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8.3 Filter Design by the  
Insertion Loss Method 

 
Reading Assignment: pp. 389-398 
 
Chapter 8 cover microwave filters. 
 
A microwave filter  A two-port microwave network that 
allows source power to be transferred to a load as an explicit 
function of frequency. 
 
HO: Filters 
 
HO: The Filter Phase Function 
 
Q:  Why do we give a darn about phase function ( )21S∠ ω ? 
After all, phase doesn’t matter. 
 
A:  Phase doesn’t matter!?! A typical rookie mistake! 
 
HO: Filter Dispersion 
 
HO: The Linear Phase Filter 
 
Q:  So how do we specify a microwave filter?  How close to an 
ideal filter can we build?  
 
A:  HO: The Insertion Loss Method 
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Q: So exactly how do construct a microwave filter that 
exhibits the polynomial function that we choose?  How do we 
“realize” a filter polynomial function? 
 
A: HO: Filter Realizations using Lumped Elements 
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Filters 
 
A RF/microwave filter is (typically) a passive, reciprocal, 2-
port linear device. 
 
 
 
 
 
 
If port 2 of this device is terminated in a matched load, then 
we can relate the incident and output power as: 
 

2
21out incP S P=  

 
We define this power transmission through a filter in terms 
of the power transmission  coefficient T:  
 
 

2
21

out

inc

P S
P

=T  

 
 
Since microwave filters are typically passive, we find that: 
 

0 1≤ ≤Τ  
 

in other words, out incP P≤ . 

Filter 
incP outP
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Q:  What happens to the “missing” power inc outP P− ? 
 
A:  Two possibilities: the power is either absorbed (Pabs) by 
the filter (converted to heat), or is reflected (Pr) at the input 
port. 
 
I.E.: 
 
 
 
 
 
 
 
Thus, by conservation of energy: 
 

inc r outabsP P P P= + +  
 

Now ideally, a microwave filter is lossless, therefore 0absP =  
and: 

inc r outP P P= +  
 
which alternatively can be written as: 
 

1

inc r out

inc inc

r out

inc inc

P P P
P P

P P
P P

+
=

= +
 

 

Filter 
incP outP

rP

absP
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Recall that out incP P = Τ , and we can likewise define r incP P  as 
the power reflection coefficient: 
 
 

2
11

r

inc

P S
P

=Γ  

 
 
We again emphasize that the filter output port is terminated 
in a matched load. 
 
Thus, we can conclude that for a lossless filter: 
 
 

1 = +Γ Τ  
 
 

Which is simply another way of saying for a lossless device 
that 2 2

11 211 S S= + .  
 
Now, here’s the important part! 
 
For a microwave filter, the coefficients Γ  and Τ  are 
functions of frequency! I.E.,: 
 

( )ωΓ      and    ( )ωΤ  
 

The behavior of a microwave filter is described by these 
functions!  
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We find that for most signal frequencies sω , these functions 
will have a value equal to one of two different approximate 
values.   
 
Either: 
 

( ) 0sω ω= ≈Γ        and      ( ) 1sω ω= ≈Τ  
 

or   
 

( ) 1sω ω= ≈Γ        and      ( ) 0sω ω= ≈Τ  
 

 
In the first case, the signal frequency sω  is said to lie in the 
pass-band of the filter.  Almost all of the incident signal 
power will pass through the filter. 
 
In the second case, the signal frequency sω  is said to lie in 
the stop-band of the filter.  Almost all of the incident signal 
power will be reflected at the input—almost no power  will 
appear at the filter output. 
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Consider then these four types of functions of ( )ωΓ  and 
( )ωΤ : 

 
1. Low-Pass Filter 
 
 
 
 
 
 
 
 
 
 
 
Note for this filter: 
 

( ) ( )
1 0

0 1

c c

c c

ω ω ω ω
ω ω

ω ω ω ω

≈ < ≈ <⎧ ⎧
⎪ ⎪= =⎨ ⎨
⎪ ⎪≈ > ≈ >⎩ ⎩

Τ Γ  

 
This filter is a low-pass type, as it “passes” signals with 
frequencies less than cω , while “rejecting” signals at 
frequencies greater than cω . 
 
 
 
 
 

( )ωΓ  ( )ωΤ

ω  ω  

cω cω

1 1 

Q:  This frequency cω  seems to 
be very important! What is it? 
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A:  Frequency cω  is a filter parameter known as the cutoff 
frequency; a value that approximately defines the frequency 
region where the filter pass-band transitions into the filter 
stop band. 
 
