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5.6 – Binomial Multi-section 
Matching Transformer 

 
Reading Assignment: pp. 246-250 
 
One way to maximize bandwidth is to construct a multisection 
matching network with a function ( )fΓ  that is maximally flat. 
 
Q:  Maximally flat?  What kind of function is maximally flat?  
 
This function maximizes bandwidth by providing a solution 
that is maximally flat. 
 
A:  HO:  Maximally Flat Functions 
 

1.  We can build a multisection matching network such 
that the function ( )fΓ  is a binomial function. 
 
2.  The binomial function is maximally flat. 

 
Q:  Meaning? 
 
A:  Meaning the function ( )fΓ  is maximally flat  a wideband 
solution! 
 
HO:  The Binomial Multi-section Matching Transformer 
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Maximally Flat Functions 
 
Consider some function ( )f x .  Say that we know the value of 
the function at x =1 is 5: 
 

( )1 5f x = =  
 
This of course says something about the function ( )f x , but it 
doesn’t tell us much! 
 
We can additionally determine the first derivative of this 
function, and likewise evaluate this derivative at x =1. Say 
that this value turns out to be zero: 
 

( )

1

0
x

d f x
d x

=

=  

 
Note that this does not mean that the derivative of ( )f x  is 
equal to zero, it merely means that the derivative of ( )f x  is 
zero at the value 1x = .  Presumably, ( )d f x dx  is non-zero 
at other values of x. 
 
So, we now have two pieces of information about function 
( )f x .  We can add to this list by continuing to take higher-

order derivatives and evaluating them at the single point x =1. 
 
Let’s say that the values of all the derivatives (at x =1) turn 
out to have a zero value: 
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( )

1

0
n

n
x

d f x
d x

=

=   for 1 2 3n , , , ,= ∞  

 
We say that this function is completely flat at the point x=1. 
Because all the derivatives are zero at x =1, it means that the 
function cannot change in value from that at x =1. 
 
In other words, if the function has a value of 5 at x =1, (i.e., 
( )1 5f x = = ), then the function must have a value of 5 at  all 

x  !   
 
The function ( )f x  thus must be the constant function: 
 

( ) 5f x =  
 
Now let’s consider the following problem—say some function 
( )f x  has the following form: 

 
( ) 3 2f x a x b x c x= + +  

 
We wish to determine the values a, b, and c  so that: 
 

( )1 5f x = =  
 

and that the value of the function ( )f x  is as close to a value 
of 5 as possible in the region where x =1. 
In other words, we want the function to have the value of 5 at 
x =1, and to change from that value as slowly as possible as we 
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“move” from x =1. 
 
Q:  Don’t we simply want the completely flat function 
( ) 5f x = ? 

 
A: That would be the ideal function for this case, but notice 
that solution is not an option.  Note there are no values of a, 
b, and c that will make: 
 

3 2 5a x b x c x+ + =  
 
for all values x. 
 
Q:  So what do we do? 
 
A: Instead of the completely flat solution, we can find the 
maximally flat solution! 
 
The maximally flat solution comes from determining the 
values a, b, and c so that as many derivatives as possible are 
zero at the point x=1. 
 
For example, we wish to make the first derivate equal to zero 
at x =1: 

( )

( )
1

2

1

0

3 2

3 2

x

x

d f x
d x

ax bx c
a b c

=

=

=

= + +

= + +
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Likewise, we wish to make the second derivative equal to zero 
at x =1: 

( )

( )

2

2
1

1

0

6 2
6 2

x

x

d f x
d x
ax b

a b

=

=

=

= +

= +

 

 
Here we must stop taking derivatives, as our solution only has 
three degrees of design freedom (i.e., 3 unknowns a, b, c). 
 
Q: But we only have taken two derivatives, can’t we take one 
more? 
 
A:  No! We already have a third “design” equation:  the value 
of the function must be 5 at x =1: 
 

( )
( ) ( ) ( )3 2

5 1

1 1 1

f x
a b c
a b c

= =

= + +

= + +

 

 
So, we have used the maximally flat criterion at x =1 to 
generate three equations and three unknowns: 
 

5 a b c= + +  
 

0 3 2a b c= + +  
 

0 6 2a b= +  
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Solving, we find: 
5
15

15

a
b
c

=

= −

=

 

 
Therefore, the maximally flat function (at x =1)  is: 
 

( ) 3 25 15 15f x x x x= − +  
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The Binomial Multi-
Section Transformer 

 
Recall that a multi-section matching network can be 
described using the theory of small reflections as: 
 

( ) 2 4 2
0 1 2

2

0

j T j T j N T
in N

N
j n T

n
n

e e e

e

ω ω ω

ω

ω − − −

−

=

Γ = Γ + Γ + Γ + + Γ

= Γ∑
 

where: 
 

propagation time through 1 section
p

T
v

=  

 
Note that for a multi-section transformer, we have N  
degrees of design freedom, corresponding to the N 
characteristic impedance values nZ . 
 
