
Journal of Computer and System Sciences 61, 194�216 (2000)

Efficient Searching with Linear Constraints1

Pankaj K. Agarwal2 and Lars Arge3

Center for Geometric Computing, Department of Computer Science, Duke University, Box 90129, Durham,
North Carolina 22708-0129

Jeff Erickson4

Department of Computer Science, University of Illinois, Urbana, Illinois 61801

Paulo G. Franciosa5

Dipartimento di Informatica e Sistemistica, Universita� di Roma ``La Sapienza,'' Via Salaria, 113,
00198 Rome, Italy

and

Jeffrey Scott Vitter6

Center for Geometric Computing, Department of Computer Science, Duke University, Box 90129,
Durham, North Carolina 22708-0129

Received January 4, 1999; revised September 3, 1999;
published online September 22, 2000

doi:10.1006�jcss.2000.1709, available online at http:��www.idealibrary.com on

1940022-0000�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 An extended abstract of this paper appeared in Proceedings of the 15th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems [1].

2 E-mail: panka�cs.duke.edu; http��www.cs.duke.edu� � pankaj. Supported in part by National Science
Foundation Research Grants EIA-9870724 and CCR-9732787, by Army Research Office MURI Grant
DAAH04-96-1-0013, by a Sloan fellowship, by a National Science Foundation NYI award, and match-
ing funds from Xerox Corporation, and by a grant from the U.S.�Israeli Binational Science Foundation.

3 E-mail: large�cs.duke.edu; http:��www.cs.duke.edu� � large. Supported in part by U.S. Army
Research Office MURI Grant DAAH04-96-1-0013 and by National Science Foundation Research Grant
ESS EIA-9870724.

4 E-mail: jeffe�cs.unic.edu; http:��www.uiuc.edu� � jeffe. Supported in part by National Science Foun-
dation Grant DMS-9627683 and by U.S. Army Research Office MURI Grant DAAH04-96-1-0013. Part
of this work was done while this author was at Duke University as a postdoctoral fellow.

5 E-mail: pgf�dis.uniroma1.it; http��www.dis.uniroma1.it� � pgf. Supported in part by EU Project
20244 (Alcom-IT). Part of this work was done while visiting Duke University under the Short Term
Mobility Program of CNR.

6 E-mail: jsv�cs.duke.edu; http��www.cs.duke.edu� � jsv. Supported in part by U.S. Army Research
Office MURI Grant DAAH04-96-1-0013 and by National Science Foundation Grants CCR-9522047
and CCR-9732787. Part of this work was done while on sabbatical at INRIA in Sophia Antipolis,
France.

We show how to preprocess a set S of points in Rd into an external
memory data structure that efficiently supports linear-constraint queries. Each
query is in the form of a linear constraint xd�a0+�d&1

i=1 ai xi ; the data struc-
ture must report all the points of S that satisfy the constraint. This problem
is called halfspace range searching in the computational geometry literature.
Our goal is to minimize the number of disk blocks required to store the data
structure and the number of disk accesses (I�Os) required to answer a query.
For d=2, we present the first data structure that uses linear space and
answers linear-constraint queries using an optimal number of I�Os in the
worst case. For d=3, we present a near-linear-size data structure that
answers queries using an optimal number of I�Os on the average. We present
linear-size data structures that can answer d-dimensional linear-constraint
queries (and even more general d-dimensional simplex queries) efficiently in
the worst case. For the d=3 case, we also show how to obtain trade-offs
between space and query time. � 2000 Academic Press

1. INTRODUCTION

In order to be successful, any data model in a large database requires efficient
external memory (secondary storage) support for its language features. Range
searching and its variants are problems that often need to be solved efficiently. In
relational database systems and in SQL, for example, one-dimensional range
searching is a commonly used operation [34, 44]. A number of special cases of
two-dimensional range searching are important for the support of new language
features, such as constraint query languages [34] and class hierarchies in object-
oriented databases [34]. In spatial databases such as geographic information
systems (GIS), range searching obviously plays an extremely important role, and a
large number of external data structures for answering such queries have been
developed (see, for example, [42, 46]). While most attention has been focused on
isothetic or orthogonal range searching, in which a query is a d-dimensional axis-
aligned hyperrectangle, the importance of nonisothetic queries has also been
recognized, most recently in [20, 26]. Many of the proposed data structures can be
used to answer nonisothetic queries.

In this paper we develop efficient data structures for what in the computational
geometry community is called halfspace range searching, where a query is a linear
constraint of the form xd�a0+�d&1

i=1 aixi and we wish to report all input points
that satisfy this constraint. Our goals are to minimize the number of disk blocks
required to store the data structure and to minimize the number of disk accesses
required to answer a query. Halfspace range searching is the simplest form of non-
isothetic range searching and the basic primitive for more complex queries.

1.1. Problem Statement

The halfspace range searching problem is defined as follows: Preprocess a set S
of N points in Rd into a data structure so that all points satisfying a query con-
straint xd�a0+�d&1

i=1 aix i can be reported efficiently.

195EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

A halfspace range query corresponds to reporting all points below a query hyper-
plane h defined by xd=a0+�d&1

i=1 aix i . An example of a halfspace range query is
the following [26]: Given a relation

Companies(Name, PricePerShare, EarningsPerShare),

retrieve the names of all companies whose price�earnings ratio is less than 10. In
SQL the query can be expressed as follows:

SELECT Name FROM Companies

WHERE (PricePerShare&10 V EarningsPerShare<0).

If we interpret each ordered pair (EarningsPerShare, PricePerShare) as a point in
the plane, the result of the query consists of all such points that satisfy the linear
constraint line y&10x�0. Several complex queries can be viewed as reporting all
points lying within a given convex query region. Such queries can in turn be viewed
as the intersection of a number of halfspace range queries.

As our main interest is minimizing the number of disk blocks used to store the
points and the number of disk accesses needed to answer a halfspace range query,
we will consider the problem in the standard external memory model. This model
assumes that each disk access transmits a contiguous block of B units of data in a
single input�output operation (or just I�O). The efficiency of a data structure is
measured in terms of the amount of disk space it uses (measured in units of disk
blocks) and the number of I�Os required to answer a halfspace range query. As we
are interested in solutions that are output sensitive, our query I�O bounds are not
only expressed in terms of N, the number of points in S, but also in terms of T, the
number of points reported by the query. Note that the minimum number of disk
blocks we need to store N points is WN�BX. Similarly, at least WT�BX I�Os are
needed to report T output points. We refer to these bounds as linear and introduce
the notation n=WN�BX and t=WT�BX.

1.2. Previous Results

The computational geometry community has made tremendous progress on non-
isothetic range searching in recent years; see the surveys by Agarwal and Erickson
[3] and Matous$ ek [38] and the references therein. As mentioned, halfspace range
searching is the simplest form of nonisothetic range searching, and the problem has
been extensively studied. Unfortunately, all the results are obtained in the internal
memory models of computation, where I�O efficiency is not considered.

The practical need for I�O support has led to the development of a large number
of external data structures in the spatial database community. B-trees and their
variants [8, 17] have been an unqualified success in supporting one-dimensional
range queries. B-trees occupy O(n) space and answer queries in O(logB n+t) I�Os,
which is optimal. Numerous structures have been proposed for range searching in
two and higher dimensions, for example, grid files [41], quad-trees [46, 47],
k-d-B-trees and variants [45, 31], hB-trees [23, 35], and R-trees and variants

196 AGARWAL ET AL.

[9, 10, 29, 33, 48]. (More references can be found in the surveys [3, 28, 32, 42].)
Although these data structures have good average-case query performance for com-
mon geometric searching problems, their worst-case query performance is much
worse than the O(logB n+t) I�O bound obtained in one dimension using B-trees.
One key reason for this discrepancy is the important practical restriction that the
structures must use near linear space. Recently, some progress has been made on
the construction of structures with provably good performance for two-dimensional
[5, 6, 34, 44, 49] and three-dimensional [51] isothetic range searching. (See [52]
for a survey.)