According, this frequency is defined as the frequency where 
the power transmission coefficient is equal to ½: 
 

( ) 0.5cω ω= =Τ  
 

Note for a lossless filter, the cutoff frequency is likewise 
the value where the power reflection coefficient is ½: 
 

( ) 0.5cω ω= =Γ  
 

2. High-Pass Filter 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )ωΓ  ( )ωΤ

ω  ω  

cω cω

1 1 
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Note for this filter: 
 

( ) ( )
0 1

1 0

c c

c c

ω ω ω ω
ω ω

ω ω ω ω

≈ < ≈ <⎧ ⎧
⎪ ⎪= =⎨ ⎨
⎪ ⎪≈ > ≈ >⎩ ⎩

Τ Γ  

 
This filter is a high-pass type, as it “passes” signals with 
frequencies greater than cω , while “rejecting” signals at 
frequencies less than cω . 
 
3. Band-Pass Filter 
 
 
 
 
 
 
 
 
 
 
 
Note for this filter: 
 

( ) ( )
0 0

0 0

1 ∆ 2 0 ∆ 2

0 ∆ 2 1 ∆ 2

ω ω ω ω ω ω
ω ω

ω ω ω ω ω ω

≈ − < ≈ − <⎧ ⎧
⎪ ⎪= =⎨ ⎨
⎪ ⎪≈ − > ≈ − <⎩ ⎩

Τ Γ

 
 

( )ωΓ  ( )ωΤ

ω  ω  

0ω 0ω  

∆ω  ∆ω  

1 1 
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This filter is a band-pass type, as it “passes” signals within a 
frequency bandwidth ∆ω , while “rejecting” signals at all 
frequencies outside this bandwidth. 
 
In addition to filter bandwidth ∆ω , a fundamental parameter 
of bandpass filters is 0ω , which defines the center frequency 
of the  filter bandwidth. 
 
3. Band-Stop Filter 
 
 
 
 
 
 
 
 
 
 
Note for this filter: 
 

( ) ( )
0 0

0 0

0 ∆ 2 1 ∆ 2

1 ∆ 2 0 ∆ 2

ω ω ω ω ω ω
ω ω

ω ω ω ω ω ω

≈ − < ≈ − <⎧ ⎧
⎪ ⎪= =⎨ ⎨
⎪ ⎪≈ − > ≈ − <⎩ ⎩

Τ Γ

 
 
This filter is a band-stop type, as it “rejects” signals within 
a frequency bandwidth ∆ω , while “passing” signals at all 
frequencies outside this bandwidth. 

( )ωΤ  ( )ωΓ  

ω  ω  

0ω 0ω  

∆ω  ∆ω  

1 1 
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The Filter  
Phase Function 

 
Recall that the power transmission coefficient ( )ωΤ  can be 
determined from the scattering parameter ( )21S ω : 
 

( ) ( ) 2
21Sω ω=T  

 
Q: I see, we only care about the magnitude of complex 
function ( )21S ω  when using microwave filters !? 
 
A:  Hardly!  Since ( )21S ω  is complex, it can be expressed in 
terms of its magnitude and phase: 
 

( ) ( ){ } ( ){ }
( ) ( )21

21 21 21

21

Re Im
j S

S S j S
S e ω

ω ω ω

ω ∠

= +

=
 

 
where the phase is denoted as ( )21S ω∠ : 
 

( )
( ){ }
( ){ }

211
21

21

Im
tan

Re
SS
S

ω
ω

ω
−
⎡ ⎤

∠ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We likewise care very much about this phase function!  
 
Q:  Just what does this phase tell us? 
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A:  It describes the relative phase between the wave incident 
on the input to the filter, and the wave exiting the output of 
the filter (given the output port is matched).  
 
In other words, if the incident wave is: 
 

( )1 1 01
j zV z V e β−+ +=  

 
Then the exiting (output) wave will be: 
 

( )

( )

2

2

21

2 2 02

21 01

21 01

j z

j z

j z S

V z V e
S V e
S V e

β

β

β

+− −

+−

+ +∠−

=

=

=

 

 
We say that there has been a “phase shift” of 21S∠ between 
the input and output waves.  
 
Q:  What causes this phase shift?   
 
