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8.6 Stepped-Impedance 
Low-Pass Filters 

 
Reading Assignment: pp. 412-416 
 
Another distributed element realization of a lumped element 
low-pass filter designs is the stepped-impedance low-pass 
filter.   
 
These filters are also know as “hi-Z, low-Z” filters, and 
we’re about to find out why!      
 
HO: STEPPED-IMPEDANCE LOW-PASS FILTERS 
 
Q:  Are there other methods for building microwave filters? 
 
A:  There are a bundle of them! 
 
All distributed elements (e.g., transmission lines, coupled lines, 
resonators, stubs) exhibit some frequency dependency.  If we 
are clever, we can construct these structures in a way that 
their frequency dependency (i.e., ( )21S ω ) conforms to a 
desirable function of ω . 
 
Other examples of filter realizations—ones applicable to 
band-pass filters—are discussed in sections 8.7 and 8.8 of 
your book. 
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Stepped-Impedance 
Low-Pass Filters 

 
Say we know the impedance matrix of a symmetric two-port 
device: 

11 21

21 11

Z Z
Z Z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Z  

 
Regardless of the construction of this two port device, we can 
model it as a simple “T-circuit”, consisting of three 
impedances: 
 
 
 
 
 
 
 
In other words, if the two series impedances have an 
impedance value equal to 11 21Z Z− , and the shunt impedance 
has a value equal to 21Z , the impedance matrix of this “T-
circuit” is: 

11 21

21 11

Z Z
Z Z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Z  

 
Thus, any symmetric two-port network can be modeled by this 
“T-circuit”! 

11 12Z Z−  

12Z  
11 12Z Z−  

Port 1 Port 2 
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For example, consider a length  of transmission line (a 
symmetric two-port network!): 
 
 
 
 
 
 
Recall (or determine for yourself!) that the impedance 
parameters of this two port network are: 
 

11 22 0

12 21 0

cot

csc

Z Z jZ

Z Z jZ

β

β

= = −

= = −

 

 
With a little trigonometry, ICBST : 
 

11 12 0 2
Z Z j Z tan β⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 

Furthermore, if β  is small: 
 

1sin cos tanβ β β β β≈ ≈ ≈  
 
where β  is expressed in radians.  Thus, 
 

11 12 0 2
Z Z j Z β⎛ ⎞− ≈ ⎜ ⎟

⎝ ⎠
 

 
and also: 

0Z  
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0
12 21 0 csc ZZ Z jZ

j
β

β
= = − ≈  

 
Thus, an electrically short ( 1β ) transmission line can be 
approximately modeled with a “T-circuit” as: 
 
 
 
 
 
 
 
 
 
Now, consider also the case where the characteristic 
impedance of the transmission line is relatively large.  We’ll 
denote this large characteristic impedance as 0

hZ . 
 
Note the shunt impedance, value 0

hZ j β .  Since the 
numerator ( 0

hZ ) is relatively large, and the denominator ( j β ) 
is small, the impedance shunt device is very large. 
 
So large, in fact, that we can approximate it as an open 
circuit! 

0
0 0for 1 and 

h
hZ Z Z

j
β

β
≈ ∞  

 
So now we have a further simplification of our model: 
 

0 2
j Z β⎛ ⎞

⎜ ⎟
⎝ ⎠

 

0Z
j β

 Port 1 Port 2 

0 2
j Z β⎛ ⎞

⎜ ⎟
⎝ ⎠
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The remaining impedances are now in series, so the circuit can 
be further simplified to: 
 
 
 
 
 
 
 
 

The equivalent circuit for transmission line with short electrical 
length ( 1β ) and large characteristic impedance 0

hZ ( 00
hZ Z ). 

 
Now, consider the case where the characteristic impedance 
of the transmission line has a relatively low value, denoted as 

0Z , where 0 0Z Z . 
 
Note the series impedance, values ( )0 2j Z β .  Since both 0Z   
and β  are small, the product of the two is very small. 
 