Even though the practical data structures mentioned above are often presented
as structures for performing isothetic range searching, most of them can easily be
modified to answer nonisothetic queries and thus also halfspace range queries.
However, the query performance often seriously degrades. For example, even
though we can answer halfspace range queries for uniformly distributed points in
the plane in O(- n+t) I�Os using data structures based on quad trees, the query
performance can be as bad as 0(n) I�Os even for reasonable distributions. The
latter number of I�Os is required, for example, if S consists of N points on a
diagonal line l and the query halfplane is bounded by a line obtained by a slight
perturbation of l. In this case, 0(n) nodes of the tree are visited by the query algo-
rithm. Similar performance degradation can be shown for the other mentioned
structures.

In the internal memory model, a two-dimensional halfspace query can be
answered in time O(log2 N+T) time using O(N) space [14], but in the external
memory model a query may require O(log2 N+T) I�Os using this data structure.
The only known external memory data structure with provably good query perfor-
mance works in two dimensions, where it uses O(n - N) disk blocks of space and
answers queries using optimal O(logB n+t) I�Os [24, 25].

1.3. Our Results

In Section 3, we present the first optimal data structure for answering two-dimen-
sional halfspace range queries in the worst case, based on the geometric technique
called filtering search [12, 13, 15]. It uses O(n) blocks of space and answers a query
using O(logB n+t) I�Os. It is simple enough to be efficient in practice.

In Section 4, we describe a data structure that uses O(n log2 n) disk blocks and
answers a three-dimensional halfspace rangy query using O(logB n+t) expected
I�Os. In the conference version of this paper [1], we described another data structure
with optimal worst-case query time O(logB n+t), but using O(N(log2 n) logB n)
space. As part of our result we also develop a data structure that uses O(n log2 n)
space to store N points in the plane and that can be used to find the k nearest
neighbors of a query point in O(logB n+k�B) expected I�Os.

As mentioned earlier, practical considerations often prohibit the use of more than
linear space. In Section 5, we present the first linear-size structure for higher-dimen-
sional halfspace range queries with provably good worst-case query performance.
Our basic data structure answers d-dimensional queries in O(n1&1�d+=+t) I�Os for

197EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

TABLE 1

Our Main Results

d Query I�Os Space

2 O(logB n+t) O(n)

3 O(logB n+t) O(n log2 n)
O(n=+t) O(n logB n)

O((n�Ba)2�3+=+t) O(n log2 B)
O(n2�3+=+t) O(n)

d O(n1&1�wd�2x+=+t) O(n logB n)
O(n1&1�d+=+t) O(n)

any constant =>0. It can also report points lying inside a d-dimensional simplex
query within the same I�O bound.7

In Section 6, we describe how to trade space for query performance in R3 by
combining the data structures presented in the previous sections. We can answer a
three-dimensional halfspace range query in O((n�Ba)2�3+=+t) I�Os, for any con-
stant a>0, using slightly superlinear space O(n log2 B), or in O(n=+t) I�Os using
O(n logB n) space. This last data structure generalizes to answer d-dimensional
halfspace queries in O(n1&1�wd�2x+=+t) I�Os in the same space bound.

Our main results are summarized in Table 1.

2. GEOMETRIC PRELIMINARIES

In order to state our results we need some concepts and results from computa-
tional geometry.

2.1. Duality

Duality is a popular and powerful technique used in geometric algorithms; it
maps each point in Rd to a hyperplane in Rd and vice versa. We use the following
duality transform: The dual of a point (a1 , ..., ad) # Rd is the hyperplane xd=
&a1 x1& } } } &ad&1xd&1+ad , and the dual of a hyperplane xd=b1x1+ } } } +
bd&1xd&1+bd is the point (b1 , ..., bd). Let _* denote the dual of an object (point
or hyperplane) _; for a set of objects 7, let 7*=[_* | _ # 7].

An essential property of duality is that it preserves the above-below relationship
between points and hyperplanes; see Fig. 1.

Lemma 2.1. A point p is above (resp., below, on) a hyperplane h if and only if the
dual hyperplane p* is above (resp., below, on) the dual point h*.

By Lemma 2.1, the points in S that lie below a hyperplane h dualize to hyper-
planes in S* that lie below the point h*. Thus, the halfspace range searching
problem has the following equivalent ``dual'' formulation: Preprocess a set H of N

198 AGARWAL ET AL.

7 We define a d-dimensional simplex to be the intersection of d+1 d-dimensional halfspaces.

FIG. 1. The duality transform in two dimensions.

hyperplanes in Rd so that the hyperplanes of H lying below a query point p can be
reported efficiently.

2.2. Arrangements

Let H be a set of N hyperplanes in Rd. The arrangement of H, denoted A(H),
is the decomposition of Rd into cells of dimensions k, for 0�k�d, each cell being
a maximal connected set of points contained in the intersection of a fixed subset of
H and not intersecting any other hyperplane of H. For example, a set of lines in
the plane induces a decomposition of the plane into vertices, edges, and two-dimen-
sional faces; see Fig. 2a. The combinatorial complexity of A(H) is the total number
of cells of all dimensions in the decomposition. It is well known that, for any fixed
d, the complexity of A(H) is O(Nd) [21].

2.3. Levels

The level of a point p # Rd with respect to H is the number of hyperplanes of H
that lie (strictly) below p. All the points in a single cell of arrangement A(H) lie
above the same subset of hyperplanes of H, so we can define the level of a cell of
A(H) to be the level of any point in that cell. For any 0�k<N, the k-level of
A(H), denoted Ak(H), is the closure of all the (d&1)-dimensional cells whose level
is k; it is a monotone piecewise-linear (d&1)-dimensional surface. For example, the
k-level in an arrangement of lines is an x-monotone polygonal chain. Figure 2b

FIG. 2. (a) An arrangement of lines, with one cell shaded; (b) the 2-level of the arrangement.

199EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

depicts the 2-level in an arrangements of lines in the plane. The 0-level A0(H) is
also called the lower envelope of H. The lower envelope is the boundary of an
unbounded convex polyhedron in Rd.

An algorithm by Edelsbrunner and Welzl [22] can compute a level 4 of an
arrangement of lines with & edges in O(N log2 N+& log2

2 N) time, as follows. For a
point x # 4, let L+(x) and L&(x) denote the set of lines in L that lie respectively
above and below x. Their algorithm traverses 4 from left to right, stopping at every
vertex of 4, and maintains the two sets L+(x) and L&(x) during this traversal.
These sets change only at the vertices of 4. It stores L+ in a dynamic data structure
9(L+(x)) of Overmars and van Leeuwen [43] so that a line can be inserted or
deleted in O(log2

2 N) time and the first intersection point of a ray, emanating from
a point lying above all the lines or below all the lines, with L+ can be computed
in O(log2

2 N) time. Initializing this data structure takes O(N log2 N) time. A similar
structure is stored for L&. Assuming that the algorithm has traversed 4 up to a ver-
tex v and has constructed 9(L+(v)) and 9(L&(v)), the next vertex w of 4 can be
computed in O(log2

2 N) time and 9(L+(w)) and 9(L&(w)) can also be computed
within the same time bound; see the original paper for details. The data structure
by Overmars and van Leeuwen [43] uses a two-level red-black tree. By replacing
the second level red-black tree with a B-tree, the number of I�Os required to com-
pute the level can be reduced to O(N log2 N+&(log2 N) logB N); again, the
O(N log2 N) term is the time required to initialize the data structures.

Little is known about the worst-case complexity of k-levels. A recent result of
Dey [19] shows that the maximum number of vertices on the k-level in an arrange-
ment of N lines in the plane is O(Nk1�3). For d=3, the best known bound on the
complexity of Ak(H) is O(Nk5�3) [2]. Neither of these bounds is known to be tight;
the best lower bound known is 0(Nd&12- log k) for all k�N�2 [50]. However, if we
choose a random level of A(H), a better bound follows from a result of Clarkson
and Shor [16]; see, for example, Agarwal et al. [4].

