7.6 - Coupled-Line Directional Couplers

Reading Assignment: pp. 337-348

Q: The Quadrature Hybrid is a 3dB coupler. How do we build
couplers with less coupling, say 10dB, 20dB, or 30 dB?

A: Directional couplers are typically built using coupled lines.

HO: CouPLED LINE COUPLERS

Q: How can we design a coupled line couplers so that is an
ideal directional coupler with a specific coupling value?

A: HO: ANALYSIS AND DESIGN OF COUPLED-LINE COUPLERS

Q: Like all devices with quarter-wavelength sections, a
coupled line coupler would seem to be inherently narrow band.
Is there some way to increase coupler banawidth?

A: Yes! We can add more coupled-line sections, just like with
multi-section matching transformers.

HO: MULTI-SECTION COUPLED LINE COUPLERS

Q: How do we design these multi-section couplers?



A: All the requisite design examples were provided in the last
handout, and there are two good design examples on pages
345 and 348 of your textbook!



Coupled-Line Couplers

Two fransmission lines in proximity to each other will couple
power from one line into another.

This proximity will modify the electromagnetic fields (and
thus modify voltages and currents) of the propagating wave,
and therefore alter the characteristic impedance of the
transmission line!
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Figure 7.26 (p. 337)

Various coupled transmission line geometries. (a)
Coupled stripline (planar, or edge-coupled). (b)
Coupled stripline (stacked, or broadside-coupled).
(c) Coupled microstrip.

Generally, speaking, we find that this transmission lines are
capacitively coupled (i.e., it appears that they are connected
by a capacitor):
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Figure 7.27 (p. 337)
A three-wire coupled transmission line and its equivalent
capacitance network.

If the two transmission lines are identical (and they typically
are), then &, =C,,.

Likewise, if the two transmission lines are identical, then a
plane of circuit symmetry exists. As a result, we can analyze
&r

this circuit using odd/even mode analysis!
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Note we have divided the ;> capacitor into two series
capacitors, each with at value 2 ;.



Odd Mode

If the incident wave along the two transmission lines are
opposite (i.e., equal magnitude but 180° out of phase), then a
virtual ground plane is created at the plane of circuit
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Thus, the capacitance per unit length of each transmission
line, in the odd mode, is thus:

C,=C+26, =6, +2C,

and thus its characteristic impedance is:
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Even Mode

If the incident wave along the two transmission lines are equal
(i.e., equal magnitude and phase), then a virtual open plane is

created at the plane of circuit symmetry.
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Note the 2, capacitors have been "disconnected”, and thus
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the capacitance per unit length of each transmission line, in

the even mode, is thus:
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and thus its characteristic impedance is:
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Analysis and Design of
Coupled-Line Couplers

A pair of coupled lines forms a 4-port device with two planes
of reflection symmetry—it exhibits D, symmetry.
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As a result, we know that the scattering matrix of this four-
port device has just 4 independent elements:
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To determine these four elements, we can apply a source to
port 1 and then terminate all other ports:

Typically, a coupled-line coupler schematic is drawn without
explicitly showing the ground conductors (i.e., without the
ground plane):
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To analyze this circuit, we must apply odd/even mode
analysis. The two circuit analysis modes are:

Even Mode Circuit

Odd Mode Circuit
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Note that the capacitive coupling associated with these
modes are different, resulting in a different characteristic
impedance of the lines for the two cases (i.e., Z;,Z2;).

Q: So what?

A: Consider what would happen if the characteristic
impedance of each line where identical for each mode:

Zy =25 =2,
For this situation we would find that:
Ve = i and Ve =i
and thus when applying superposition:
V. =V +1,° =0 and V, =V +1,°=0

indicating that no power is coupled from the "energized"
transmission line onto the "passive” transmission line.
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This makes sensel After all, if no coupling occurs, then the
characteristic impedance of each line is unaltered by the
presence of the other—their characteristic impedance is Zp
regardless of "mode”.

However, if coupling does occur, then Z;7 = Z;/, meaning in
general:

Ve = -l° and Ve =V’
and thus in general:

Vi =2 +1,° =0 and V, =W+ =0

The odd/even mode analysis thus reveals the amount of
coupling from the energized section onto the passive section!
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Now, our first step in performing the odd/even mode analysis
will be o determine scattering parameter S;;. To accomplish
this, we will need to determine voltage V;:

f=ke e



The result is a bit complicated, so it won't be presented here.
However, a question we might ask is, what value should 5;; be?