Q:  What should the values of nΓ  (i.e., nZ ) be? 
 
A:  We need to define N independent design equations, which 
we can then use to solve for the N values of characteristic 
impedance nZ . 
 
First, we start with a single design frequency 0ω , where we 
wish to achieve a perfect match: 
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( )0 0in ω ωΓ = =  
 
That’s just one design equation: we need N -1 more! 
 
These addition equations can be selected using many 
criteria—one such criterion is to make the function ( )in ωΓ  
maximally flat at the point 0ω ω= . 
 
To accomplish this, we first consider the Binomial Function: 
 

( ) ( )21
NjA e θθ −Γ = +  

 
This function has the desirable properties that: 
 

( ) ( )
( )

2 1

1 1
0

Nj

N

A e

A

πθ π −Γ = = +

= −

=

 

and that: 
 

( )

2

0
n

n
d

d πθ

θ
θ

=

Γ
=  for 1 2 3 1n , , , ,N= −  

 
In other words, this Binomial Function is maximally flat at the 
point 2θ π= , where it has a value of ( )2 0θ πΓ = = . 
 
Q:  So? What does this have to do with our multi-section 
matching network? 
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A:  Let’s expand (multiply out the N identical product terms) 
of the Binomial Function: 
 
( ) ( )

( )

2

2 4 6 2
0 1 2 3

1
Nj

j j j j NN N N N N
N

A e

A C C e C e C e C e

θ

θ θ θ θ

θ −

− − − −

Γ = +

= + + + + +
 

 
where: 

( )
N

n
N !C

N n ! n !−
 

 
Compare this to an N-section transformer function: 

 
( ) 2 4 2

0 1 2
j T j T j N T

in Ne e eω ω ωω − − −Γ = Γ + Γ + Γ + + Γ  
 
and it is obvious the two functions have identical forms, 
provided that: 
 

N
n nA CΓ =       and       Tω θ=  

 
Moreover, we find that this function is very desirable from 
the standpoint of the a matching network.  Recall that 
( ) 0θΓ =  at 2θ π= --a perfect match! 

 
Additionally, the function is maximally flat at 2θ π= , 
therefore ( ) 0θΓ ≈  over a wide range around 2θ π= --a wide 
bandwidth! 
 
Q: But how does 2θ π=  relate to frequency ω? 
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A: Remember that Tω θ= , so the value 2θ π=  corresponds 
to the frequency: 

0
1

2 2
pv

T
π πω = =  

 
This ( 0ω ) is our design frequency—the frequency where we 
have a perfect match. 
 
Note that the length  has an interesting relationship with 
this frequency: 
 

0 0

0 0

1
2 2 2 2 4

pv λ λπ π π
ω β π

= = = =  

 
In other words, a Binomial Multi-section matching network 
will have a perfect match at the frequency where the section 
lengths  are a quarter wavelength! 
 
Thus, we have our first design rule: 
 
 

Set section lengths  so that they are a quarter-
wavelength ( 0 4λ ) at the design frequency 0ω . 

 
 

 
Q: I see! And then we select all the values Zn such that  

N
n nA CΓ = .  But wait! What is the value of A ?? 
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A:  We can determine this value by evaluating a boundary 
condition! 
 
Specifically, we can easily determine the value of ( )ωΓ  at 

0ω = . 
 
 
 
 
 
 
 
 
Note as ω  approaches zero, the electrical length β  of each 
section will likewise approach zero.  Thus, the input impedance 
Zin  will simply be equal to RL as 0ω → . 
 
As a result, the input reflection coefficient ( )0ωΓ =  must 
be: 

( ) ( )
( )

0

0

0

0

0
0

0
in

in

L

L

Z Z
Z Z
R Z
R Z

ω
ω

ω
= −

Γ = =
= +

−
=

+

 

  
However, we likewise know that: 
 

 
RL 
 

 

0Z   1Z  2Z  NZ  

  

inZ  
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( ) ( )( )
( )

2 00 1

1 1
2

Nj

N

N

A e

A
A

−Γ = +

= +

=

 

 
Equating the two expressions: 
 

( ) 0

0

0 2N L

L

R ZA
R Z

−
Γ = =

+
 

 
And therefore: 

0

0

2 N L

L

R ZA
R Z

− −
=

+
 

 
We now have a form for the marginal reflection coefficients 

nΓ : 

( )
0

0

!2
! !