Lemma 2.2. Let H be a set of N hyperplanes in Rd. For any 1�i�wN�2x, if we
choose a random integer k between i and 2i, the expected complexity of Ak(H) is
O(N wd�2xkWd�2X&1).

Corollary 2.3. If only M hyperplanes in H contain a point on or below A2i (H),
then the expected complexity of a random level between i and 2i is O(Mwd�2xkWd�2X&1).

3. AN OPTIMAL DATA STRUCTURE IN 2D

In this section, we describe an optimal data structure for halfspace range search-
ing in the plane that requires O(n) disk blocks and answers a query using
O(logB n+t) I�Os. We will describe the data structure in the dual setting, i.e., we
wish to preprocess a set L of N lines in the plane so that the lines of L lying below
a query point can be reported efficiently. Our data structure is an extension of the
halfspace range searching data structure by Chazelle et al. [14]. Roughly speaking,
we partition L into a family of subsets (L1 , L2 , ..., Lm) , each of size at least
B logB n, so that, for all i>1, any point p # R2 lies above a line of Li only if it lies

200 AGARWAL ET AL.

above at least B logB n lines of Li&1 . We store each Li into a linear-size data struc-
ture so that all Ti lines of Li lying below a query point can be reported using
O(logB n+Ti�B) I�Os. To report the lines of L lying below a query point p, we visit
Li 's in increasing order i=1, 2, ..., stopping when we reach an i such that at most
B logB n lines of Li lie below p. Thus the total number of I�Os used in answering
a query is O(logB n+t).

In order to present our data structure we first describe a method for representing
a level of A(L) compactly.

3.1. Compressing a Level

For any point p in the plane, let x(p) denote its x-coordinate and let Lp denote
the set of lines passing strictly below p. For two vertices v and v$ on Ak(L) with
x(v)<x(v$), we define the cluster C�L induced by v and v$ to be the set �p Lp ,
where the union is taken over all points on Ak(L) between v and v$. In other words,
C is the set of lines intersecting the interior of the polygon bounded by the portion
of Ak(L) between v and v$ and the vertical rays emanating downward from v and
v$; see Fig. 3. We say that C is relevant for a point p if x(v)�x(p)<x(v$).

Let W=(w0 , w1 , w2 , ..., wu) be a subsequence of vertices of Ak(L), sorted from
left to right, where w0 and wu are the points on Ak(L) at x=&� and x=+�,
respectively. The clustering defined by W is the family 1=[C1 , C2 , ..., Cu], where
Ci is the cluster induced by wi&1 and wi . We call the vertices w0 , w1 , ..., wu the
boundary points of 1. A line in L may belong to several clusters in 1. We call 1
a b-clustering if every cluster contains b or fewer lines. The size of a clustering
1 is u, the number of clusters. For any point p in the plane, exactly one cluster
in 1 is relevant for p.

The following lemmas form the basis of the data structures described in this
section.

Lemma 3.1. Let L be a set of N lines in the plane, let 1 be a clustering of Ak(L)
for some 1�k<N, let p be a point in the plane, and let C # 1 be the cluster relevant
for p. If p is above fewer than k lines in C, then every line in L that lies below p is
in C.

Proof. Suppose p is above fewer than k lines in C. Let p� be the intersection of
Ak(L) with the vertical line through p. By definition, every line below p� is in the

FIG. 3. A cluster induced by two vertices of the 2-level.

201EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

cluster C. To prove the lemma, it suffices to show that p is either on or directly
below p� .

If p� is a convex (downward) vertex of Ak(L), then p� is above exactly k&1 lines,
all in the cluster C. Moreover, at least one of the two lines through p� is also in C
(in fact both lines will be in C unless p� is a boundary point, which is impossible for
the clusterings we construct). Thus, if p was above p� , then p would be above at least
k lines in C, contradicting our original assumption.

If p� is not a convex vertex of Ak(L), then p� is above exactly k lines, all in the
cluster C. So in this case, p must lie strictly below p� . K

Lemma 3.2. Let L be a set of N lines in the plane. For any 1�k<N, there exists
a 3k-clustering of Ak(L) of size at most N�k. Given Ak(L), this clustering can be com-
puted using O(&k) I�Os, where &k is the complexity of Ak(L).

Proof. Let V=(v0 , v1 , ..., v&k) be the complete sequence of vertices of Ak(L),
sorted from left to right. We construct the clustering 1 incrementally using the
following greedy algorithm. Suppose we have already computed the clusters
C1 , ..., Ci&1 and their boundary points w0 , w1 , ..., wi&1. To construct Ci , we
initially set Ci=Lwi&1

and then scan through V from left to right, starting with
wi&1. At each vertex vj # V, we either set wi=vj and start a new cluster Ci+1 or
continue with the cluster Ci and add a new line to Ci if necessary. Specifically, we
process each vertex vj as follows. If j=&k , then we are done��Ci is induced by wi&1

and wi=v&k , and Ci is the last cluster in 1. If vj is a concave (upward) vertex (e.g.,
vertices ah and af in Fig. 4), there is nothing to do, since the set Lp remains the
same for all points p # Ak(L) in a sufficiently small neighborhood of vj . Finally, sup-
pose vj is a convex (downward) vertex (e.g., vertex wi&1 in Fig. 4). Let l # L be the
line through vj with minimum slope; l lies below Ak(L) just to the right of vj . If
l is already in Ci , there is nothing to do. If l � Ci and Ci already has 3k lines, we
set wi=vj and begin building Ci+1. Finally, if l � Ci and |Ci |<3k, we add l to Ci

and continue scanning.
In order to check whether l # Ci in one I�O, we maintain a bit b(l) for each line

l # L indicating whether or not l # Ci . After we find the boundary point wi , for each
line l # Ci that lies above wi , we reset the bit b(l) to 0; this requires at most |Ci |
I�Os. Thus, given Ak(L), our greedy algorithm builds the clustering 1 in O(&k)
I�Os.

FIG. 4. Proof of Lemma 3.2. Four lines in Ci and their exit points; g and l lie below f and h to the
right of wi .

202 AGARWAL ET AL.

To finish the proof, it suffices to show that there are at least k lines in each
cluster Ci # 1 that do not belong to any later cluster Cj with j>i. Fix a cluster Ci .
For each line l # Ci , define its exit point al to be the rightmost point of l between
wi&1 and wi whose level is at most k. If l lies below w i , then al lies on the vertical
line passing through wi ; otherwise, al is a concave (upward) vertex of Ak(H). Refer
to Fig. 4. Let h # Ci be a line such that the exit points of at least 2k lines in Ci lie
to the right of ah . There are exactly k such lines. We claim that h lies above at least
k lines to the right of wi , and thus h cannot appear in a later cluster.

Exactly k lines pass below the exit point ah , since ah is a concave vertex of Ak(L).
Thus, there are at least k lines in Ci that lie above ah and whose exit points lie to
the right of ah . Let g be such a line. Since ah lies on or below g and ag lies below
h, the slope of g is less than the slope of h, and x(ah)�x(h & g)<x(ag)�x(wi).
These two observation simply that g lies below h the right of wi , proving our claim.
See Fig. 4. K

We call the clustering built by our greedy algorithm the greedy 3k-clustering of
Ak(L).

Corollary 3.3. Let L be a set of N lines in the plane, let 1 be the greedy
3k-clustering of Ak(L) for some 1�k<N, and let l be a line that appears in a cluster
Ci of 1. If l appears in another cluster of 1 to the right of Ci , then it also appears
in Ci+1 .

