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Abstract. In the load balancing problem, there is a

set of servers, and jobs arrive sequentially. Each job

can be run on some subset of the servers, and must be

assigned to one of them in an online fashion. Tradi-

tionally, the assignment of jobs to servers is measured

by the L1 norm; in other words, an assignment of

jobs to servers is quanti�ed by the maximum load as-

signed to any server. In this measure the performance

of the greedy load balancing algorithm may be a loga-

rithmic factor higher than the o�ine optimal [3]. In

many applications, the L1 norm is not a suitable way

to measure how well the jobs are balanced. If each

job sees a delay that is proportional to the number of

jobs on its server, then the average delay among all

jobs is proportional to the sum of the squares of the

numbers of jobs assigned to the servers. Minimizing

the average delay is equivalent to minimizing the Eu-

clidean (or L2) norm. For any �xed p, 1 � p <1, we

show that the greedy algorithm performs within a con-

stant factor of the o�ine optimal with respect to the

Lp norm. The constant grows linearly with p, which

is best possible, but does not depend on the number of

servers and jobs.
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1 Introduction

In the load balancing problem, jobs arrive sequen-

tially. There is a set of n servers. Each job has an

associated subset of the servers, called its permissible

servers, on which it may run. Each job has a load that

varies according to the job and to the server to which

the job is assigned. Each job is assigned to one of its

permissible servers in an online manner. The goal is

to assign the jobs so as to spread the load as evenly as

possible among the servers. The greedy load balancing

algorithm, which we call Greedy, assigns each job to

the permissible server so as to minimize the Lp norm

of the loads of the servers created by assigning this job

to the servers in the current state. In the case where

all jobs have an equal load on every permissible server,

Greedy puts each job on the permissible server that

has the fewest jobs currently assigned, breaking ties

arbitrarily.

We use the standard de�nition of competitiveness to

analyze online algorithms. An algorithm A is said to

be C-competitive if for every sequence � of incoming

jobs,

CostA(�) � C � CostOPT(�);
where OPT is the optimal o�ine algorithm, and

CostX(�) is the cost of running X on �.

Online load balancing has been considered by many

researchers [7, 8, 9, 11, 6, 10]. Azar et al. [3, 4, 5] stud-

ied the problem of load balancing, motivated by the

cellular phone system. Customers arrive and wish to

be connected to a server. The goal is to minimize

the maximum number of customers assigned to any

one server. That is, CostX(�) is the maximum num-

ber of customers assigned to any server by algorithm



X on input sequence �. In [3], the authors assume

that customers do not disconnect, and show that the

greedy algorithm is optimal with a competitive ratio

of �(logn). For the general case that the load due to

a job depends upon the server to which it is assigned a

competitive ratio of �(logn) is achieved by somewhat

more complicated algorithm [1]. The work in [4] and

[5] deals with the case in which customers are allowed

to disconnect.

But is the maximum load the right cost to min-

imize? This measure focuses on the worst server,

and ignores how well the remaining servers are bal-

anced. Consider an algorithm � that assigns xi jobs

to server i, for 1 � i � n. Let X be a column vector

with XT = (x1; : : : ; xn). (We use XT to denote the

transpose of vector or matrix X .) The Lp norm and

L1 norm of X are

jX jp =
0
@ X
1�i�n

jxijp
1
A
1=p

and jX j1 = max
1�i�n

fjxijg:

The L2 norm is the Euclidean norm, which measures

the length of the vector X in Euclidean space. Note

also that (jX j2)2 = XTX .

If we assume that each job sees a delay in service

that is proportional to the number of jobs that are

assigned to its server, then by minimizing the sum of

squares (equivalently, by minimizing the L2 norm) we

minimize the average delay of the jobs in the system.

The di�erence between this approach and traditional

load balancing is that we try to minimize the aver-

age delay rather than the maximum delay. Our main

result is the following theorem:

Theorem 1.1 The greedy load balancing algorithm

Greedy is O(p)-competitive in the Lp norm, and any

deterministic algorithm must be 
(p)-competitive.

Note that the competitive ratio does not depend on

the number of servers or the numbers of jobs, i.e., it

is �xed for �xed p.