A:  Propagation delay.   It takes some non-zero amount of 
time for signal energy to propagate from the input of the 
filter to the output.   
 
Q: Can we tell from ( )21S ω∠  how long this delay is? 
 
A:  Yes! 
 
To see how, consider an example two-port network with the 
impulse response: 
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( ) ( )h t tδ τ= −  
 

We determined earlier that this device would merely delay 
and input signal by some amount τ : 
 

( ) ( )

( )

( )

( )

( )

out in

in

in

v t h t t v t dt

t t v t dt

v t

δ τ

τ

∞

−∞

∞

−∞

′ ′ ′= −

′ ′ ′= − −

′= −

∫

∫  

 
 
 
  
 
 
 
 
 
Taking the Fourier transform of this impulse response, we 
find the frequency response of this two-port network is: 
 

( ) ( )

( )

j t

j t

j

H h t e dt

t e dt

e

ω

ω

ωτ

ω

δ τ

∞
−

−∞

∞
−

−∞

−

=

= −

=

∫

∫  

 
 

( ) ( )inoutv t v t τ= −  
( )inv t  

( )v t  

t 
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In other words: 
 

( ) 1H ω =         and        ( )H ω ωτ∠ = −  
 

The interesting result here is the phase ( )H ω∠ .  The result 
means that a delay of τ  seconds results in an output  “phase 
shift” of ωτ−  radians! 
 
Note that although the delay of device is a constant τ , the 
phase shift is a function ofω --in fact, it is directly 
proportional to frequencyω . 
 
Note if the input signal for this device was of the form: 
 

( ) cosinv t tω=  
 

Then the output would be: 
 

( ) ( )
( )
( ) ( )( )

cos
cos

cos

outv t t
t

H t H

ω τ
ω ωτ

ω ω ω

= −

= −

= + ∠

 

 
Thus, we could either view the signal  ( ) cosinv t tω=  as being 
delayed by an amount τ  seconds, or phase shifted by an 
amount ωτ−  radians. 
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Q: So, by measuring the output signal phase shift ( )H ω∠ , we 
could determine the delay τ  through the device with the 
equation: 

( )H ω
τ

ω
∠

= −  

right? 
 
A:  Not exactly.  The problem is that we cannot 
unambiguously determine the phase shift ( )H ω ωτ∠ = −  by 
looking at the output signal! 
 
The reason is that ( )( )cos t Hω ω+ ∠  =  ( )( )cos 2t Hω ω π+ ∠ +  
= ( )( )cos 4t Hω ω π+ ∠ − , etc.  More specifically: 
 

( )( ) ( )( )cos cos 2t H t H nω ω ω ω π+ ∠ = + ∠ +  
 

where n is any integer—positive or negative. We can’t tell 
which of these output signal we are looking at! 
 
Thus, any phase shift measurement has an inherent ambiguity.  
Typically, we interpret a phase measurement (in radians) such 
that: 
 

( )Hπ ω π− < ∠ ≤       or    ( )0 2H ω π≤ ∠ <  
 

But almost certainly the actual value of ( )H ω ωτ∠ = −  is 
nowhere near these interpretations! 
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Clearly,  using the equation:  
 

( )H ω
τ

ω
∠

= −  

 
would not get us the correct result in this case—after all, 
there will be several frequencies ω  with exactly the same 
measured phase ( )H ω∠ ! 
 
Q:  So determining the delay τ  is impossible? 

π

π−

0 

( )H ω∠

ω

ωτ−

“measured” 
phase shift 

( )H ω ωτ∠ ≠ −  
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A:  NO! It is entirely possible—we simply must find the 
correct method. 
 
Looking at the plot on the previous page, this method should 
become apparent.  Not that although the measured phase 
(blue curve) is definitely not equal to the phase function ωτ−  
(red curve), the slope of the two are identical at every point! 
 
Q:  What good is knowing the slope of these functions? 
 
A: Just look! Recall that we can determine the slope by taking 
the first derivative: 
 

( )ωτ
τ

ω
∂ −

= −
∂

 

 
The slope directly tells us the propagation delay! 
 
Thus, we can determine the propagation delay of this device 
by: 

( )H ω
τ

ω
∂∠

= −
∂

 

 
where ( )H ω∠  can be the measured phase.  Of course, the 
method requires us to measure ( )H ω∠  as a function of 
frequency (i.e., to make measurements at many signal 
frequencies).  
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Q:  Now I see! If we wish to determine the propagation delay 
τ  through some filter, we simply need to take the derivative 
of ( )21S ω∠  with respect to frequency. Right? 
 