Proof. Assume that l � Ci+1 . Let al be the exit point of l in Ci ; this point must
be on Ak(L) to the left of the boundary point wi . Since |C i+1|=3k and exactly k
lines lie below al , at least 2k lines of Ci+1 must lie above al . Each of these 2k lines
must be below Ak(L), and thus below l, somewhere between wi and wi+1 . These
2k lines must lie below l to the right of wi+1 , which implies that l cannot appear
in any cluster Cj with j>i+1. K

3.2. Constructing the Data Structure

Our construction algorithm partitions L into a family of m disjoint subsets
L1 , L2 , ..., Lm and builds a data structure for each subset using the following
iterative process. Let ;=B logB n. Let H1=L, and for each i>1, let Hi=
Hi&1 "Li&1 . For each i, choose a random integer *i between ; and 2; and construct
the greedy 3*i -clustering 1i of 4i=A*i (Hi). Recall that our greedy algorithm first
computes 4i using the Edelsbrunner�Welzl algorithm described in Section 2.3 and
then computes the greedy clustering 1i of 4i . Li is the union of the clusters in 1i

or, equivalently, the set of lines that pass below some point on 4i . The data struc-
ture for Li is the lines in each cluster of 1i sorted in increasing slope order (or by
any other total order on L), as well as a B-ary tree Ti (specifically, a B+-tree) over
the x-coordinates of the boundary points of 1i . The process stops when Li=Hi .

Let Ni=|Li |, and let ni=Ni �B. Since each of the at most Ni �*i clusters in 1i can
be stored in at most W3*i �BX blocks (Lemma 3.2), we can store the entire clustering
in O(ni) blocks. The tree Ti requires only O(ni �*i) blocks. Since Ni>;, the total
number of clusterings m is at most N�;=n�logB n. Thus, the total space used by our
data structure is �m

i=1 O(n i)=O(n+m)=O(n).

203EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

Without any further modification, Edelsbrunner and Welzl's algorithm requires
O(|Hi | log2 |Hi |+|4 i | (log2 |Hi |) logB |Hi |) I�Os to construct the level 4i . We can
speed up the construction by maintaining a data structure from one invocation of
the algorithm to the next, as follows. We maintain a B+-tree T* storing the lines
in H i , sorted by slope. At the beginning of the overall algorithm, we construct T*
to store the entire set of lines H1=L in O(N logB n) I�Os. Let y be the point on
4i&1 at x=+�. Recall that when the Edelsbrunner�Welzl algorithm finishes com-
puting 4i&1 , it has also computed the data structures 9(H +

i&1(y)) and
9(H &

i&1(y)). Before we can compute 4i , we first need to construct 9(H +
i (z)) and

9(H &
i (z)), where z is the point on 4 i at x=&�.

Note that lines appear in increasing slope order along the positive y-direction at
x=+�, but in decreasing slope order at x=&�. In particular, H &

i&1(y) consists
of the lines with the *i&1 smallest slopes in Hi&1 and H &

i (z) consists of the *i lines
with largest slopes in Hi . We can extract H &

i (z) from T* in O(*i �B) I�Os, after
which we can construct 9(H &

i (z)) in O(* i (log2 *i) logB * i)=O(*i (log2 |H i |)
logB |H i |) I�Os. Rather than extracting the lines in H +

i (z) from T* and construct-
ing 9(H +

i (z)), we use the following identity to obtain 9(H +
i (z)):

H +
i (z)=(H +

i&1(y) _ H &
i&1(y))"Li&1 "H &

i (z).

To construct 9(H +
i (z)), we start with 9(H +

i&1(y)), insert the lines in H &
i&1(y),

delete the lines in Li&1 , and finally delete the lines in H &
i (z). The lines in H &

i&1(y)
and H &

i (z) can be extracted from T* in O(*i&1 �B) and O(*i �B) I�Os, respectively.
The total number of insertions and deletions is at most *i&1+Ni&1+* i�4N i&1 ,
since *i�2;�2*i&1 and * i&1�Ni&1 . Each insertion or deletion requires O((log2

|Hi |) logB |Hi |) I�Os, so the total time to construct 9(H +
i (z)) and 9(H &

i (z)) is
O(Ni&1(log2 |Hi |) logB |Hi |) I�Os.

Once these two data structures have been built, O(|4i | (log2 |Hi |) logB |H i |)
I�Os are needed to construct 4i and then O(|4i |) I�Os to build the clustering
1i and the subset Li . Finally, we can delete the lines in Li&1 from T* in
O(Ni&1 logB |Hi |) I�Os. Thus, the total number of I�Os used for the ith phase of
our preprocessing algorithm is

O((Ni&1+|4i |)(log2 |Hi |) logB |Hi |)=O((Ni&1+|4i |)(log2 N) logB n).

Let L� i be the set of lines in Hi that pass below some point on A2;(H i), and let
N� i=|L� i |. The expected number of vertices |4i | in 1i is O(N� i) by Corollary 2.3. We
easily observe that L� i �Li _ Li+1 , so N� i�Ni+Ni+1 . It follows that the total
expected number of I�Os to construct our data structure is

O(N logB n)+ :
m

i=2

O((Ni&1+|4i |)(log2 N) logB n)=O(N(log2 N) logB n).

In the worst case, each 1i can have O(N� i *1�3
i) vertices, so the worst-case construc-

tion time is

O(NB1�3(log2 N) log4�3
B n).

3.3. Answering a Query

Let p be a query point and let Ci...j denote � j
k=i Ck=Ci _ Ci+1 _ } } } _ Cj . To

report all the lines lying below p, we visit the clusterings 1i in increasing order

204 AGARWAL ET AL.

i=0, 1, 2, ..., stopping when at most *i lines of Li lie below p. For each i, we deter-
mine which cluster Cj # 1i is relevant for p in O(logB n) I�Os, using the B-ary
tree Ti . Next, we scan through Cj , counting the lines that lie below p. If there are
fewer than *i such lines, we report them and halt; by Lemma 3.1, every line in Hi

(and thus in Li...m) that lies below p is actually reported in this case. Otherwise, we
visit the clusters Cj+1 , Cj+2 , ... in order from left to right, stopping when we reach
a cluster Cr so that more than *i lines in Cj+1...r lie above p. Since the lines in each
cluster are stored in sorted order by slope, we can keep track of the lines above p
in O(*i �B)=O(logB n) I�Os per cluster. Next, we visit clusters from right to left in
a similar manner, starting with Cj&1 and stopping when we reach a cluster Cl so
that more than *i distinct lines in Cl...j&1 lie above p. For each cluster Ck we visit,
we report the lines of Ck that lie below p.

The correctness of this procedure follows from the following lemma.

Lemma 3.4. Suppose Cj # 1i is relevant for a point p. If more than *i lines in
Cl...j&1 lie above p, then no line of C1...l&1 "Cl...j lies below p. If more than *i lines
in Cj+1...r lie above p, then no line of Cr+1...|1i | "cj...r lies below p.

Proof. Suppose a line g # Ck "Cl...j lies below p, for some k<l. Without loss of
generality, assume g � Ck+1 . Then Corollary 3.3 implies that g is not in any cluster
to the right of Ck+1 . Let ag be the exit point of g, i.e., the rightmost point of g on
4i ; see Fig. 5. The point ag is strictly to the left of the boundary point wk , so g lies
above 4i to the right of wk . Any line h # Cl...j that lies above p must intersect g
between ag and p, which implies that h lies below ag . But exactly *i lines lie below
ag . It follows that at most *i lines in Cl...j lie above p.

The second half of the lemma follows by a similar argument. K

Altogether, our query procedure uses O(logB n+(r&l+1) *i �B) I�Os to search
the clustering 1i . Let Ti be the number of lines in Li that lie below p. For each
cluster visited by the query algorithm, at least *i lines do not appear in any cluster
further to the right; see the proof of Lemma 3.2. It follows that the algorithm visits
at least (r&l+1) *i distinct lines. Among these, at most 10*i lines can lie above
p��specifically, at most 2*i lines from Cj , at most *i lines from each of Cl+1...j&1

and Cj+1...r&1 , and at most 3*i lines from each of Cl and Cr . Hence, Ti�
(r&l&9) *i , and the number of I�Os required to search 1i is O(logB n+Ti �B).