Our techniques and results can be extended to the

case where customers are allowed to disconnect. Here

the goal is to minimize the Lp norm of the vector of

size nT of the load of each server on each unit of time

(where T is the duration of the whole process). Us-

ing the techniques in [5] we can get a constant (O(p))

competitive algorithm for the Lp norm assuming that

the duration of each job is known once it appears in

the system. If the duration is unknown until the job

departs it appears that by using some of the tech-

niques of [2] one could achieve similar results by al-

lowing reroutings.

In Section 2, we examine the case in which all jobs

have a load of 1 on every permissible server. We start

by considering how optimal adversaries behave. We

classify jobs according to how they are processed by

Greedy. Given any particular assignment of jobs

to servers by Greedy, we determine how the adver-

sary minimizes its cost. We then bound the cost of

Greedy in terms of the number of jobs assigned to

each server by an optimal adversary, and reduce the

problem to bounding the norm of a certain matrix.

We get a bound of 2p on the competitive ratio in the

Lp norm. In Section 3 we show that this is optimal to

within a constant factor.

We then generalize the problem in Section 4 to al-

low for jobs whose load depends upon the server to

which they are assigned. We switch to a more alge-

braic style of analysis, and we get a ratio of 1 +
p
2

for the L2 norm, and cp + O(log p) for general Lp
norms, where c � 1:77 is the solution to the equation

c ln c = 1.

2 All Jobs Have Equal Load

In this section we examine the case in which all jobs

have the same load on every permissible server. We

relate this problem to �nding the norm of a certain

matrix. This is a rather intuitive approach, and is

particularly interesting because the matrix also shows

up in [12]. In Section 4, we will generalize the prob-

lem and get stronger results, but the proofs will be

primarily algebraic in nature.

2.1 Partitioning the Jobs

We start by analyzing the structure of a request

sequence that gives rise to a particular output of

Greedy. Consider the output of Greedy when run

on �. Let the servers be S = f1; : : : ; ng, where server i
is assigned to at least as many jobs as server i+ 1. For

some of these servers it may be that no job is assigned.

For each server i, we build a tower of height

hi = # of jobs assigned to server i:

We know hi � hi+1. Each unit of height in a tower

corresponds to a job. The higher the unit, the later

the corresponding job was assigned.

Example 2.1 Let c be the highest job in the �rst

tower. Let us �rst assume that h1 > h2 + 1. Then

c must have only server 1 in its set of permissible

servers. If any other server were permissible, Greedy



would have assigned c to the other server. Thus the

adversary must also have assigned c to server 1. If

h1 = h2 + 1 and h2 > h3, then c can have servers 1

and 2 as permissible servers, but no others. 2

Remark 2.1 Let a job c be at a height h in some

tower. Then the permissible servers for c must be a

subset of fi : hi � h� 1g.

An adversary can reorder the jobs in the input se-

quence so that they come in order of height. Then

Greedy assigns the jobs to the same servers as be-

fore. In this new ordering, the permissible servers for

a job of height h may include all servers of height at

least h � 1. Since the adversary chooses among per-

missible servers of minimum load, the adversary can

still keep the assignment of Greedy the same. Let

t = jfj : hj = hgj. The adversary can use at most

t servers besides the servers f1; : : : ; tg to serve these

jobs at height h, since these t jobs can be assigned to

at most t di�erent servers. We can rearrange the num-

bering so that the other servers the adversary uses for

the jobs at height h have the smallest numbers out of

all servers of height h� 1. Let

xi = # of jobs with permissible servers f1; : : : ; ig.

Remark 2.2 Let a job c be at a height h in some

tower. Then we may assume without loss of generality

that the permissible servers for c are exactly

fi : hi � h� 1 and i � 2 � jfj : hj = hgjg:

Note that if xi > 0 then xi � i=2.

