at the point 2θ π= , where it has 
a value of ( )2 0θ πΓ = = . 
 

Q:  So? What does this have to do with our multi-section matching network? 
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A: Plenty! 
 
Let’s expand (multiply out the N identical product terms) of the Binomial Function: 
 

( ) ( )
( )

2

2 4 6 2
0 1 2 3

1
Nj

j j j j NN N N N N
N

A e

A C C e C e C e C e

θ

θ θ θ θ

θ −

− − − −

Γ = +

= + + + + +
 

 
where: 

( )
N

n
N !C

N n ! n !−
 

 
Compare this to an N-section transformer function: 

 
( ) 2 4 2

0 1 2
j T j T j N T

in Ne e eω ω ωω − − −Γ = Γ + Γ + Γ + + Γ  
 
and it is obvious the two functions have identical forms, provided that: 
 
 

N
n nA CΓ =       and       Tω θ=  
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See, the Binomial Function is very useful! 
 
Moreover, we find that this function is very desirable from the standpoint of a matching 
network.  Recall that ( ) 0θΓ =  at 2θ π= --a perfect match! 
 
Additionally, the function is maximally flat at 2θ π= , therefore ( ) 0θΓ ≈  over a wide 
range around 2θ π= --a wide bandwidth! 
 

Q: But how does 2θ π=  relate to frequency ω? 
 
A: Remember that Tω θ= , so the value 2θ π=  corresponds to the frequency: 

 

0
1

2 2
pv

T
π πω = =  

 
This frequency ( 0ω ) is therefore our design frequency—the frequency where we have a 
perfect match. 
 



 
  

 

4/15/2010 The Binomial Multisection Matching Transformer present.doc 6/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

What about the length of each section? 
 
Note that the section-length  has an interesting relationship with this frequency: 
 

0 0

0 0

1
2 2 2 2 4

pv λ λπ π π
ω β π

= = = =  

 
In other words, a Binomial Multi-section matching network will have a perfect match at 
the frequency where the section lengths  are a quarter wavelength! 
 
Thus, we have our first design rule: 
 
 

Set section lengths  so that they are a quarter-wavelength ( 0 4λ ) at the design 
frequency 0ω . 
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And that pesky constant A ? 
 

Q: I see! And then we select all the values Zn such that  N
n nA CΓ = .  But wait! What 

is the value of A ?? 
 
A:  We can determine this value by evaluating a boundary condition! 

 
Specifically, we can easily determine the value of ( )ωΓ  at 0ω = . 
 
 
 
 
 
 
 
Note as ω  approaches zero, the electrical length β  of each section will likewise approach 
zero.  Thus, the input impedance Zin  will simply be equal to RL as 0ω → . 
 
As a result, the input reflection coefficient ( )0ωΓ =  must be: 
 

( ) ( )
( )

0 0

00

0
0

0
in L

Lin

Z Z R Z
R ZZ Z

ω
ω

ω

= − −
Γ = = =

+= +
 

 
RL 
 

 

0Z   1Z  2Z  NZ  

  

inZ  
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Aren’t boundary conditions great ? 
 
 However, we likewise know that: 
 

( ) ( )( )
( )

2 00 1

1 1
2

Nj

N

N

A e

A
A

−Γ = +

= +

=

 

 
Equating the two expressions: 
 

( ) 0

0

0 2N L

L

R ZA
R Z

−
Γ = =

+
 

And therefore: 
 

                              0

0

2 N L

L

R ZA
R Z

− −
=

+
         (A can be negative!) 

 
We now have a form to calculate the required marginal reflection coefficients nΓ : 
 

( )
!
! !

N
n n

A NAC
N n n

Γ = =
−
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How do I determine characteristic impedance? 
 
Of course, we also know that these marginal reflection coefficients are physically related 
to the characteristic impedances of each section as: 
 

1

1

n n
n

n n

Z Z
Z Z

+

+

−
Γ =

+
 

 
Equating the two and solving, we find that that the section characteristic impedances 
must satisfy: 
 

1

1 1
1 1

N
n n

n n n N
n n

ACZ Z Z
AC+

+ Γ +
= =

− Γ −
 

 
Note this is an iterative result—we determine Z1 from Z0,  Z2 from Z1, and so forth. 
 

Q:  This result appears to be our second design equation. Is there some reason why 
you didn’t draw a big blue box around it? 

 
A: Alas, there is a big problem with this result. 
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The BIG problem with this result! 
 
Note that there are N +1 coefficients  nΓ  (i.e., { }0,1, ,n N∈ ) in the Binomial series, yet 
there are only N design degrees of freedom (i.e., there are only N  transmission line 
sections!). 
 
Thus, our design is a bit over constrained, a result that manifests itself the finally 
marginal reflection coefficient NΓ . 
 