FIG. 5. Proof of Lemma 3.4.

205EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

If our query algorithm visits clusterings 11 , ..., 1u , then it requires
O(u logB n+�u

i=1 Ti �B)=O(u logB n+t) I�Os. Since Ti>*i�B logB n for all
i�u&1, we have t�(u&1) logB n. Thus, the total number of I�Os required to
answer a query is O(logB n+t).

Theorem 3.5. Let S be a set of N points in the plane. We can store S in a data
structure that uses O(n) blocks so that a halfspace range query can be answered in
O(logB n+t) I�Os. The expected number of I�Os used to construct the data structure
is O(N(log2 N) logB n).

Although our query procedure is asymptotically optimal, it may report some
lines several times, since a line can appear in several clusters within the same
clustering. We can detect and remove these duplications by exploiting Corollary 3.3
as follows. Suppose our algorithm visits clusters Cl , ..., Cj , ..., Cr . We report all the
lines that lie below p in the leftmost cluster Cl as usual. For each other cluster Ck

to the right of Cl , we report only the lines in Ck"Ck+1 that lie below p. Since the
lines in each cluster are sorted by their slopes, the set Ck "Ck+1 can be computed
using O(*i �B) I�Os and thus our modified query algorithm reports each line exactly
once, still using only O(logB n+t) I�Os.

4. HALFSPACE RANGE SEARCHING IN 3D

In this section, we describe our three-dimensional data structure, which
generalizes a recent internal memory result of Chan [11] to the external memory
setting. As in the previous section, we solve the dual version of the problem; given
a set H of N planes, we build a data structure that allows us to quickly compute
all the planes lying below an arbitrary query point.

The general idea in our structure is to store Ak(H) for an exponentially increas-
ing series of values of k (k=2 jB logB n for j=0, 1, 2, ...). These levels partition the
space into layers. To answer a query with point p, we test whether p lies above or
below Ak(H) for the exponentially increasing values of k until we find a k such that
p lies below Ak(H). Once we know which layer contains p, we simply report the
planes that lie below p. Since the complexity of a level in Ak(H) can be quite large,
we actually approximate Ak(H) by computing the 0-level, or lower envelope, of an
appropriate subset of H and use the lower envelope to determine whether a query
point is above or below Ak(H). The lower envelope of a set of N planes is the
boundary of an unbounded convex polyhedron with at most N convex polygon
facets and, by Euler's formula, O(N) edges and vertices. Because lower envelopes
have a much simpler structure than arbitrary levels, we can compute them much
more easily; however, because we do not store the levels exactly, we need an addi-
tional data structure to determine whether a query point lies above a certain level.
We now describe the data structure in detail.

4.1. Finding the k Lowest Planes along a Vertical Line

Let H be a set of N planes in R3. For any vertical line l and any integer k, the
k lowest planes in H along l a are the planes in H whose intersections with l have

206 AGARWAL ET AL.

the k smallest z-coordinates. Following Chan [11], we first develop a data struc-
ture that stores H so that we can efficiently report the k lowest planes in H along
l for any k and l.

Let ;=B logB n. We choose a random permutation (h1 , h2 , ..., hN) of the planes
in H, and for each i between 1 and Wlog2(N�;)X, we define Ri=[h1 , h2 , ..., h2i]/H.
Each subset Ri is a uniformly distributed random sample of H of size 2i. Our data
structure consists of O(log2(N�;))=O(log2 n) layers, one for each random sample
Ri . To simplify our notation, let ri=2 i�B denote the number of blocks required to
store Ri .

We construct the ith layer of our data structure as follows. First, we construct the
lower envelope of Ri , in O(ri logB ri) expected I�Os, using the external 3D halfspace
intersection algorithm of Crauser et al. [18].8 In fact, this algorithm computes a tri-
angulation of the lower envelope, decomposing each nontriangular facet into
several interior-disjoint triangles. We denote this triangulation 2(Ri). By Euler's
formula, 2(Ri) contains O(2i) triangles and thus can be stored in O(ri) blocks.

Next, we construct an external point-location structure for the planar map
obtained by projecting 2(Ri) orthogonally onto the xy-plane. This structure allows
us to find the triangle in 2(Ri) directly above or below a query point in
O(logB r i)=O(logB n) I�Os. This point location structure can be constructed in
O(ri logB ri) I�Os and stored in O(ri) blocks [7, 27].

Finally, we say that a plane h # H"Ri conflicts with a triangle 2 # 2(Ri) if it lies
below some point in 2. The set of planes that conflict with a triangle 2 is called the
triangle's conflict list and denoted K(2). We store the conflict list of each triangle
in 2(Ri) in one contiguous set of blocks. This allows us to scan a single conflict list
K(2) in W |K(2)|�BX I�Os. The halfspace-intersection algorithm of Crauser et al.
[18] can be used to construct these conflict lists in 2(Ri) in O(n logB ri) expected
I�Os.

Our analysis relies on the following lemma of Clarkson and Shor [16].

Lemma 4.1. Let 1�r�N, and let R be a random sample of H of size r.

(a) E[�2 # 2(R) |K(2)|]=O(N).

(b) For any vertical line l, the expected size of K(2), where 2 is the triangle
in 2(Ri) that intersects l, is O(N�r).

The first part of this lemma implies that the expected number of blocks required
to store all the conflict lists for each sample Ri is O(n). Since this is larger than the
space requirement for 2(Ri) and its point-location structure, we conclude that each
layer can be stored in O(n) expected blocks. Thus, the expected size of the entire
data structure is O(n log2 n) blocks. The total expected preprocessing time of all
O(log2 n) layers is O(n(log2 n) logB n) I�Os.

207EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

8 The algorithm by Crauser et al. actually uses O(ri logM�B ri) I�Os where M is the size of the internal
memory. We make the realistic assumption that the internal memory is capable of holding more than
B blocks, that is, we have M�B>B and thus O(ri logM�B ri)=O(ri logB ri).

Given an integer k, a vertical line l, and a third parameter 0<$<1, the follow-
ing procedure usually finds the k lowest planes in H along l. The parameter $ con-
trols the probability of failure.

TryLowestPlanes (k, l, $):

\=Wlog2 (N$�k)X
Find the triangle q # 2(R\) intersecting l
if |K(q)|�k�$2 then

scan K(q)
if�k planes in K(q)cross l below l & q then

return lowest planes in K(q) along l
else fail

else fail

Recall that R\ is a random sample of H of size 2\<2N$�k. We can find the tri-
angle 2 that intersects l in O(logB 2\)=O(logB n) I�Os using the external point-
location structure for 2(R\). We only scan the conflict list K(2) if its length is less
than k�$2, so the scan requires at most Wk�($2B)X I�Os. Thus, the overall running
time of TryLowestPlanes is O(logB n+k�(B$2)) I�Os, regardless of its success or
failure.

Lemma 4.1(b) implies that the expected size of K(2) is O(N�2\)=O(k�$), so by
Markov's inequality, the probability that the size of K(2) exceeds k�$2 is O($).
There are fewer than k planes in K(2) below l & 2 if and only if the plane contain-
ing 2 is one of the k lowest planes along l. This event occurs with probability at
most k2\�N=O($), since each of the k lowest planes has probability 2\�N of being
in the random sample R\ . Thus, the probability that TryLowestPlanes fails is
O($).

We can reduce the failure probability to O($3) by building and querying three
completely independent data structures. This triples the space and preprocessing
time, of course, but is necessary to achieve optimal query time.9

To compute the k lowest planes along l with complete certainty, we invoke
TryLowestPlanes using all three data structures, with $=2&1, 2&2, 2&3, ..., stop-
ping as soon as some invocation succeeds. Let Xi be the 0-1 random variable whose
value is 1 if all three calls to TryLowestplanes fail when $=2&i. Then the total
number of I�Os used by this procedure is at most

:
i�1

Xi&1 } O(logB n+4ik�B).