So small, in fact, that we can approximate it as a short 
circuit! 

0 2
hj Z β⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Port 1 Port 2 

0 2
hj Z β⎛ ⎞
⎜ ⎟
⎝ ⎠

 

0
hj Z β  

Port 1 Port 2 



 

4/23/2007 Stepped Impedance Low Pass Filters 5/14 

Jim Stiles The Univ. of Kansas Dept. of EECS 

0 0 00 for 1 and 
2

jZ Z Zβ
β⎛ ⎞ ≈⎜ ⎟

⎝ ⎠
 

 
So now we have another simplification of our model: 
 
 
 
 
 
 
 
 
Which of course further simplifies to: 
 
 
 
 
 
 
 
 

The equivalent circuit for transmission line with short electrical 
length ( 1β ) and small characteristic impedance 0Z ( 00Z Z ). 
 

Q:  But, what does all this have to do with constructing a 
low-pass filter? 
 
A:  Plenty! Recall that a lossless low-pass filter constructed 
with lumped elements consists of a “circuit ladder” of series 
inductors and shunt capacitors! 

0Z
j β

 Port 1 Port 2 

0Zj
β

−  Port 1 Port 2 
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Q:  So? 
 
A:  Look at the two equivalent circuits for an electrically 
short transmission line.  The one with large characteristic 
impedance 0

hZ  has the form of a series inductor, and the one 
with small characteristic impedance 0Z  has the form of a 
shunt capacitor! 
 
I.E.: 
 
 
 
 
 
 
 
and: 
 
 
 
 
 
 
 
are identical if: 
 

0 0
h hj Z j L Z Lβ ω β ω= ⇒ =  

 
Thus, the “series inductance” of our transmission line length 
is: 

0
hjX j Z β=  

j X j Lω=  
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0
hZL β
ω

=  

 
Q:  Yikes! Our inductance appears to be a function of 
frequency ω .  I assume we simply set this value to cutoff 
frequency  cω ,  just like we did for Richard’s transformation? 
 
A:  Nope! We can simplify the result a bit more.  Recall that 

pvβ ω= , so that: 

0 0
h h

p

Z ZL
v

β
ω

= =  

 
In other words, the series impedance resulting from our 
short transmission line is: 
 

0
h

p

ZZ j
v

ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Q:  Wow! This realization seems to give us a result that 
precisely matches an inductor at all frequencies—right? 
 
A:  Not quite!  Recall this result was obtained from applying a 
few approximations—the result is not exact! 
 
Moreover, one of these approximations was that the 
electrical length of the transmission line be small.  This 
obviously cannot be true at all frequencies.  As the signal 
frequency increases, so does the electrical length—our 
approximate solution will no longer be valid. 
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hus, this realization is accurate only for “low frequencies”—
recall that was likewise true for Richard’s transformations! 
 
Q:  Low-frequencies?  How low is low? 
 
A:  Well, for our filter to provide a response that accurately 
follows the lumped element design, our approximation should 
be valid for frequencies up to (and including!)  the filter 
cutoff frequency cω . 
 
A general “rule-of-thumb” is that a small electrical length is 
defined as being less than 4π  radians. Thus, to maintain this 
small electrical length at frequency cω , our realization must 
satisfy the relationship: 
 

0 4
c

c h
L

Z
ω π

β = <  

 
Note that this criterion is difficult to satisfy if the filter 
cutoff frequency and/or the inductance value L that we are 
trying to realize is large. 
 
Our only recourse for these challenging conditions is to 
increase the value of characteristic impedance 0

hZ . 
 
Q:  Is there some particular difficulty with increasing 0

hZ ? 
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A:  Could be!  There is always a practical limit to how 
large (or small) we can make the characteristic 
impedance of a transmission line.   
 
For example, a large characteristic impedance 
implemented in microstip/stripline requires a very 
narrow conductor width W.  But manufacturing 
tolerances, power handling capability and/or line loss 
(line resistance R increases as W decreases) place a 
lower bound on how narrow we can make these 
conductors! 
 