Q: What value should S;; be?
A: For the device to be a matched device, it must be zero!
From the value of S;; derived from our odd/even analysis,

ICBST (it can be shown that) S;; will be equal to zero if the
odd and even mode characteristic impedances are related as:

Zeroo = Zo

In other words, we should design our coupled line coupler such
that the geometric mean of the even and odd mode
impedances is equal to Zp.

Now, assuming this design rule has been implemented, we also
find (from odd/even mode analysis) that the scattering
parameter Sj;is:
.. JZ-Z)
U 2Z,cot P+ j(Zs + 23

Thus, we find that unless Z7 = Z7, power must be coupled
from port 1 to port 3!

Q: But what is the value of line electrical length pt ?



A: The electrical length of the coupled transmission lines is
also a design parameter. Assuming that we want o maximize
the coupling onto port 3, we find from the expression above
that this is accomplished if we set B¢ such that:

cot pl =0

Which occurs when the line length is set to:

BL=T = =4

Once again, our design rule is to set the transmission line
length to a value equal to one-quarter wavelength (at the
design frequency).
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Implementing these two design rules, we find that at the
design frequency:

Sy = Zoe _Zoo

Zy + 2,

This value is a very important one with respect to coupler
performance. Specifically, it is the coupling coefficient ¢!

. Zoe _Zoo
Zy +2Zy




Given this definition, we can rewrite the scattering parameter
S3;as.

Jc tan pl

N1-c® + jtan B¢

531=

Continuing with our odd/even mode analysis, we find (given
that Z;Zz° = Z,:

v1-¢2
V1-c® cos Bl + jsinpt

521=

and so at our design frequency, where B¢ =7/2, we find:

il V1-¢2 __ i1
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Finally, our odd/even analysis reveals that at our design
frequency:

S5, =0

Combining these results, we find that at our design frequency,
the scattering matrix of our coupled-line coupler is:



0 —jf1-¢ c 0

¢ 0 0 —jN1-¢°
0 ¢ —jN1-¢? 0

Q: Hey! Isn't this the same scattering matrix as the ideal
symmetric directional coupler we studied in the first section
of this chapter?

A: The very same!l The coupled-line coupler—if our design
rules are followed—results in an “ideal” directional coupler.

If the input is port 1, then the through port is port 2, the
coupled port is port 3, and the isolation port is port 4!
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Q: But, how do we design a coupled-line coupler with a
specific coupling coefficient c?

A: Given our two design constraints, we know that:

ZsZ; =Z,  and c= ﬁ
Zy + 2,

We can rearrange these two expressions to find solutions for
our odd and even mode impedances:

1+c¢ 1-¢

Z& =2, Z =7,
0 1-c 0 1+c

Thus, given the desired values Zyand ¢, we can determine the
proper values of Z; and Z’ for an ideal directional coupler.

Q: Yes, but the odd and even mode impedance depends on the
physical structure of the coupled lines, such as substrate
dielectric ¢., substrate thickness (d or b), conductor width
W, and separation distance S.

How do we determine these physical design parameters for
desired values of Z; and Z’ 2?



A: That's a much more difficult question to answer! Recall
that there is no direct formulation relating microstrip and
stripline parameters to characteristic impedance (we only
have numerically derived approximations).

* So it's no surprise that there is likewise no direct
formulation relating odd and even mode characteristic
impedances to the specific physical parameters of
microstrip and stripline coupled lines.

* Instead, we again have numerically derived
approximations that allow us to determine
(approximately) the required microstrip and stripline
parameters, or we can use a microwave CAD packages
(like ADS!).

* For example, figures 7.29 and 7.30 provide charts for
selecting the required values of W and S, given some ¢,
and b (or d).

Likewise, example 7.7 on page 345 provides a good
demonstration of the single-section coupled-line coupler
design synthesis.



Multi-Section Coupled
Line Couplers

We can add multiple coupled lines in series to increase coupler

bandwidth.

Figure 7.35 (p. 346)
An N-section coupled line

[solated

We typically design the coupler such that it is symmetric, i.e.:
G =Cy. G =Cyq1, G =Cy . efC.
where Nis odd.

Q: What is the coupling of this device as a function of
frequency?

A: To analyze this structure, we make an approximation
similar to that of the theory of small reflections.



First, if cis small (i.e., less than 0.3), then we can make the
approximation:

Jctané
V1-¢% + jtand

_ Jctand
1+ jtané

531(9)=

= jcsinge ™’

521(‘9): e
V1-c¢? cosf+ jsing
- 1
i cosé + Jsind

Likewise:
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where of course 0 = gl =wl ,and T =//v,.

