## Special Problem 4.3-15

The following things are known about the 4-port device below:

1. It is reciprocal.
2. $S_{22}=0.1$ and $S_{42}=0.14$.
3. It has a plane of reflection symmetry, such that it is identical under the permutation $1 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 1,4 \rightarrow 2$


Note the location of port 2 and port 4 (i.e., $z_{3 p}=z_{3 p}=\lambda / 2$ )!!!!!!
Turn the page!!!

Now carefully consider the voltages along each of the four transmission lines connected to this 4-port device:

$$
\begin{aligned}
& V_{1}\left(z_{1}\right)=j 0.4 e^{j \beta z_{1}} \\
& V_{2}\left(z_{2}\right)=0.2 e^{j \beta z_{2}} \\
& V_{3}\left(z_{3}\right)=2.0 e^{-j \beta z_{3}}+0.5 e^{j \beta z_{3}} \\
& V_{4}\left(z_{4}\right)=0.3 e^{j \beta z_{4}}
\end{aligned}
$$

Use all of the above information to determine scattering matrix of this device.

