Delivered Power

Q: If the purpose of a transmission line is to transfer power from a source to a load, then exactly how much power is delivered to Z_{L} for the circuit shown below ??

A: We of course could determine V_{0}^{+}and V_{0}^{-}, and then determine the power absorbed by the load ($P_{a b s}$) as:

$$
P_{a b s}=\frac{1}{2} \operatorname{Re}\left\{V(z=0) I^{*}(z=0)\right\}
$$

However, if the transmission line is lossless, then we know that the power delivered to the load must be equal to the power "delivered" to the input ($P_{\text {in }}$) of the transmission line:

$$
P_{a b s}=P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-\ell) I^{*}(z=-\ell)\right\}
$$

However, we can determine this power without having to solve for V_{0}^{+}and V_{0}^{-}(i.e., $V(z)$ and $I(z)$). We can simply use our knowledge of circuit theory!

We can transform load Z_{L} to the beginning of the transmission line (by direct calculation-or with a Smith Chart!), so that we can replace the transmission line with its input impedance $Z_{i n}$:

Note by voltage division we can determine:

$$
V(z=-\ell)=V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}}
$$

And from Ohm's Law we conclude:

$$
I(z=-\ell)=\frac{V_{g}}{Z_{g}+Z_{i n}}
$$

And thus, the power $P_{\text {in }}$ delivered to $Z_{\text {in }}$ (and thus the power $P_{a b s}$ delivered to the load Z_{L}) is:

$$
\begin{aligned}
P_{a b s} & =P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-\ell) I^{*}(z=-\ell)\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{V_{g} \frac{Z_{i n}}{Z_{g}+Z_{\text {in }}} \frac{V_{g}^{*}}{\left(Z_{g}+Z_{i n}\right)^{*}}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{\left|Z_{i n}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Y_{i n}\right\}
\end{aligned}
$$

Note that we could also determine $P_{a b s}$ from our earlier expression:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
$$

But we would of course have to first determine $V_{0}^{+}(!)$:

$$
V_{0}^{+}=V_{g} e^{-j \beta l} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1+\Gamma_{i n}\right)}
$$