We can use these approximations to construct a signal flow
graph of a single-section coupler:
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Now, say we cascade three coupled line pairs, to form a three
section coupled line coupler. The signal flow graph would thus
be:
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Note that this signal flow graph decouples into two separate
and graphs (i.e., the blue graph and the green graph).
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Note that these two graphs are essentially identical, and
emphasize the symmetric structure of the coupled-line coupler.

Now, we are interested in describing the coupled output (i.e.,
b)) in terms of the incident wave (i.e., ). Assuming ports 2, 3

and 4 is matched (i.e., a, =0), we can reduce the graph to

simply:
Jc singe™’ Jé singe™”’ Jjc, singe™’
Jja singe” Jc singe ™’
e -jo e -Jo

Now, we could reduce this signal flow graph even further—or we
can use the multiple reflection viewpoint to explicitly each
propagation term!

Q: Multiple reflection viewpoint! I thought you said that this
was a particularly bad way to perform a network analysis?

A: Generally speaking it is, as we would have o account for an
infinite number of terms. However, in certain conditions, just a
few terms dominate this infinite series. If we can correctly
identify these few terms, we can write an excellent
approximation to the exact solution!

An example of that was the theory of small reflections, where
we only considered terms involving a single reflection.



Here we an apply a similar methodology, applying a "theory of
small couplings”. In other words, we consider only the
propagation paths where one coupling is involved—the signal
propagates across a coupled-line pair only oncel!

Note from the signal flow graph that there are three such

mechanisms, corresponding to the coupling across each of the
three separate coupled line pairs:
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Note that all other terms of the infinite series would involve at
least three couplings (i.e., three crossings), and thus these

terms would be exceeding small (i.e., ¢’ ~0).

Therefore, according to this approximation:

1 (6 )25(9) = jgsinbe’’ + jo,sinde > +

S, (0)=
31() V+ 671

Moreover, for a multi-section coupler with Nsections, we find:



5,(0)=jgsinde” + jcsinde’> + jcsinfe ™ +..- +

Jcysing e /N

And for symmetric couplers with an odd value NV, we find:

5, (0) = j2sin0 e’ | g cos(N -1)0 + ¢, cos(N -3)0
+¢, COS(N—5)9+---+%CM}

where M=(N+1)/2.

Thus, we find the coupling magnitude as a function of frequency
IS

€(0)] =51 (0)
=¢ 2sinfcos(N -1)0 +¢,2sindcos(N -3)0
+¢;2sindcos(N -5)0+---+ ¢, sin0

And thus the coupling in dBis:
€ (6)=-10log, ‘C(Q)

‘2

Now, our design goals are to select the coupling values ¢,¢,, - ¢,
such that:



1. The coupling value € (0) is a specific, desired value at our
design frequency.

2. The coupling bandwidth is as large as possible.

For the first condition, recall that the at the design frequency:
0=pl=r/2

I.E., the section lengths are a quarter-wavelength at our design
frequency.

Thus, we find our first design equation:

\C(H)HBZ% =g2cos(N-1)z/2+c,2cos(N -3)x/2
+¢;2cos(N -5)z/2+---+ ¢,

where we have used the fact that sin(z/2)=1.

Note the value ‘C(e)He—y is set to the value necessary to achieve
/2

the desired coupling value. This equation thus provides one
design constraint—we have M-1 degrees of design freedom left
to accomplish our second goal!

To maximize bandwidth, we typically impose the maximally flat
condition:



d"|c(0)

0 _123...
do" o

Be carefull Remember to perform the derivative first, and
then evaluate the result at 0 =17/2.

You will find for a symmetric coupler, the odd-ordered
derivatives (e.q., d|c(0)|/d0, d*|c(0)|/d6*, d°|c()|/d6’ )are
uniquely zero. In other words, they are zero-valued at 6 = /2
regardless of the values of coupling coefficients ¢,¢,, ¢, !

As a result, these odd-order derivatives do not impose a
maximally flat design equation—only the even-ordered
derivatives do. Keep taking these derivatives until your design
is fully constrained (i.e., the number of design equations equals
the number of unknown coefficients ¢,¢,, ¢, ).

One final note, you may find that this trig expression is helpful
in simplifying your derivatives:

singcosy =%sin(¢+y/)+%sin(¢—w)

For example, we find that:

2 sin@cos20 =sin(0 +20) +sin(0 - 20)
=sin(30) + sin(-09)
=sin(30)-sin(0)