By our earlier argument, E[Xi]=O((2i)3)=O(8&i), so the expected number of
I�Os is

:
i�0

O(logB n+4i+1k�B)
8i = :

i�0

O \logB n
8i +

4k�B
2i +=O(logB n+k�B).

208 AGARWAL ET AL.

9 Building three independent data structures may not be necessary in practice, but the best expected
query time we can prove using just one data structure is O(logB n+(k�B) log2(N�k)) I�Os.

Theorem 4.2. Let H be a set of N planes in R3. We can store H in a data struc-
ture with expected size O(n log2 n) blocks so that, for any vertical line l and any
integer 1�k�N, we can find the k lowest planes in H along l in O(logB n+k�B)
expected I�Os. The expected number of I�Os used to build the data structure is
O(n(log2 n) logB n).

Remark. Using the fact that Ri&1 /Ri , we can reduce the expected number of
I�Os used to construct the data structure to O(n log2 n).

By a standard lifting argument [21], our data structure can also be used to
answer k nearest neighbor queries for points in the plane with the same space,
preprocessing time, and query time bounds. Given any set S of N points in the
plane, we can lift it to a set of N planes S� in R3 by mapping each point (a, b) # S
to the plane z=a2+b2&2ax&2by. Then the nearest k neighbors in S to a query
point (p, q) # R2 correspond precisely to the k lowest planes in S� along the vertical
line through the point (p, q, 0).

Theorem 4.3. Let S be a set of N points in the plane. We can store S in a data
structure with expected size O(n log2 n) blocks so that, for any point p # R2 and any
integer 1�k�N, we can find the k nearest neighbors of p # S in O(logB n+k�B)
expected I�Os. The expected number of I�Os used to build the data structure is
O(n(log2 n) logB n).

4.2. Finding all the Planes below a Query Point

To find the T planes lying below a query point p, we only need to report the T
lowest planes along the vertical line l through p. Since we do not know T in
advance, we find the k lowest planes along l for successively larger and larger
values of k, halting when at least one of the k lowest planes is above p and then
reporting only those planes that are actually below p. Specifically, in the jth itera-
tion, we use the value k=2 j;=2 jB logB n.

If T<;, we halt after the very first iteration, spending O(logB n+;�B)=
O(logB n) expected I�Os. Otherwise, we halt after +=Wlog2(T�;)X iterations, and
since the jth iteration requires O(logB n+2 j;�B)=O(2 j;�B) I�Os on average, the
total expected number of I�Os is

:
+

i=0

O(2 j;�B)=O(2+;�B)=O(T�B)=O(t).

Theorem 4.4. Let S be a set of N points in R3. We can store S in a data struc-
ture with expected size O(n log2 n) blocks so that a halfspace range query can be
answered in O(logB n+t) expected I�Os. The expected number of I�Os used to build
the data structure is O(n(log2 n) logB n).

209EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

5. A LINEAR-SIZE DATA STRUCTURE

In this section we present a d-dimensional halfspace range-searching data struc-
ture that uses only O(n) blocks, for any constant d. We will describe the data struc-
ture in the primal setting. Let S be a set of N points in Rd. A simplicial partition
of S is a set of pairs 6=[(S1 , 21), (S2 , 22), ..., (Sr , 2r)], where Si 's are disjoint
subsets of S and each 2i is a simplex containing Si . Note that a point of S may lie
in many simplices, but it belongs to only one Si ; see Fig. 6. The size of 6, here
denoted r, is the number of pairs. A simplicial partition is balanced if each subset
Si contains between N�r and 2N�r points.

Theorem 5.1 (Matous$ ek [36]). Let S be a set of N points in Rd, and let
1<r�N�2 be a given parameter. For some constant : (independent of r), there exists
a balanced simplicial partition 6 of size r, so that any hyperplane crosses at most
:r1&1�d simplices of 6.

We use this theorem to build a range-searching data structure for S called a par-
tition tree. Partition trees are one of the most commonly used internal memory data
structures for geometric range searching [3, 30, 36, 53]; our construction closely
follows the one by Matous$ ek [36]. Each node v in a partition tree T is associated
with a subset Sv �S of points and a simplex 2v . For the root u of T, we have
Su=S and 2u=Rd. Let Nv=|Sv | and nv=WNv�BX. For each node v, we construct
the subtree rooted at v as follows. If Nv�B, then v is a leaf and we store all points
of Sv in a single block. Otherwise, v is an internal node of degree rv , where
rv=min[cB, 2nv], for some constant c�1 to be specified later. We compute a
balanced simplicial partition 6v=[(S1 , 21), ..., (Srv , 2rv)] for Sv , as described in
Theorem 5.1, and then recursively construct a partition tree Ti for each subset Si .
For each i, we store the vertices of 2i and a pointer to Ti ; the root of Ti is the ith
child of v, and it is associated with Si and 2i . We need O(c)=O(1) blocks to store
any node v. Since rv was chosen to be min[cB, 2nv], every leaf node contains 3(B)
points. Thus the total number of nodes in the tree is O(n), so the total size of the
partition tree is O(n). A closer look at Matous$ ek's algorithm reveals that 6v can
be constructed in O(N log2 rv)=O(N log2 B) expected I�Os, so the total expected
number of I�Os to construct T is O(N log2B logB N)=O(N log2 N).

FIG. 6. A balanced simplicial partition of size 7.

210 AGARWAL ET AL.

To find all points below a query hyperplane h, we visit T in a top down fashion.
Suppose we are at a node v. If v is a leaf, we report all points of Sv that lie below
h in a single I�O. Otherwise, we test each simplex 2i of 6v . If 2i lies above h, we
ignore 2i ; if 2i lies below h, we report all points in Si by traversing the ith subtree
of v; finally, if h crosses 2i , we recursively visit the ith child of v. Note that each,
point is reported only once.

To bound the number of I�Os used to perform a query, first note that if 2v lies
below h, then all points of Sv lie below h and we spend O(nv) I�Os to report these
points. Since each point is reported only once, �v nv�t, where the sum is taken
over all nodes v visited by the query procedure for which 2v lies below h. Let +
denote the number of visited nodes v for which 2v intersects h, or in other words,
the number of recursive calls to the query procedure. Since we require O(1) I�Os
at each such node, the overall query procedure requires O(++t) I�Os.

What remains is to bound the value of +. For each node v # T, let 7(Nv) be the
maximum number of descendants of v (including v) that are recursively visited by
the query procedure. (Recall that Nv points are stored in the subtree rooted at v.)
If v is a leaf, only v itself is visited. If v is an interior node, then, by Theorem 5.1,
we recursively visit at most :r1&1�d

v children of v. Since each child of v is associated
with at most 2Nv�rv points, we obtain the following recurrence:

7(Nv)�{1+:r1&1�d
v 7(2Nv �rv)

1
if Nv>B,
if Nv�B.

For any constant =>0, we prove by induction on Nv that

7(Nv)�An1&1�d+=
v , (1)

where A is a constant, provided we choose c=c(=) sufficiently large in the definition
of rv . Indeed, (1) is obviously true if Nv�B. If B<Nv�cB2�2, then rv=2nv and

7(Nv)�1+:(2nv)1&1�d 7(B)=1+:(2nv)1&1�d�An1&1�d
v

provided A>21&1�d:+1. Finally, if Nv>cB2�2, then by the induction hypothesis,

7(Nv)�1+:r1&1�d
v A(2nv �rv)1&1�d+=

�1+2:An1&1�d+=
v �r=

v

�\ 2
AcB

+
2:

(cB)=+ An1&1�d+=
v

�An1&1�d+=
v ,

assuming that we choose c>(2:)1�=. Hence, we conclude the following.