Example 2.2 Suppose that we run Greedy with

n = 15 servers, producing an assignment in which the

servers receive jobs as follows: 0, 5, 0, 5, 0, 12, 0, 8, 0,

5, 0, 2, 5, 0, 0. We reorder the servers as in the pre-

ceding discussion, and we get x1 = 3, x2 = 5, x4 = 2,

x6 = 12, x7 = 13, and x14 = 7. Other values of xi are

0. Note that the jobs counted by x4 are not counted in

x6. The adversary cannot serve those jobs with servers

5 or 6 by the way we ordered the servers. Similarly,

the adversary cannot assign the jobs counted by x14
to server 15.

1 2 3 4 5 6 7
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2.2 Adversary Assignment

We now consider how an adversary would minimize

its cost subject to a particular set of values fxig. We

give the adversary the additional power to assign jobs

fractionally. For example, the adversary can assign a

single job that has permissible servers f1; 2g to be half
on server 1 and half on server 2. Any bound on the

competitive ratio using this stronger adversary applies

to the original problem. Consider an assignment (pos-

sibly fractional) by the adversary of jobs to permissible

servers that minimizes its cost. Let

ai = # of jobs assigned by the adversary to server i.

Lemma 2.1 For 1 � i � n� 1, we have ai � ai+1.

Proof : By Remark 2.2, any job assigned to server i+1

can also be assigned to server i. If ai were smaller

than ai+1, the adversary could shift part of a job from

server i+ 1 to server i, reducing its cost. 2

The minimum cost assignment is actually very in-

tuitive in terms of a physical analogy: We build an

in�nitely high barrier at 0. For each j up to n, we

build a barrier at j of height

wj = min
1�i�j

�
xi + xi+1 + � � �+ xj

j + 1� i

�
:

These barriers break up the interval [0; n] into n bins.

Then, for j ranging from 1 to n, we pour xj units

of water into the jth bin. Water can pour over into

lower-numbered bins when it over
ows the barriers.

If I is the value of i where wj achieves its minimum

value, the water from xj 
ows to evenly top o� bins I



through j. By assigning the xj jobs according to where

the water ends up, the adversary attains a minimum

cost.

Example 2.3 Let us consider the same values of xi
as in Example 2.2. We show the barriers in the �gure

below with thick lines. The areas bounded by thick

lines and thin lines show where the water ends up.

The jobs counted by x7 contribute 1 to servers 1 and

2, 1.5 to servers 3 through 6, and 5 to server 7.
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Lemma 2.2 The adversary's minimum cost assign-

ment of jobs to servers is given by

aj = max
j�k�n

min
1�i�j

�
xi + xi+1 + � � �+ xk

k + 1� i

�
:

Proof : We have
P

aj =
P

xj by the water analogy.

Let K be the values of k that maximize the above

term. For the sake of contradiction, consider any j for

which aj is smaller. We then have

aj < min
1�i�j

�
xi + xi+1 + � � �+ xK

K + 1� i

�
� xj + � � �+ xK

K + 1� j
:

Each server from j to K is assigned at most aj jobs,

so some part of some job from the xj + � � �+ xK jobs

must be assigned to a server s with s < j. But then

we could move part of a job on server s to server j

and reduce the cost, which contradicts the minimality

of the adversary's assignment. 2

2.3 The Greedy Assignment

Now we change our perspective. Given a set of

values fajg describing how the adversary assigned its

servers, how badly can Greedy perform? Basically,

for �xed fajg the adversary's power is to set fxjg so
as to maximize the cost of Greedy.

Lemma 2.3 Greedy assigns at most 2
Pn

k=j xk=k

jobs to server j.

Proof : Consider the jobs counted by xk . Let h be

the height of a highest such job, and let t = jfj :

hj = hgj. These highest t jobs contribute 1 to the

height of each server from 1 to t. The remaining xk�t
jobs are evenly assigned byGreedy among the servers

f1; : : : ; kg and contribute an additional (xk � t)=k to

the height of each server from 1 to k. For any k � j,

the jobs counted by xk contribute at most 2xk=k to

the height of server j, since if xk > 0 then t � k=2 by

Remark 2.2. 2

In the rest of this section, rather than bounding

the behavior of Greedy directly, we will bound the

behavior described in Lemma 2.3. Let

rj = 2
X

j�k�n

xk

k
and RT = (r1; : : : ; rn):

Remark 2.3 It su�ces to bound (
P

rpj )=(
P

apj ).

