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7.3 – The Wilkinson Power Divider 
 

Reading Assignment:  pp. 318-323 
 
The Wilkinson power divider is the most popular power divider 
designs. 
 
It is very similar to a lossless 3dB divider, but has one 
additional component! 
 
This additional component gives this power divider many of 
the important attributes of a power combiner. 
 
HO: THE WILKINSON POWER DIVIDER 
 
Q:  I don’t see how the Wilkinson power divider design 
provides the scattering matrix you claim.  Is there any way to 
analyze this structure to verify its performance? 
 
A:  Yes!  But first we must learn about two very important 
and related concepts in microwave engineering—circuit 
symmetry and  odd/even mode analysis. 
 
HO: SYMMETRCI CIRCUIT ANALYSIS  
HO: ODD/EVEN MODE ANALYSIS 
 
Now we can analyze a Wilkinson power divider! 
 
HO: WILKINSON DIVIDER EVEN/ODD MODE ANALYSIS 
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The Wilkinson  
Power Divider 

 
The Wilkinson power divider is a 3-port device with a 
scattering matrix of: 
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Note this device is matched at port 1 ( 11 0S = ), and we find that 
magnitude of column 1 is: 
 

22 2
11 21 31 1S S S+ + =  

 
Thus, just like the lossless divider the incident power on port 1 
is evenly and efficiently divided between the outputs of port 2 
and port 3: 
 

22 1 1
2 21 3 311 1              2 2

P PP S P P S P
+ +

− + − += = = =  

 
But now look closer at the scattering matrix.  We also note that 
the ports 2 and 3 of this device are matched ! 
 

22 33 0S S= =  
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Likewise, we note that ports 2 and ports 3 are isolated: 
 

23 32 0S S= =  
 

Q:  So just how do we make this Wilkinson power divider? 
 
It looks a lot like a lossless 3dB divider, only with an additional 
resistor of value 02Z between ports 2 and 3: 
 

 
 
 
This resistor is the secret to the Wilkinson power divider, and 
is the reason that it is matched at ports 2 and 3, and the reason 
that ports 2 and 3 are isolated. 
 
Note however, that the quarter-wave transmission line sections 
make the Wilkinson power divider a narrow-band device. 
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Figure 7.12  (p. 322) 
Frequency response of an equal-split Wilkinson power divider. Port 1 is the input 
port; ports 2 and 3 are the output ports. 
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Symmetric Circuit 
Analysis 

 
Consider the following D1 symmetric two-port device: 
 
 
 
 
 
 
 
 
 
Q:  Yikes! The plane of reflection symmetry slices through 
two resistors.  What can we do about that? 
 
A:  Resistors are easily split into two equal pieces:  the 200Ω 
resistor into two 100Ω resistors in series, and the 50Ω 
resistor as two 100 Ω resistors in parallel. 
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Recall that the symmetry of this 2-port device leads to 
simplified network matrices: 
 

11 21 11 21 11 21

21 11 21 11 21 11

S S Z Z Y Y
S S Z Z Y Y

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
S� Z� Y�  

 
Q: Yes, but can circuit symmetry likewise simplify the 
procedure of determining these elements?  In other words, 
can symmetry be used to simplify circuit analysis? 
 
A:  You bet!  
 
First, consider the case where we attach sources to circuit in 
a way that preserves the circuit symmetry: 
 
 
 
 
 
 
 
 
 
 
 
 
Or, 
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Or, 
 
 
 
 
 
 
 
 
 
 
But remember! In order for symmetry to be preserved, the 
source values on both sides (i.e, Is,Vs,Z0) must be identical!   
 
Now, consider the voltages and currents within this circuit 
under this symmetric configuration: 
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Since this circuit possesses bilateral (reflection) symmetry 
(1 2 2 1,→ → ), symmetric currents and voltages must be equal: 
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Q: Wait! This can’t possibly be correct! Look at currents I1a 

and I2a, as well as currents I1d and I2d.  From KCL, this must be 
true: 

1 2 1 2a a d dI I I I= − = −  
 
Yet you say that this must be true: 
 

1 2 1 2a a d dI I I I= =  
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There is an obvious contradiction here! There is no way that 
both sets of equations can simultaneously be correct, is 
there? 
 