Theorem 5.2. Given a set S of N points in Rd and a constant =>0, we can
preprocess S into a data structure of size O(n) blocks so that a d-dimensional
halfspace range query can be answered using O(n1&1�d+=+t) I�Os. The expected
number of I�Os required to construct the data structure is O(N log2 N).

211EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

Remarks.

(i) The same data structure can also be used to report points lying inside a
query simplex { in time O(n1&1�d+=+t). Basically, at each interior node v visited by
the query procedure, we check whether { intersects 2i , for each 2i # 6v . If 2i �{,
we report all points in Sv . If 2i �3 { but 2i & {{<, we recursively visit the ith child
of v. Since each facet of { intersects O(r1&1�d

v) simplices of 6v , the query time is as
desired. If the query object is a polyhedron with m faces of all dimensions, we tri-
angulate it into O(m) simplices and query the data structure with each simplex. The
total query time is O(mn1&1�d+=+t) I�Os.

(ii) If we use a somewhat more sophisticated algorithm [36] for computing
6v , the expected number of I�Os required to construct the above data structure can
be improved to O(n log2 n) without affecting its asymptotic size and query time.

(iii) Using the above preprocessing algorithm and the standard partial-
reconstruction method for dynamizing a data structure [39], a point can be
inserted into or deleted from the data structure in O((log2 n) logB n) amortized
expected number of I�Os.

(iv) In our query algorithm, at each node v, we used a brute force method to
determine which simplices of 6v cross the query hyperplane h. If we use a more
sophisticated procedure to determine these simplices [36], we can choose rv=N $

v

for some constant $<1�2. The query bound improves to O(- n logO(1)
2 n+t), and

the space used by the data structure remains O(n).

6. TRADING SPACE FOR QUERY TIME IN 3D

We can combine Theorem 5.2 with Theorem 4.4 in order to improve the query
time for a 3-dimensional halfspace range query at the expense of space. The idea is
to use the same recursive procedure to construct a tree as in the previous section,
but stop the recursion when Nv�Ba for some constant a>1. In that case we
preprocess Sv into a data structure of size O(nv log2 nv)=O(aBa log2 B) using
Theorem 4.4. The total size of the data structure is O(an log2 B). A query is
answered as in the previous section except that when we reach a leaf of the tree, we
use the query procedure described in Section 3. The query procedure now visits
O((n�Ba&1)2�3+=) nodes of the tree.

Theorem 6.1. Given a set S of N points in R3 and constants =>0 and a>1, we
can preprocess S into a data structure of size O(n log2 B) blocks so that a 3-dimen-
sional halfspace range query can be answered using O((n�Ba&1)2�3+=+t) expected
I�Os.

If we allow O(n logB n) space, the asymptotic query time can be improved con-
siderably. A plane h is called k-shallow with respect to S, for k<N, if at most k
points of S lie below h.

Theorem 6.2 (Matous$ ek [37]). Let S be a set of n points in R3, and let
1<r�n�2 be a given parameter. For some constant ;>1 (independent of r), there

212 AGARWAL ET AL.

exists a balanced simplicial partition 6 of S so that any (N�r)-shallow plane crosses
at most ; log2 r simplices of 6.

Using this theorem, we construct a so-called shallow partition tree 9 essentially
as in the previous section, except for one additional twist. Each node of 9 is also
associated with a subset Sv �S of Nv points and a simplex 2v . If Nv�B, then v is
a leaf and we store all points of Sv in a single block. Otherwise, v is an internal
node of degree rv , where rv=min[cB, 2nv]. We compute a balanced partition
6v=[(S1 , 21), ..., (Srv , 2rv)] of S using Theorem 6.2, recursively construct a
shallow partition tree 9i for each Si , and attach 9i as the ith subtree of v. We also
construct a (nonshallow) partition tree Tv on Sv , as described in the previous sec-
tion, and store it as a secondary structure of v. Since we need O(nv) blocks to store
Tv , the total size of 9 is O(n logB n).

A query is answered by traversing 9 in a top down fashion. Suppose we are at
an interior node v. As previously, we check which of the simplices of 6v cross the
query plane h. If more than ; log2 rv simplices cross h, we conclude that h is not
(Nv �r)-shallow with respect to Sv , and we use the secondary structure Tv to report
all points of Sv lying below h using O(n2�3+=

v +tv) I�Os, where tv is the number of
points of Sv lying below h. Since tv�Nv �r�nv �c, we have that O(n2�3+=

v +tv)=
O(tv). Otherwise, if at most ; log2 r simplices of 6v cross h, we report all points in
simplices in 6v that lie below h, by traversing the corresponding subtrees, and
recursively visit all simplices in 6v that cross h.

We say that a node v visited by the query procedure is shallow if h is (Nv �r)-
shallow with respect to Sv . If the query visits + shallow nodes, then the query
procedure requires O(++t) I�Os. Let 7� (Nv) be the maximum number of shallow
descendants of a shallow node v (including v). Then, as in the previous section, we
obtain the recurrence

7� (Nv)�{1+;(log2 rv) 7� (2�Nv �rv)
1

if Nv>B,
if Nv�B.

Solving this recurrence, as in the previous section, we can prove that
+=7� (N)=O(n=) for any constant =>0, provided we choose c=c(=) sufficiently
large.

Theorem 6.3. Given a set S of N points in R3 and a constant =>0, we can
preprocess S into a data structure of size O(n logB n) blocks so that a 3-dimensional
halfspace range query can be answered using O(n=+t) I�Os.

Remark. The shallow partition trees can also be generalized to higher dimen-
sions. For any d>3, we obtain a data structure requiring O(n logB n) blocks that
can answer halfspace queries in O(n1&1 �wd�2x+=+t) I�Os. The corresponding inter-
nal-memory data structure is described by Matous$ ek [37]. However, unlike the
data structure described in the previous section, it cannot be extended to report
points lying inside a query simplex.

213EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

7. CONCLUSIONS

In this paper, we have presented an optimal worst-case data structure for
halfspace range searching in two dimensions and an O(n log2 n)-size average-case
data structure for three-dimensional halfspace range searching that answer queries
optimally. We have also presented a linear-size data structure that not only answers
halfspace range queries but can also report points lying inside a query polyhedron.
We conclude by mentioning a few open problems:

1. Is there a dynamic data structure for two-dimensional halfspace range
searching that answers queries in O(logB n+t) I�Os and that can be updated in
O(logB N) I�Os?

2. Can we use the techniques developed in this paper to solve more com-
plicated problems? For example, can we develop an efficient data structure to store
a set of line segments in the plane so that all the segments intersecting a query
segment can be reported efficiently?

REFERENCES

1. P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter, Efficient searching with linear
constraints, in ``Proc. 17th Annu. ACM Sympos. Principles Database Syst., 1998,'' pp. 169�178.

2. P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir, On levels in arrangements of lines, segments,
planes, and triangles, Discrete Comput. Geom. 19 (1998), 315�331.

3. P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in ``Advances in Discrete
and Computational Geometry'' (B. Chazelle, J. E. Goodman, and R. Pollack, Eds.), pp. 1�58, AMS
Press, Providence, RI, 1999.

4. P. K. Agarwal, M. van Kreveld, and M. Overmars, Intersection queries in curved objects,
J. Algorithms 15 (1993), 229�266.

5. L. Arge and J. S. Vitter, Optimal dynamic interval management in external memory, in ``Proc. IEEE
Symp. on Foundtions of Comp. Sci., 1996,'' pp. 560�569.

6. L. Arge, V. Samoladas, and J. S. Vitter, On two-dimensional indexability and optimal range search
indexing, in ``Proc. ACM Symp. Principles of Database Systems,'' pp. 346�357, 1999.

7. L. Arge, D. E. Vengroff, and J. S. Vitter, External-memory algorithms for processing line segments
in Geographic Information Systems, Algorithmica, to appear. An extended abstract appears in ``Proc.
of Third European Symposium on Algorithms, 1995.''

