V_q

 Z_{g}

Zin

 $z = -\ell$

Delivered Power

Q: If the purpose of a transmission line is to transfer **power** from a source to a load, then exactly how much power is **delivered** to Z_L for the circuit shown below ??

 $\underline{I(z)}$

 Z_0

A: We of course could determine V_0^+ and V_0^- , and then determine the power absorbed by the load (P_{abs}) as:

V(z)

$$P_{abs} = \frac{1}{2} \operatorname{Re} \left\{ V(z=0) I^*(z=0) \right\}$$

However, if the transmission line is **lossless**, then we know that the power delivered to the load must be **equal** to the power "delivered" to the **input** (P_{in}) of the transmission line:

$$P_{abs} = P_{in} = \frac{1}{2} \operatorname{Re} \left\{ V \left(z = -\ell \right) I^* \left(z = -\ell \right) \right\}$$

 Z_L

However, we can determine this power without having to solve for V_0^+ and V_0^- (i.e., V(z) and I(z)). We can simply use our knowledge of circuit theory!

We can **transform** load Z_L to the beginning of the transmission line (by direct calculation—or with a Smith Chart!), so that we can replace the transmission line with its **input impedance** Z_{in} :

$$I(z = -\ell)$$

$$V_{g} + Z_{g} + Z_{in} = Z(z = -\ell)$$

$$-$$

Note by voltage division we can determine:

$$V(z = -\ell) = V_g \frac{Z_{in}}{Z_g + Z_{in}}$$

And from Ohm's Law we conclude:

$$I(z = -\ell) = \frac{v_g}{Z_g + Z_{in}}$$

1/

And thus, the **power** P_{in} delivered to Z_{in} (and thus the **power** P_{abs} delivered to the load Z_L) is:

$$P_{abs} = P_{in} = \frac{1}{2} \operatorname{Re} \left\{ V(z = -\ell) I^{*}(z = -\ell) \right\}$$
$$= \frac{1}{2} \operatorname{Re} \left\{ V_{g} \frac{Z_{in}}{Z_{g} + Z_{in}} \frac{V_{g}^{*}}{(Z_{g} + Z_{in})^{*}} \right\}$$
$$= \frac{1}{2} \frac{|V_{g}|^{2}}{|Z_{g} + Z_{in}|^{2}} \operatorname{Re} \left\{ Z_{in} \right\}$$
$$= \frac{1}{2} |V_{g}|^{2} \frac{|Z_{in}|^{2}}{|Z_{g} + Z_{in}|^{2}} \operatorname{Re} \left\{ Y_{in} \right\}$$

Note that we could **also** determine P_{abs} from our **earlier** expression:

$$P_{abs} = \frac{|V_0^+|^2}{2 Z_0} (1 - |\Gamma_L|^2)$$

But we would of course have to **first** determine V_0^+ (?):

$$V_{0}^{+} = V_{g} e^{-j\beta\ell} \frac{Z_{0}}{Z_{0} \left(1 + \Gamma_{in}\right) + Z_{g} \left(1 + \Gamma_{in}\right)}$$