A:  Actually there is!  There is one solution that will satisfy 
both sets of equations: 
 

1 2 1 20 0a a d dI I I I= = = =  
 

The currents are zero! 
 

If you think about it, this makes perfect 
sense!  The result says that no current will 
flow from one side of the symmetric 
circuit into the other.   
 
If current did flow across the symmetry 
plane, then the circuit symmetry would be 
destroyed—one side would effectively 
become the “source side”, and the other 
the “load side” (i.e., the source side 
delivers current to the load side). 

 
Thus, no current will flow across the reflection symmetry 
plane of a symmetric circuit—the symmetry plane thus acts as 
a open circuit! 
 
The plane of symmetry thus becomes a virtual open! 
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Q:  So what? 
 
A:  So what! This means that our circuit can be split apart 
into two separate but identical circuits.  Solve one half-
circuit, and you have solved the other! 
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Now, consider another type of symmetry, where the sources 
are equal but opposite (i.e., 180 degrees out of phase). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Or, 
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Or, 
 
 
 
 
 
 
 
 
 
This situation still preserves the symmetry of the circuit—
somewhat.  The voltages and currents in the circuit will now 
posses odd symmetry—they will be equal but opposite (180 
degrees out of phase) at symmetric points across the 
symmetry plane. 
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Perhaps it would be easier to redefine the circuit variables as: 
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Q:  But wait! Again I see a problem.  By KVL it is evident 
that: 

1 2c cV V= −  
 

Yet you say that 1 2c cV V=  must be true! 
 
A:  Again, the solution to both equations is zero! 
 

1 2 0c cV V= =  
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For the case of odd symmetry, the symmetric plane must be a 
plane of constant potential (i.e., constant voltage)—just like a 
short circuit! 
 
Thus, for odd symmetry, the symmetric plane forms a virtual 
short. 
 
 
 
 
 
 
 
 
 
 
 
This greatly simplifies things, as we can again break the 
circuit into two independent and (effectively) identical 
circuits! 
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Odd/Even Mode Analysis 
 
Q:  Although symmetric circuits appear to be plentiful in 
microwave engineering, it seems unlikely that we would often 
encounter symmetric sources .  Do virtual shorts and opens 
typically ever occur? 
 
A:  One word—superposition!  
 
If the elements of our circuit are independent and linear, we 
can apply superposition to analyze symmetric circuits when 
non-symmetric sources are attached. 
 
For example, say we wish to determine the admittance matrix 
of this circuit.  We would place a voltage source at port 1, 
and a short circuit at port 2—a set of asymmetric sources if 
there ever was one! 
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Here’s the really neat part.  We find that the source on port 
1 can be model as two equal voltage sources in series, whereas 
the source at port 2 can be modeled as two equal but 
opposite sources in series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore an equivalent circuit is: 
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Now, the above circuit (due to the sources) is obviously 
asymmetric—no virtual ground, nor virtual short is present. 
But, let’s say we turn off (i.e., set to V =0) the bottom source 
on each side of the circuit: 
 
 
 
 
 
 
 
 
 
 
 
Our symmetry has been restored!  The symmetry plane is a 
virtual open. 
 
This circuit is referred to as its even mode, and analysis of it 
is known as the even mode analysis.   The solutions are known 
as the even mode currents and voltages!  
 
Evaluating the resulting even mode half circuit we find: 
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Now, let’s turn the bottom sources back on—but turn off the  
top two! 
 
 
 
 
 
 
 
 
 
 
 
We now have a circuit with odd symmetry—the symmetry 
plane is a virtual short! 
 
This circuit is referred to as its odd mode, and analysis of it 
is known as the odd mode analysis.   The solutions are known 
as the odd mode currents and voltages!  
 
Evaluating the resulting odd mode half circuit we find: 
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Q:  But what good is this “even mode” and “odd mode” 
analysis? After all, the source on port 1 is Vs1 =Vs, and the 
source on port 2 is Vs2 =0.  What are the currents  I1 and I2 
for these sources?  
 