N N L
n n

L

NR ZAC
R Z N n n

− −
Γ = =

+ −
 

 
Of course, we also know that these marginal reflection 
coefficients are: 
 

1

1

n n
n

n n

Z Z
Z Z

+

+

−
Γ =

+
 

 
Now, we know that the values of 1nZ +  and nZ  are typically very 
close, such that 1n nZ Z+ −  is small.  It turns out for this case 
that we can use a helpful approximation for the marginal 
reflection coefficient: 
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1 1

1

1
2

n n n
n

n n n

Z Z Zln
Z Z Z

+ +

+

⎛ ⎞−
Γ = ≈ ⎜ ⎟+ ⎝ ⎠

       (for nΓ  small) 

 
 
 
Therefore we can conclude: 
 

01

0

1 2
2

N NLn
n n

n L

R ZZln C
Z R Z

−+⎛ ⎞ −
Γ = =⎜ ⎟ +⎝ ⎠

 

 
Solving for 1nZ + , we find: 
 

1 0
1

0

2 N NL
n n n

L

R ZZ Z exp C
R Z

− +
+

⎡ ⎤−
= ⎢ ⎥+⎣ ⎦

 

 
We can further simplify this with yet another approximation: 
 
 

1
0

2 N NL
n n n

RZ Z exp ln C
Z

−
+

⎡ ⎤⎛ ⎞
≈ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 
 

This is our second design rule.  Note it is an iterative rule—
we determine Z1 from Z0,  Z2 from Z1, and so forth. 
 
The result is a maximally flat, Binomial reflection 
coefficient function ( )ωΓ .  
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Note that as we increase the number of sections, the 
matching bandwidth increases. 
 
Q:  Can we determine the value of this bandwidth? 
 
A:  Sure!  But we first must define what we mean by 
bandwidth. 
 
As we move from the design (perfect match) frequency f0 the 
value ( )fΓ  will increase.  At some frequency (fm, say) the 
magnitude of the reflection coefficient will increase to some 

Figure 5.15  (p. 250) 
Reflection coefficient magnitude versus frequency for multisection 
binomial matching transformers of Example 5.6 ZL = 50Ω and Z0 = 
100Ω. 
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unacceptably high value ( mΓ , say).  At that point, we no longer 
consider the device to be matched. 
 
Note there are two values of frequency fm —one value less 
than design frequency f0, and one value greater than design 
frequency f0.  These two values define the bandwidth of the 
matching network. 
 
Q:  So what is the numerical value of  mΓ ? 
 
A:  I don’t know—it’s up to you to decide! 
 
Every engineer must determine what they consider to be an 
acceptable match (i.e., decide mΓ ).  This decision depends on 
the application involved, and the specifications of the overall 
microwave system being designed. 
 
However, we typically set mΓ  to be 0.2 or less.  
 
Q:  OK, after we have selected mΓ , can we determine the two 
frequencies fm ? 
 
A:  Sure! We just have to do a little algebra. 
 
We start by rewriting the Binomial function: 
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( ) ( )
( )
( )
( )

21

2

Nj

NjN j j

NjN j j

NjN

A e

Ae e e

Ae e e

Ae cos

θ

θ θ θ

θ θ θ

θ

θ

θ

−

− + −

− + −

−

Γ = +

= +

= +

=

 

 
Now, we take the magnitude of this function: 
 
 

( ) 2

2

NjNN

NN

A e cos

A cos

θθ θ

θ

−Γ =

=
 

 
Now, we define the values θ  where ( ) mθΓ = Γ  as mθ .  I.E., : 
 

( )
2

m m

NN
mA cos

θ θ

θ

Γ = Γ =

=
 

 
We can now solve for mθ  (in radians!) in terms of mΓ : 
 

1

1 1
2

N
m

m cos
A

θ −
⎡ ⎤⎛ ⎞Γ⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
Note that there are two solutions to the above equation (one 
greater that 2π  and one less than 2π )! 
 
Now, we can convert the values of mθ  into specific 
frequencies. 
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Recall that Tω θ= , therefore: 
 

1 p
m m m

v
T

ω θ θ= =  

 
But recall also that 0 4λ= , where 0λ  is the wavelength at 
the design frequency 0f  (not mf !),  and where 0 0pv fλ = . 
 
Thus we can conclude: 
 

( )0
0

4
4p p

m m m m
v v

fω θ θ θ
λ

= = =  

 
where mθ  is expressed in radians.  Thus we can conclude that: 
 
 

1

1
0

14
2

N
m

m f cos
A

ω −
⎡ ⎤⎛ ⎞Γ⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
 
 

f0 fm fm 

mΓ  

( )fΓ  

f 