Note from the iterative solution above, the last transmission line impedance NZ  is 
selected to satisfy the mathematical requirement of the penultimate reflection 
coefficient 1N −Γ  : 
    

1
1 1

1

NN N
N N

N N

Z Z A C
Z Z

−
− −

−

−
Γ = =

+
 

 
Thus the last impedance must be: 
 

1
1

1

1
1

N
N

N N N
N

ACZ Z
AC

−
−

−

+
=

−
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Our degrees of freedom have run out! 
 
But there is one more mathematical requirement! The last marginal reflection coefficient 
must likewise satisfy: 

0

0

2N N L
N N

L

R ZA C
R Z

− −
Γ = =

+
 

 
where we have used the fact that 1N

NC = . 
 
But, we just selected NZ  to satisfy the requirement for 1N −Γ ,—we have no physical design 
parameter to satisfy this last mathematical requirement! 
 
As a result, we find to our great consternation that the last requirement is not satisfied: 
 

NL N
N N

L N

R Z A C
R Z

≠
−

Γ =
+

  !!!!!! 

 
Q:  Yikes! Does this mean that the resulting matching network will not have the 
desired Binomial frequency response? 
 
A:  That’s exactly what it means! 
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&*#@*!&!!!!! 
 
Q: You big  #%@#$%&!!!! Why did you waste all my time by discussing an over-
constrained  design problem that can’t be built?  
 
A:  Relax; there is a solution to our dilemma—albeit an approximate one. 
You undoubtedly have previously used the approximation: 
 

1
2

y x yln
y x x

⎛ ⎞−
≈ ⎜ ⎟+ ⎝ ⎠

 

 
An approximation that is especially accurate when y x−  is small (i.e., when 1y

x ). 
 
 
 
 
 
 
 
 
 
 
 

2 4 6 8 10

-1.0

-0.5

0.5

1.0

y
x  

y x
y x
−
+

 

1
2

yln
x

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Use this approximation for value A! 
 
Now, we know that the values of 1nZ +  and nZ  in a multi-section matching network are 
typically very close, such that 1n nZ Z+ −  is small.    
 
Thus, we use the approximation: 
 

1 1

1

1
2

n n n
n

n n n

Z Z Zln
Z Z Z

+ +

+

⎛ ⎞−
Γ = ≈ ⎜ ⎟

+ ⎝ ⎠
        

 
Likewise, we can also apply this approximation (although not as accurately) to the value of 
A : 
 

( )10

0 0

2 2 NN L L

L

R Z RA ln
R Z Z

− +− ⎛ ⎞−
= ≈ ⎜ ⎟

+ ⎝ ⎠
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Let’s try this again—with approximations! 
 
So, let’s start over, only this time we’ll use these approximations.  First, determine A : 
 
 

( )1

0

2 N LRA ln
Z

− + ⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠
        (A can be negative!) 

 
 

 
Now use this result to calculate the mathematically required marginal reflection 
coefficients nΓ : 
 
 

( )
!
! !

N
n n

A NAC
N n n

Γ = =
−
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Here’s (finally) our second design rule! 
 
Of course, we also know that these marginal reflection coefficients are physically related 
to the characteristic impedances of each section as: 
 

11
2

n
n

n

Zln
Z

+
⎛ ⎞

Γ ≈ ⎜ ⎟
⎝ ⎠

 

 
Equating the two and solving, we find that that the section characteristic impedances 
must satisfy: 
 
 

1 2n n nZ Z exp+
⎡ ⎤= Γ⎣ ⎦  

 
 
Now this is our second design rule.  Note it is an iterative rule—we determine Z1 from Z0,  
Z2 from Z1, and so forth. 
 



 
  

 

4/15/2010 The Binomial Multisection Matching Transformer present.doc 16/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

I don’t understand what just happened 
 
Q: Huh? How is this any better?  How does applying approximate math lead to a better 
design result?? 
 
A:  Applying these approximations help resolve our over-constrained problem.   Recall that 
the over-constraint resulted in: 
 

NL N
N N

L N

R Z A C
R Z

−
Γ =

+
≠  

 
But, as it turns out, these approximations leads to the happy situation where: 
 
 

   1
2

NL
N N

N

Rln A C
Z

⎛ ⎞
Γ ≈ ⎜ ⎟

⎝ ⎠
=         A Sanity check!! 

 
 
provided that the value A is  likewise the approximation given above. 
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I still don’t understand what just happened 
 
Effectively, these approximations couple the results, such that each value of 
characteristic impedance nZ  approximately satisfies both nΓ  and 1n+Γ . Summarizing: 

 
* If you use the “exact”  design 

equations to determine the 
characteristic impedances nZ , the 
last value NΓ  will exhibit a significant 
numeric error, and your design will 
not appear to be maximally flat. 
 

* If you instead use the “approximate” 
design equations to determine the 
characteristic impedances nZ , all 
values nΓ  will exhibit a slight error, 
but the resulting design will appear to 
be maximally flat, Binomial 
reflection coefficient function ( )ωΓ ! 

Note that as we increase the number of 
sections, the matching bandwidth increases. 
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Bandwidth: How do we define it? 
 
 
 

Q:  Can we determine the value of this bandwidth? 
 