A:  Recall that these sources are the sum of the even and odd 
mode sources: 
 

1 2 0
2 2 2 2
s s s s

s s s
V V V VV V V= = + = = −  

 
and thus—since all the devices in the circuit are linear—we 
know from superposition that the currents I1 and I2 are simply 
the sum of the odd and even mode currents ! 
  

1 1 1 2 2 2
e o e oI I I I I I= + = +  

 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, adding the odd and even mode analysis results together: 
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1 1 1 2 2 2

400 100 400 100
3

80 400

e o e o

s s s s

s s

I I I I I I
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V V

= + = +

= + = −
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And then the admittance parameters for this two port 
network is: 

2

1
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=
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2

2
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−
= = − =  

 
And from the symmetry of the device we know: 
 

22 11
1

80
Y Y= =  

 

12 21
3

400
Y Y −

= =  

 
Thus, the full admittance matrix is: 
 

31
80 400

3 1
80400

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y�  

 
Q:  What happens if both sources are non-zero? Can we use 
symmetry then? 
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A: Absolutely!  Consider the problem below, where neither 
source is equal to zero: 

 
 
 
 
 
 
 
 
 
In this case we can define an even mode and an odd mode 
source as: 
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We then can analyze the even mode circuit: 
 
 
 
 
 
 
 
 
 
 
 
 

And then the odd mode circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
And then combine these results in a linear superposition!
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One final word (I promise!) about circuit symmetry and 
even/odd mode analysis: precisely the same concept exits in 
electronic circuit design! 
 

Specifically, the differential (odd) and common 
(even) mode analysis of bilaterally symmetric 
electronic circuits, such as differential amplifiers!  

 
 
 
 
 
 
 
 
 
 
 

 

Hi! You might remember differential 
and common mode analysis from such 
classes as “EECS 412- Electronics 
II”, or handouts such as 
“Differential Mode Small-Signal 
Analysis of BJT Differential Pairs” 

BJT Differential Pair 
 

 
  

 
    Differential Mode Common Mode 
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Even/Odd Mode Analysis 
of the Wilkinson Divider 

 
Consider a matched Wilkinson power divider, with a source at 
port 2: 
 
 
 
 
 
 
 
 
 
 
Too simplify this schematic, we remove the ground plane, which 
includes the bottom conductor of the transmission lines: 
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Q:  How do we analyze this circuit ? 
 
A:  Use Even-Odd mode analysis! 
 

Remember, even-odd mode analysis uses two important 
principles: 
 
 a) superposition 
 
 b) circuit symmetry 
 
To see how we apply these principles, let’s first rewrite the 
circuit with four voltage sources: 
 
 
 
 
 
 
 
 
Turning off one positive source at each port, we are left with 
an odd mode circuit: 
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Note the circuit has odd symmetry, and thus the plane of 
symmetry becomes a virtual short, and in this case, a virtual 
ground! 
 
 
 
 
 
 
 
 
 
 
Dividing the circuit into two half-circuits, we get: 
 
 
 
 
 
 
  
 
 
 
 
 
 
Note we have again drawn the bottom conductor of the 
transmission line (a ground plane) to enhance clarity (I hope!). 
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Analyzing the top circuit, we find that the transmission line is 
terminated in a short circuit in parallel with a resistor of value 
2Z0.  Thus, the transmission line is terminated in a short circuit! 
 
 
 
 
 
 
 
This of course makes determining 1

oV  trivial (hint: 1 0oV = ). 
 
Now, since the transmission line is a quarter wavelength, this 
short circuit at the end of the transmission line transforms to 
an open circuit at the beginning! 
 

As a result, determining voltage 2
oV  

is nearly as trivial as determining 
voltage 1

oV .  Hint: 
 

0
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0 02 4
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Z Z
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And from the odd symmetry of the circuit, we likewise know: 
 

23 4
oo sV VV = − = −  

 
Now, let’s turn off the odd mode sources, and turn back on the 
even mode sources. 
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Note the circuit has even symmetry, and thus the plane of 
symmetry becomes a virtual open.  
 