A:  Well, sort of.  
 
Recall for the example case that ( ) ( )h t tδ τ= −  and 

( )H ω ωτ∠ = − , where τ  is a constant.  For a microwave filter, 
neither of these conditions are true.   
 
Specifically, the phase function ( )21S ω∠  will typically be some 
arbitrary function of frequency ( ( )21S ω ωτ∠ ≠ − ).  
 
Q:  How could this be true?  I thought you said that phase 
shift was due to filter delay τ ! 
 
A:  Phase shift is due to device delay, it’s just that the 
propagation delay of most devices (such as filters) is not a 
constant, but instead depends on the frequency of the signal 
propagating through it! 
 
In other words, the propagation delay of a filter is typically 
some arbitrary function of frequency (i.e., ( )τ ω ).  That’s why 
the phase ( )21S ω∠  is likewise an arbitrary function of 
frequency. 
 
Q:  Yikes! Is there any way to determine the relationship 
between these two arbitrary functions? 
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A:   Yes there is!  Just as before, the two can be related by a 
first derivative: 
 
 
 

( ) ( )21S ω
τ ω

ω
∂∠

= −
∂

 

 
 

 
This result ( )τ ω  is also know as phase delay, and is a very  
important function to consider when designing/specifying/ 
selecting a microwave filter.   
 
Q:  Why; what might happen? 
 
A:  If you get a filter with the wrong ( )τ ω , your output signal 
could be horribly distorted—distorted by the evil effects of 
signal dispersion! 
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Filter Dispersion 
 

Any signal that carries significant information 
must has some non-zero bandwidth.  In other 
words, the signal energy (as well as the 
information it carries) is spread across many 
frequencies. 

 
If the different frequencies that comprise a signal 
propagate at different velocities through a 
microwave filter (i.e., each signal frequency has a 
different delay τ ), the output signal will be 
distorted.  We call this phenomenon signal 
dispersion. 
 
 
Q:  I see! The phase delay ( )τ ω  of a filter must be a constant 
with respect to frequency—otherwise signal dispersion (and 
thus signal distortion) will result.  Right? 
 
A:  Not necessarily!  Although a constant phase delay will 
insure that the output signal is not distorted, it is not strictly 
a requirement for that happy event to occur. 
 
This is a good thing, for as we shall latter see, building a good 
filter with a constant phase delay is very difficult! 
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For example, consider a modulated signal with the following 
frequency spectrum, exhibiting a bandwidth of Bs  Hertz. 
 
 
 

 
 
 
 
 
 
 
 
 
Now, let’s likewise plot the phase delay function ( )τ ω  of some 
filter: 
 
 
 
 
 
 
 
 
 
 
 
 
Note that for this case the filter phase delay is nowhere near 
a constant with respect to frequency.   

ω

( ) 2V ω

sω

2 sBπ

ω

sω

2 sBπ

( )τ ω ( ) 2V ω



3/1/2005 Filter Dispersion.doc 3/6 

Jim Stiles The Univ. of Kansas Dept. of EECS 

However, this fact alone does not necessarily mean that our 
signal would suffer from dispersion if it passed through this 
filter.  Indeed, the signal in this case would be distorted, but 
only because the phase delay ( )τ ω  changes significantly 
across the bandwidth Bs of the signal.   
 

Conversely, consider this phase delay: 
 
 
 
 
 
 
 
 
 
 
 
 
As with the previous case, the phase delay of the filter is not 
a constant.  Yet, if this signal were to pass through this filter, 
it would not be distorted! 
 
The reason for this is that the phase delay across the signal 
bandwidth is approximately constant—each frequency 
component of the signal will be delayed by the same amount. 
 
Compare this to the previous case, where the phase delay 
changes by a precipitous value ∆τ  across signal bandwidth Bs: 
 

ω

sω

2 sBπ

( )τ ω ( ) 2V ω
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Now this is a case where dispersion will result!   
 
Q:  So does ∆τ  need to be precisely zero for no signal 
distortion to occur, or is there some minimum amount ∆τ  that 
is acceptable? 
 