A:  Sure!  But we first must define what we mean by bandwidth. 

 
As we move from the design (perfect match) frequency f0 the value ( )fΓ  will increase.  
At some frequency (fm, say) the magnitude of the reflection coefficient will increase to 
some unacceptably high value ( mΓ , say).  At that point, we no longer consider the device 
to be matched. 
 
 
 
 
 
 
 
 
 
 

f0 fm2 fm1 

mΓ  

( )fΓ  

f 

fΔ  

band·width (band′widt̸h′, -witt ̸h′) - noun 

1. the range of frequencies within a …. 



 
  

 

4/15/2010 The Binomial Multisection Matching Transformer present.doc 19/24 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Bandwidth: How do we calculate it? 
 
Note there are two values of frequency fm —one value less than design frequency f0, and 
one value greater than design frequency f0.   
 
These two values define the bandwidth fΔ  of the matching network: 
 
 

( ) ( )2 1 0 1 2 02 2m m m mf f f f f f fΔ = − = − = −  
 
 

Q:  So what is the numerical value of  mΓ ? 
 
A:  I don’t know—it’s up to you to decide! 

 
Every engineer must determine what they consider to be an acceptable match (i.e., decide 

mΓ ).   
 
This decision depends on the application involved, and the specifications of the overall 
microwave system being designed. 
 
However, we typically set mΓ  to be 0.2 or less.  
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We get to perform some Algebra!! 
 

Q:  OK, after we have selected mΓ , can we determine the two frequencies 
fm ? 
 
A:  Sure! We just have to do a little algebra. 
 
We start by rewriting the Binomial function: 
 

( ) ( )
( )
( )
( )

21

2

Nj

NjN j j

NjN j j

NjN

A e

Ae e e

Ae e e

Ae cos

θ

θ θ θ

θ θ θ

θ

θ

θ

−

− + −

− + −

−

Γ = +

= +

= +

=

 

 
Now, we take the magnitude of this function: 
 

( ) 2

2

NjNN

NN

A e cos

A cos

θθ θ

θ

−Γ =

=
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It gets better—even more algebra!! 
 
Now, we define the values θ  where ( ) mθΓ = Γ  as mθ .  I.E., : 
 

( )
2

m m

NN
mA cos

θ θ

θ

Γ = Γ =

=
 

 
We can now solve for mθ  (in radians!) in terms of mΓ : 
 

1

1
1

1
2

N
m

m cos
A

θ −
⎡ ⎤⎛ ⎞Γ⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                  
1

1
2

1
2

N
m

m cos
A

θ −
⎡ ⎤⎛ ⎞Γ⎢ ⎥= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
Note that there are two solutions to the above equation (one less that 2π  and one 
greater than 2π )! 
 
Now, we can convert the values of mθ  into specific frequencies. 
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Converting θm to fm  
 
Recall that Tω θ= , therefore: 

1 p
m m m

v
T

ω θ θ= =  

 
But recall also that 0 4λ= , where 0λ  is the wavelength at the design frequency 0f  (not 

mf !),  and where 0 0pv fλ = . 
 
Thus we can conclude: 
 

( )0
0

4
4p p

m m m m
v v

fω θ θ θ
λ

= = =  

 
or: 

( ) ( )0 04 21
2 2

p m m
m m

v f f
f

θ θ
θ

π π π
= = =  

 
 
where mθ  is expressed in radians.   
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And thus the bandwidth is… 
 
Therefore: 
 
 

1

10
1

2 1
2

N
m

m
ff cos

Aπ
−
⎡ ⎤⎛ ⎞Γ⎢ ⎥= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

          
1

10
2

2 1
2

N
m

m
ff cos

Aπ
−
⎡ ⎤⎛ ⎞Γ⎢ ⎥= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
 
Thus, the bandwidth of the binomial matching network can be determined as: 
 
 

( )0 1

1

10
0

2

4 12
2

m

N
m

f f f

ff cos
Aπ

−

Δ = −

⎡ ⎤⎛ ⎞Γ⎢ ⎥= − + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
Note that this equation can be used to determine the bandwidth of a binomial matching 
network, given mΓ  and number of sections N. 
 
However, it can likewise be used to determine the number of sections N required to 
meet a specific bandwidth requirement! 
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In summary, our design steps 
 
Finally, we can list the design steps for a binomial matching network: 
 

1.  Determine the value N required to meet the bandwidth ( fΔ  and mΓ ) 
requirements. 
 
2. Determine the approximate value A from 0, LZ R  and N. 
 
3.  Determine the marginal reflection coefficients N

n nACΓ =  required by the 
binomial function. 
 
4.  Determine the characteristic impedance of each section using the iterative 
approximation: 

1 2n n nZ Z exp+
⎡ ⎤= Γ⎣ ⎦  

5. Perform the sanity check: 
 

1
2

NL
N N

N

Rln A C
Z

⎛ ⎞
Γ ≈ ⎜ ⎟

⎝ ⎠
=  

 
6.  Determine section length 0 4λ=  for design frequency f0. 
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