However, assuming that we can satisfy the above 
constraint, we can approximately “realize” a lumped 
inductor of inductance value L  by selecting the correct 
characteristic impedance 0

hZ  and line length  of our 
short transmission line: 

 
0
h

p

ZL
v

=  

 
Q:  For Richard’s Transformation, we first set the stub 
length to a fixed value (i.e., 8cλ= ), and then determined the 
specific characteristic impedance necessary to realize a 
specific inductor value L.  I assume we follow the same 
procedure here? 
 
A: Nope!  When constructing stepped-impedance low-pass 
filters, we typically do the opposite! 
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1)  First, we select the value of 0
hZ , making sure that the short 

electrical length inequality is satisfied for the largest 
inductance value L in our lumped element filter: 
 

 

0
4h c LZ ω
π

>  

 
 
This characteristic impedance value is typically used to realize 
all inductor values L in our low-pass filter, regardless of the 
actual value of inductance L. 
 
2)   Then, we determine the specific lengths n  of the 
transmission line required to realize specific filter inductors 
values Ln: 
 

0

p
n nh

v
L

Z
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
 

Q:  What about the shunt capacitors? 
 
A:  Almost forgot! 
 
Recall the low-impedance transmission line provided a shunt 
impedance that matched a shunt capacitor: 
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I.E.: 
 
 
 
 
 
 
 
and: 
 
 
 
 
 
 
 
are identical if: 
 

0

0 1
Z

Zj j C
C

β ω
β ω

− = − ⇒ =  

 
Thus, the “shunt capacitance” of our transmission line length 
is: 

0Z
C β

ω
=  

 
But again using the fact that pvβ ω= : 
 

0p Z
C

v
=  

0Zj
β

−  

j
Cω
−  
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And thus the shunt reactance of our transmission line 
realization is: 

0p ZvjZ
ω

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
Although this again appears to provide exactly the same 
behavior as a capacitor (as a function of frequency), it is 
likewise accurate only for low frequencies, where 4β π< . 
 
Thus from our realization equality: 
 

0Z
Cβ

ω=  

 
We can conclude that for our approximations to be valid at all 
frequencies up to the filter cutoff frequency, the following 
inequality must be valid: 
 

0 4c c ZC πβ ω= <  

 
Note that for difficult design cases where cω  and/or C is very 
large, the line characteristic impedance 0Z  must be made 
very small. 
 
Q: I suppose there is likewise a problem with making 

0
Z  very 

small? 
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A: Yes!  In microstrip and 
stripline, making 0Z  small means 
making conductor width W  very 
large.  In other words, it will take 
up lots of space on our substrate.  
For most applications the surface 
area of the substrate is both 
limited and precious, and thus 
there is generally a practical limit 
on how wide we can make width W 
(i.e., how low we can make 0Z ). 

  
However, assuming that we can satisfy the above constraint, 
we can approximately “realize” a lumped capacitor of 
inductance value C  by selecting the correct characteristic 
impedance 0Z  and line length  of our short transmission line: 
 

0p Z
C

v
=  

 
The design rules for shunt capacitor realization are thus: 
 
1)  First, we select the value of 0Z , making sure that the 
short electrical length inequality is satisfied for the largest 
capacitance value C  in our lumped element filter: 
 

 

0 4 c
Z

C
π
ω

<  
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This characteristic impedance value is typically used to realize 
all capacitor values C  in our low-pass filter, regardless of the 
actual value of capacitance C. 
 
2)   Then, we determine the specific lengths n  of the 
transmission line required to realize specific filter capacitor 
values Cn: 
 

( )0
h

n p nZ v C=  

 
 
An example of a low-pass, stepped-impedance filter design is 
provided on page 414-416 of your book (but of course, you 
already knew that—right?). 
 
 
 
 
 
 
 

 

 


