Z_{L}

Consider the multi-section circuit shown below.

 Z_1

-0.2 $\Gamma_1 = -0.3$

Using the **theory of small reflections**, it is determined that the **input** reflection coefficient at the design frequency $\omega_0 = v_p / \lambda_0$ is $\Gamma_{in} = 0$.

Load Z_{L} is complex.

 $\Gamma_{in} = \mathbf{0}$

$$\leftarrow \ell_1 = \lambda_0 / 8 \rightarrow \leftarrow \ell_2 = \lambda_0 / 4 \longrightarrow$$

 Z_2

Note that the transmission line sections have **different lengths**!

Given that the first two marginal reflection coefficients are $\Gamma_0 = -0.2$ and $\Gamma_1 = -0.3$, use the theory of small reflections to determine the value of marginal reflection coefficient Γ_2 (at the design frequency ω_0).