 
 
 
 
 
 
 
 
 
Dividing the circuit into two half-circuits, we get: 
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Even Mode Circuit 

2
sV  
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Z0 

02 Z  

4
λ  

0Z  
1
eV  

2
eV  

02 Z  

Z0 

4
λ  2

sV  
3
eV  

1
eV  

2Z0 

I=0 

0Z  

2
sV  

Z0 

02 Z  

4
λ  

0Z  
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+

−
 

2
eV

+

−
 + 

- 02Z  
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Note we have again drawn the bottom conductor of the 
transmission line (a ground plane). 
 
Analyzing the top circuit, we find that the transmission line is 
terminated in a open circuit in parallel with a resistor of value 
2Z0.  Thus, the transmission line is terminated in a resistor 
valued 2Z0. 
 
 
 
 
 
 
Now, since the transmission line is a quarter wavelength, the 
2Z0 resistor at the end of the transmission line transforms to 
this  value at the beginning: 

                               
( )20

0
0

2
2in

Z
Z Z

Z
= =  

 
Voltage 2

eV  can again be determined by 
voltage division: 

 
0

2
0 02 4

se sV Z
Z Z

VV = =
+

 

2
sV  

Z0 

02 Z  

4
λ  

0Z  
1
eV

+

−
 

3
eV

+

−
 + 

- 02Z  

2
sV  
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0Z  2
eV

+

−
 + 

- 

2
sV  

Z0 

02 Z  

4
λ  
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+

−
 2

eV

+

−
 + 
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And then due to the even symmetry of the circuit, we know: 
 

23 4
ee sV VV = =  

 
Q:  What about voltage 1

eV ?  What is its value? 
 
A:  Well, there’s no direct or easy way to find this value.  We 
must apply our transmission line theory (i.e., the solution to the 
telegrapher’s equations + boundary conditions) to find this 
value.  This means applying the knowledge and skills acquired 
during our scholarly examination of Chapter 2! 
 
 
 
 
 
 
 
 
If we carefully and patiently analyze the above transmission 
line circuit, we find that (see if you can verify this!): 
 

1 2 2
e sjVV −
=  

 
And thus, completing our superposition analysis, the voltages 
and currents within the circuit is simply found from the sum of 
the solutions of each mode: 
 

2
sV  

Z0 

02 Z  

4
λ  

1
eV

+

−
 2

eV

+

−
 + 

- 02Z  
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1 1 1

2 2 2

3 3 3

0
2 2 2 2

4 4 2

0
4 4

o o s s

o o s s s

o o s s

jV jVV V V

V V VV V V

V VV V V

= + = − = −

= + = + =

= + = − + =

 

 
 
 
 
 
 
 
 
 
Note that the voltages we calculated are total voltages—the 
sum of the incident and exiting waves at each port: 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

P P P

P P P

P P P

V V z z V z z V z z

V V z z V z z V z z

V V z z V z z V z z

+ −

+ −

+ −

= = = + =

= = = + =

= = = + =

 

 
Since ports 1 and 3 are terminated in matched loads, we know 
that the incident wave on those ports are zero. As a result, the 
total voltage is equal to the value of the exiting waves at those 
ports: 

1 2 2
sjVV −=  

+Vs- 

Z0 

Z0 

02 Z  

02 Z  

4
λ  

02Z  

Z0 

4
λ  

3 0V =  

2 2
sVV =  
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( ) ( )

( ) ( )

1 1 1 1 1 1

3 3 3 3 3 3

0
2 2

0 0

s
P P

P P

jVV z z V z z

V z z V z z

+ −

+ −

−
= = = =

= = = =

 

 
The problem now is to determine the values of the incident and 
exiting waves at port 2 (i.e., ( )2 2 2PV z z+ =   and ( )2 2 2PV z z− = ).   
 