8. R. Bayer and E. McCreight, Organization and maintenance of large ordered indexes, Acta Inform.
1 (1972), 173�189.

9. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, The R*-tree: An efficient and robust
access method for points and rectangles, in ``Proc. SIGMOD Intl. Conf. on Management of Data,
1990,'' pp. 322�331.

10. S. Berchtold, D. A. Keim, and H.-P. Kriegel, the X-tree: An index structure for higher dimensional
data, in ``Proc. 22th VLDB Conference, 1996,'' pp. 28�39.

11. T. M. Chan, Random sampling, halfspace range reporting, and construction of (�k)-levels in three
dimensions, in ``Proc. 39th IEEE Symp. Foundations of Computer Science, 1998,'' pp. 586�595.

12. B. Chazelle, Filtering search: a new approach to query-answering, SIAM J. Comput. 15 (1986),
703�724.

13. B. Chazelle, R. Cole, F. P. Preparata, and C. K. Yap, New upper bounds for neighbor searching,
Inform. Control 68 (1986), 105�124.

214 AGARWAL ET AL.

14. B. Chazelle, L. J. Guibas, and D. T. Lee, The power of geometric duality, BIT 25 (1985), 76�
90.

15. B. Chazelle and F. P. Preparata, Halfspace range search: An algorithmic application of k-sets,
Discrete Comput. Geom. 1 (1986), 83�93.

16. K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II,
Discrete Comput. Geom. 4 (1989), 387�421.

17. D. Comer, The ubiquitous B-tree, ACM Comput. Surveys 11 (1979), 121�137.

18. A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos, Randomized external-memory
algorithms for some geometric problems, in ``Proc. 14th Annu. ACM Sympos. Comput. Geom.,
1998,'' pp. 269�268.

19. T. K. Dey, Improved bounds on planar k-sets and related problems, Discrete Comput. Geom. 19
(1998), 373�382.

20. F. Dumortier, M. Gyssens, and L. Vandeurzen, On the decidability of semi-linearity for semi-
algebraic sets and its implications for spatial databases, in ``Proc. ACM Symp. Principles of
Database Systems, 1997,'' pp. 68�77.

21. H. Edelsbrunner, ``Algortihms in Combinatorial Geometry,'' Springer-Verlag, Heidelberg, 1987.

22. H. Edelsbrunner and E. Welzl, Constructing belts in two-dimensional arrangements with applica-
tions, SIAM J. Comput. 15 (1986), 271�284.

23. G. Evangelidis, D. Lomet, and B. Salzberg, The HB6-tree: a multi-attribute index supporting
concurrency, recovery and node consolidation, VLDB J. 6 (1997), 1�25.

24. P. G. Franciosa and M. Talamo, Time optimal halfplane search on external memory, Unpublished
manuscript, 1997.

25. P. G. Franciosa and M. Talamo, Orders, k-sets and fast halfplane search on paged memory, in
``Proc. Workshop on Orders, Algorithms and Applications,'' Lecture Notes in Computer Science,
Vol. 831, pp. 117�127, Springer-Verlag, Berlin�New York, 1994.

26. J. Goldstein, R. Ramakrishnan, U. shaft, and J.-B. Yu, Processing queries by linear constraints, in
``Proc. ACM Symp. Principles of Database Systems, 1997,'' pp. 257�267.

27. M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, External-memory computational
geometry, in ``Proc. IEEE Symp. on Foundations of Comp. Sci., 1993,'' pp. 714�723.

28. R. H. Gu� ting, An introduction to spatial database systems, VLDB J. 4 (1994), 357�399.

29. A. Guttman, R-trees: A dynamic index structure for spatial searching, in ``Proc. SIGMOD Intl. Conf.
on Management of Data, 1985,'' pp. 47�57.

30. D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),
127�151.

31. A. Henrich, Improving the performance of multi-dimensional access structures based on kd-trees, in
``Proc. 12th IEEE Intl. Conf. on Data Engineering, 1996,'' pp. 68�74.

32. E. G. Hoel and H. Samet, A qualitative comparison study of data structures for large line segment
databases, in ``Proc. ACM SIGMOD Conf. on Management of Data, 1992,'' pp. 205�214.

33. I. Kamel and C. Faloutsos, Hilbert R-tree: An improved R-tree using fractals, in ``Proceedings 20th
International Conference on Very Large Databases, 1994,'' pp. 500�509.

34. P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter, Indexing for data models with
constraints and classes, J. Comput. System. Sci. 52 (1996), 589�612.

35. D. Lomet and B. Salzberg, The hB-tree: A multiattribute indexing method with good guaranteed
performance, ACM Trans. Database Systems 15 (1990), 625�658.

36. J. Matous$ ek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), 315�334.

37. J. Matous$ ek, Reporting points in halfspaces, Comput. Geom. Theory Appl. 2 (1992), 169�186.

38. J. Matous$ ek, Geometric range searching, ACM Comput. Surv. 26 (1994), 421�461.

39. K. Mehlhorn, ``Multi-dimensional Searching and Computational Geometry,'' Springer-Verlag,
Heidelberg, 1984.

215EFFICIENT SEARCHING WITH LINEAR CONSTRAINTS

40. R. Motwani and P. Raghavan, ``Randomized Algorithms,'' Cambridge University Press, New York,
1995.

41. J. Nievergelt, H. Hinterberger, and K. Sevcik, The grid file: An adaptable, symmetric multikey file
structure, ACM Trans. Database Systems 9 (1984), 257�276.

42. J. Nievergelt and P. Widmayer, Spatial data structures: Concepts and design choices, in
``Algorithmic Foundations of GIS'' (M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, Eds.),
Lecture Notes in Computer Science, Vol. 1340, Springer-Verlag, Berlin�New York, 1997.

43. M. H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane, J. Comput. System
Sci. 23 (1981), 166�204.

44. S. Ramaswamy and S. Subramanian, Path caching: A technique for optimal external searching, in
``Proc. ACM Symp. Principles of Database Systems, 1994,'' pp. 25�35.

45. J. Robinson, The K-D-B tree: A search structure for large multidimensional dynamic indexes, in
``Proc. ACM SIGMOD Conf. on Management of Data, 1984,'' pp. 10�18.

46. H. Samet, ``Applications of Spatial Data Structures: Computer Graphics, Image Processing, and
GIS,'' Addison�Wesley, Reading, MA, 1989.

47. H. Samet, ``The Design and Analysis of Spatial Data Structures,'' Addison�Wesley, Reading, MA,
1989.

48. T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-tree: A dynamic index for multi-dimensional
objects, in ``Proc. IEEE International Conf. on Very Large Databases, 1987.''

49. S. Subramanian and S. Ramaswamy, The P-range tree: A new data structure for range searching in
secondary memory, in ``Proc. ACM-SIAM Symp. on Discrete Algorithms, 1995,'' pp. 378�387.

50. G. To� th, Point sets with many k-sets, in preparation.

51. D. E. Vengroff and J. S. Vitter, Efficient 3-d range searching in external memory, in ``Proc. ACM
Symp. on Theory of Computation, 1996,'' pp. 192�201.

52. J. S. Vitter, Online data structures in external memory, in ``Proc. Annual International Colloquim
on Automata, Languages, and Programming, 1999.''

53. D. E. Willard, Polygon retrieval, SIAM J. Comput. 11 (1982), 149�165.

216 AGARWAL ET AL.

	1. INTRODUCTION
	TABLE 1

	2. GEOMETRIC PRELIMINARIES
	FIG. 1
	FIG. 2

	3. AN OPTIMAL DATA STRUCTURE IN 2D
	FIG. 3
	FIG. 4
	FIG. 5

	4. HALFSPACE RANGE SEARCHING IN 3D
	FIG. 6

	5. LINEAR SIZE DATA STRUCTURE
	6. TRADING SPACE FOR QUERY TIME IN 3D
	7. CONCLUSIONS
	REFERENCES