A:  Mathematically, we find that dispersion will be 
insignificant if: 

∆ 1sω τ  
 
A more specific (but subjective) “rule of thumb” is: 
 

∆
5s
πω τ <  

Or, using 2s sfω π= :  
 
  

∆ 0.1sf τ <  
 

ω

sω

2 sBπ

( )τ ω

∆τ

( ) 2V ω
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Generally speaking, we find for wideband filters—where filter 
bandwidth B is much greater than the signal bandwidth 
(i.e., sB B )—the above criteria is easily satisfied.  In other 
words, signal dispersion is not typically a problem for wide 
band filters (e.g., preselector filters). 
 
This is not to say that ( )τ ω  is a constant for wide band 
filters.  Instead, the phase delay can change significantly 
across the wide filter bandwith.   
 
What we typically find however, is that the function ( )τ ω  
does not change very rapidly across the wide filter 
bandwidth.  As a result, the phase delay will be approximately 
constant across the relatively narrow signal bandwidth sB . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ω

sω

2 sBπ

( )τ ω ( ) 2V ω
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Conversely, a narrowband filter—where filter bandwidth B is 
approximately equal to the signal bandwidth (i.e., sB B≈ )—can 
(if we’re not careful!) exhibit a phase delay which likewise 
changes significantly over filter bandwidth B.  This means of 
course that it also changes significantly over the signal 
bandwidth Bs ! 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, a narrowband filter (e.g., IF filter) must exhibit a near 
constant phase delay ( )τ ω  in order to avoid distortion due to 
signal dispersion! 
 
 
 

ω

sω

2 sBπ

( )τ ω

( ) 2V ω
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The Linear Phase Filter 
 
Q:  So, narrowband filters should exhibit a constant phase 
delay ( )τ ω .  What should the phase function ( )21S ω∠  be for 
this dispersionless case? 
 
A:  We can express this problem mathematically as requiring: 
 

( ) cτ ω τ=  
 
where cτ  is some constant. 
 
Recall that the definition of phase delay is: 
 

( ) ( )21S ω
τ ω

ω
∂∠

= −
∂

 

 
and thus combining these two equations, we find ourselves 
with a differential equation: 
 

( )21
c

S ω
τ

ω
∂∠

− =
∂

 

 
The solution to this differential equation provides us with the 
necessary phase function  ( )21S ω∠   for a constant phase 
delay cτ . 
 
Fortunately, this differential equation is easily solved!  
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The solution is: 
 
 

( )21 c cS ω ωτ φ∠ = − +  
 

 
where cφ  is an arbitrary constant. 

 
Plotting this phase function (with 0cφ = ): 
 
 
 
 
 
 
 
 
 
 
As you likely expected, this phase function is linear, such that 
it has a constant slope ( cτ− ).  
 
 

Filters with this phase response are called linear 
phase filters, and have the desirable trait that they 
cause no dispersion distortion. 

 

π

π−

0 

( )H ω∠

ω
cτ−
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The Insertion 
Loss Method 

 
Recall that a lossless filter can be described in terms of 
either its power transmission coefficient ( )ωΤ  or its power 
reflection coefficient ( )ωΓ , as the two values are completely 
dependent: 

( ) ( )1ω = − ωΓ Τ  
 

Ideally, these functions would be quite simple: 
 
1. ( ) 1ω =Τ  and ( ) 0ω =Γ  for all frequencies within the pass-
band. 
 
2. ( ) 0ω =Τ  and ( ) 1ω =Γ  for all frequencies within the stop-
band. 
 
For example, the ideal low-pass filter would be: 
 
 
 
 
 
 
 
 
 

( )ωΓ  ( )ωΤ

ω  ω  

cω cω

1 1 
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Add to this a linear phase response, and you have the perfect 
microwave filter! 
 
There’s just one small problem with this perfect filterÆ It’s 
impossible to build! 
 
Now, if we consider only possible (i.e., realizable) filters, we 
must limit ourselves to filter functions that can be expressed 
as finite polynomials of the form: 
 

( )
2

0 1 2
2 2

0 1 2
N

N

a a a
b b b b

+ ω + ω +
ω =

+ ω + ω + + ω
Τ  

 
The order N of the (denominator) polynomial is likewise the 
order of the filter. 
 
Instead of the power transmission coefficient, we often use 
an equivalent function (assuming lossless) called the power 
loss ratio LRP : 

( )
1

2

1
1LR

PP
P ω

+

−= =
− Γ

 

 
Note with this definition, LRP = ∞  when ( ) 1ω =Γ , and  0LRP =  
when ( ) 0ω =Γ .   
 