Recall however, the specific case where the source impedance 
is matched to transmission line characteristic impedance (i.e., 

0sZ Z= ).  We found for this specific case, the incident wave 
“launched” by the source always has the value 2sV  at the 
source: 
 
 
 
 
 
 
Now, if the length of the transmission line connecting a source 
to a port (or load) is electrically very small (i.e., 1β ), then 
the source is effectively connected directly to the source (i.e, 

s Pβz βz= ): 
And thus the total voltage is: 
 

( ) ( )
( ) ( )

( )2

P P

S P

s
P

V V z z V z z
V z z V z z
V V z z

+ −

+ −

−

= = + =

= = + =

= + =

 

sV  

Z0 

0Z  ( ) 2s
sV Vz z+

+

= =

−

 + 
- 

z 
z=zs 

sV  

Z0 

inZ  + 
- 

z=zs=zP 

V

+

−
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For the case where a matched source (i.e. 0sZ Z= ) is connected 
directly to a port, we can thus conclude: 
   

( )

( )

2

2

s
P

s
P

VV z z

VV z z V

+

−

= =

= = −

 

 
Thus, for port 2 we find: 
 

( )

( )

2 2 2

2 2 2 2

2

02 2 2

s
P

s s s
P

VV z z

V V VV z z V

+

−

= =

= = − = − =

 

 
Now, we can finally determine the scattering parameters 

12 22 32S , S , S : 
( )
( )

1 1 1
12

2 2 2

2
2 2 2

P s

P s

V z z jV jS
V z z V

−

+

= − −⎛ ⎞= = =⎜ ⎟= ⎝ ⎠
 

 
( )
( ) ( )2 2 2

22
2 2 2

20 0P

P s

V z zS
V z z V

−

+

=
= = =

=
 

 
( )
( ) ( )3 3 3

32
2 2 2

20 0P

P s

V z zS
V z z V

−

+

=
= = =

=
 

 
Q: Wow! That seemed like a lot of hard work, and we’re only 1

3  
of the way done.  Do we have to move the source to port 1 and 
then port 3 and perform similar analyses?   
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A:  Nope!  Using the bilateral symmetry of the circuit 
(1 1 2 3 3 2, ,→ → → ), we can conclude: 
 

13 12 33 22 23 320 0
2
jS S S S S S−

= = = = = =  

 
and from reciprocity: 
 

21 12 31 132 2
j jS S S S− −

= = = =  

 
We thus have determined 8 of the 9 scattering parameters 
needed to characterize this 3-port device.  The remaining 
holdout is the scattering parameter S11.  To find this value, we 
must move the source to port 1 and analyze. 
 
 
 
 
 
 
 
 
 
 
Note this source does not alter the bilateral symmetry of the 
circuit.  We can thus use this symmetry to help analyze the 
circuit, without having to specifically define odd and even mode 
sources. 
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Since the circuit has (even) bilateral symmetry, we know that 
the symmetry plane forms a virtual open. 
 
 
 
 
 
 
 
 
 
 
 
Note the value of the voltage sources.  They have a value of Vs 
(as opposed to, say, 2Vs or Vs/2) because two equal voltage 
sources in parallel is equivalent to one voltage source of the 
same value. E.G.: 
 
 
  
 
 
Now splitting the circuit into two half-circuits, we find the top 
half-circuit to be: 
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Which simplifies to: 
 
 
 
 
 
 
And transforming the load resistor at the end of the 4

λ  wave 
line back to its beginning: 
 

Finally, we use voltage division to 
determine that: 
 

0
1

0 0

2
2 2 2

s
s

Z VV V
Z Z

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

 

 
Thus, 
 
 
 
 
 
 
And since the source is matched: 
 

( )

( )

1 1 1

1 1 1 1

2

02 2 2

s
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s s s
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VV z z

V V VV z z V
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−

= =

= = − = − =

 

 

sV  02 Z  

4
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0Z  1V

+

−
 

02Z  
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- 
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+

−
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So our final scattering element is revealed! 
 

( )
( ) ( )1 1 1

11
1 1 1

20 0P

P s

V z zS
V z z V

−

+

=
= = =

=
 

 
So the scattering matrix of a Wilkinson power divider has been 
confirmed: 
 

2 2

2

2

0
0 0
0 0

j j

j

j

− −

−

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S�  

  
 His worst 

handout ever! 

So, what’d 
ya think? 

 

Oh no, I’ve seen 
much worse. 