We likewise note that, for a lossless filter: 
 

( ) ( )
1 1

1LRP
ω ω

= =
− Γ T
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Therefore ( )LRP dB  is : 
 

( ) ( )10 1010 10 Insertion LossLR LRP dB log P log ω= = − T  
 

The power loss ratio in dB is simply the insertion loss of a 
lossless filter, and thus filter design using the power loss 
ratio  is also called the Insertion Loss Method. 
 
We find that realizable filters will have a power loss ratio of 
the form: 

( )
( )
( )

2

21LR

M
P

N
ω

ω
ω

= +  

 
where ( )2M ω  and ( )2N ω  are polynomials with terms 

2 4 6, , ,etc.ω ω ω   
 
By specifying these polynomials, we specify the frequency 
behavior of a realizable filter.  Our job is to first choose a 
desirable polynomial! 
 
There are many different types of polynomials that result in 
good filter responses, and each type has its own set of 
characteristics. 
 
The type of polynomial likewise describes the type of 
microwave filter.  Let’s consider three of the most popular 
types: 
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1.  Elliptical 
 
Elliptical filters have three primary characteristics: 
 

a)  They exhibit very steep “roll-off”, meaning that the 
transition from pass-band to stop-band is very rapid. 
b)  They exhibit ripple in the pass-band, meaning that 
the value of Τ  will vary slightly within the pass-band. 
 
c)  They exhibit ripple in the stop-band, meaning that the 
value of Τ  will vary slightly within the stop-band. 
 

 
 
 
 
 
 
 
 
 
We find that we can make the roll-off steeper by accepting 
more ripple. 
 
2.  Chebychev 
 
Chebychev filters are also known as equal-ripple filters, and 
have two primary characteristics 
 

a) Steep roll-off (but not as steep as Elliptical). 

( )ωΤ

ω  

1 
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b) Pass-band ripple (but not stop-band ripple). 
 

 
 

 
 
 
 
 
 
 
We likewise find that the roll-off can be made steeper by 
accepting more ripple. 
 
We find that Chebychev low-pass filters have a power loss 
ratio equal to: 

( ) 2 21LR N
c

P k T ωω
ω
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 

 
where k specifies the passband ripple, ( )NT x  is a Chebychev 
polynomial of order N, and cω  is the low-pass cutoff 
frequency. 

 
3.  Butterworth 
 
Also known as maximally flat filters, they have two primary 
characteristics 
 

a) Gradual roll-off . 

( )ωΤ

ω  

1 
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b) No ripple—not anywhere. 
 
 
 
 
 
 
 

 
 
 
We find that Butterworth low-pass filters have a power loss 
ratio equal to: 

( )
2

1
N

LR
c

P ωω
ω
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 

 
where cω  is the low-pass cutoff frequency, and N specifies 
the order of the filter. 
 
Q: So we always chose elliptical filters; since they have the 
steepest roll-off, they are closest to ideal—right? 
 
A:  Ooops! I forgot to talk about the phase response ( )21S ω∠  
of these filters.  Let’s examine ( )21S ω∠  for each filter type 
before we pass judgment. 
 
Butterworth  ( )21S ω∠      Æ  Close to linear phase. 
 
Chebychev ( )21S ω∠          Æ  Not very linear. 

( )ωΤ

ω  

1 
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Elliptical ( )21S ω∠              Æ  A big non-linear mess! 
 
 

Thus, it is apparent that as a 
filter roll-off improves, the 
phase response gets worse 
(watch out for dispersion!). 
 
Æ There is no such thing as 
the “best” filter type!  
 
Q:  So, a filter with perfectly 
linear phase is impossible to 
construct? 
 
A:  No, it is possible to 
construct a filter with near 
perfect linear phase—but it 
will exhibit a horribly poor 
roll-off! 

 
Now, for any type of filter, we can improve roll-off (i.e., 
increase stop-band attenuation) by increasing the filter 
order N.  However, be aware that increasing the filter order 
likewise has these deleterious effects: 
 

1. It makes phase response ( )21S ω∠   worse (i.e., more non-
linear). 

 
2. It increases filter cost, weight, and size. 
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3. It increases filter insertion loss (this is bad). 
 
4. It makes filter performance more sensitive to 

temperature, aging, etc. 
 

 
From a practical viewpoint, the order of a filter should 
typically be kept to 10N < . 

 
 
 

Q:  So how do we take these polynomials and make real 
filters? 
 
A:  Similar to matching networks and couplers, we: 
 
1.  Form a general circuit structure with several degrees of 
design freedom.   
 
2. Determine the general form of the power loss ratio for 
these circuits. 
 
3.  Use our degrees of design freedom to equate terms in the 
general form to the terms of the desired power loss ratio 
polynomial. 
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Filter Realizations Using 
Lumped Elements 

 
Our first filter circuit will be “realized” with lumped elements. 
 
Lumped elements—we mean inductors L and capacitors C ! 
 
Since each of these elements are (ideally) perfectly reactive, 
the resulting filter will be lossless (ideally). 
 
We will first consider two configurations of a ladder circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.25  (p. 393) 
Ladder circuits for low-pass filter prototypes and their element 
definitions.  (a) Prototype beginning with a shunt element. (b) 
Prototype beginning with a series element. 
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Note that these two structures provide a low-pass filter 
response (evaluate the circuits at 0ω =  and ω = ∞ !). 
 
Moreover, these structures have N  different reactive 
elements (i.e., N degrees of design freedom) and thus can be 
used to realize an N-order power loss ratio. 
 
For example, consider the Butterworth power loss ratio 
function: 

( )
2

1
N

LR
c

P ωω
ω

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 

 
Recall this is a low-pass function, as 1LRP =  at 0ω = , and LRP = ∞   
at ω = ∞ .   Note also that at cω ω= : 
 

( )
2

21 1 1 2
N

Nc
LR c

c
P ωω ω

ω
⎛ ⎞

= = + = + =⎜ ⎟
⎝ ⎠

 

 
Meaning that: 
 

( ) ( ) 1
2c cω ω ω ω= = = =Γ T  

 
In other words, cω  defines the 3dB bandwidth of the low-pass 
filter. 
 
Likewise, we find that this Butterworth function is maximally 
flat at 0ω = :  
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( )
2

00 1 1
N

LR
c

P ω
ω

⎛ ⎞
= = + =⎜ ⎟

⎝ ⎠
 

and: 
( )

0

0 for all 
n

LR
n

d P n
d ω

ω
ω

=

=  

 
 
Now, we can determine the function ( )LRP ω  for a lumped element 
ladder circuit of N elements using our knowledge of complex 
circuit theory. 
 
Then, we can equate the resulting polynomial to the maximally 
flat function above.   In this manner, we can determine the 
appropriate values of all inductors L and capacitors C! 
 
An example of this method is given on pages 392 and 393 of 
your book.   In this case, the filter is very simple—just one 
inductor and one capacitor.  However, as the book shows, 
finding the solution requires quite a bit complex algebra! 
 
Fortunately, your book likewise provides  tables of complete 
Butterworth and Chebychev Low-Pass solutions (up to order 10) 
for the ladder circuits of figure 8.25—no complex algebra 
required! 
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Q:  What?! What the heck do these values ng  mean? 
 
A:  We can use the values ng  to find the values of inductors and 
capacitors required for a given cutoff frequency cω  and source 
resistance sR  0( )Z . 
 
Specifically, we use the values of ng  to find ladder circuit 
inductor and capacitor values as: 
 
 

1s
n n n n

c s c

RL g C g
Rω ω

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
 
where 1 2n , , ,N=  
 
Likewise, the value 1Ng +  describes the load impedance.  
Specifically, we find that if the last reactive element (i.e., Ng ) 
of the ladder circuit is a shunt capacitor, then: 
 

1L N sR g R+=  
 

Whereas, if the last reactive element (i.e., Ng ) of the ladder 
circuit is a series inductor, then: 
 

1

s
L

N

RR
g +

=  
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Note however for the Butterworth solutions (in Table 8.3) we 
find that 1 1Ng + =  always, and therefore: 
 

L sR R=  
 

regardless of the last element. 
 
Moreover, we note (in Table 8.4) that this (i.e., 1 1Ng + = ) is 
likewise true for the Chebychev solutions—provided that N  is 
odd! 
 
Thus, since we typically desire a filter where: 
 

0L sR R Z= =  
 

We can use any order of Butterworth filter, or an odd order of 
Chebychev.   
 
Æ In other words, avoid even order Chebychev filters! 

 
 

 
 
 
 
 
 