Let us allow the adversary to set xj = aj . (This

might violate Remark 2.2, but that just means that

we are giving the adversary the extra power to use a

set of aj values that are not consistent.) This setting

is in fact the worst case. Note that an � xn, since the

only jobs the adversary may assign to station n are

those counted in xn. In order to maximize
P

r2i , it is

clearly best to minimize xn. So we set xn = an. Once

we know xn = an, it follows similarly that xn�1 should

be set to an�1 to maximize the sum, and inductively

xi = ai for all i.

Remark 2.4 It su�ces to bound (
P

rpj )=(
P

xpj ).

We de�ne an upper triangular matrix G so that

2GX = R. Let M = GTG.

G(i; j) =

(
1=j for 1 � i � j � n;

0 for 1 � j < i � n;

M(i; j) =
1

maxfi; jg :

For example, when n = 4, we have

G =

0
BB@

1 1=2 1=3 1=4

0 1=2 1=3 1=4

0 0 1=3 1=4

0 0 0 1=4

1
CCA ;

M =

0
BB@

1 1=2 1=3 1=4

1=2 1=2 1=3 1=4

1=3 1=3 1=3 1=4

1=4 1=4 1=4 1=4

1
CCA :



For a general Lp norm, we have an upper bound

on the competitive ratio of Greedy of 2 jjGjjp, where
jjGjjp = supfjGX jp=jX jp : X > 0g. Note also that for
any vector Y of positive reals, the adversary can force

a ratio approaching jGY jp=jY jp by setting xi = bs yic,
and letting s approach1. In this case, Greedy puts

about
Pn

k=j s yk=k jobs onto server j.

Remark 2.5 The competitive ratio of Greedy lies

between jjGjjp and 2 jjGjjp.
Yao et al. [12] show independently that jjGjjp � p

(in their Corollary to Lemma 5.7). This proves that

Greedy is 2p-competitive when all jobs have the same

load on all permissible servers. We improve this bound

on the competitive ratio to about 1:77p in Section 4.2.

Theorem 2.1 Greedyis �(p)-competitive when all

jobs have the same load on all permissible servers.

2.4 Analysis of Euclidean Norm

Here is an alternate analysis of the performance of

Greedy in the L2 norm. Since M is symmetric, we

can express it as QTDQ where D is a diagonal matrix

containing the eigenvalues of M , and Q is a matrix

with Q�1 = QT. Call � the largest eigenvalue of M .

Then it su�ces to bound

(jRj2)2
(jX j2)2 =

(j2GX j2)2
(jX j2)2

= 4
(GX)T(GX)

XTX

= 4
XTGTGX

XTX

= 4
XTQTDQX

XTQTQX

= 4
Y TDY

Y TY

� 4�;

where Y = QX .

Remark 2.6 Greedy is 2
p
�-competitive in the Eu-

clidean norm.

In order to bound the competitive ratio ofGreedy,

we wish to bound the eigenvalues of M . Consider any

possible eigenvalue � � 4. The determinant ofM���I
should be 0. We will do elimination on M � � � I to

get a lower triangular matrix with negative values on

the diagonal. That implies the determinant is non-

zero, and contradicts the possibility that � was an

eigenvalue. This proves that the eigenvalues of M are

at most 4.

We zero the columns (above the diagonal) from n

down to 2. When we zero the ith column, we add some

amount to every element in the initial (i� 1)� (i� 1)

submatrix. Let ti be the total added to each element of

the i� i submatrix before we zero out the ith column

(tn = 0). Notice that the same amount is added to

each element of the submatrix.

Each of the �rst i � 1 entries in column or row i

is currently equal to ti + 1=i. The diagonal entry is

di = 1=i��+ti. We add fi = (�1=di) �(ti+1=i) times

the ith row to each row above it in the matrix. This

clears the ith column above the diagonal. In so doing,

we add fi�(ti+1=i) to each element of the (i�1)�(i�1)
initial submatrix. We get the recurrence

ti�1 = ti � 1

di

�
ti +

1

i

�2
:

Lemma 2.4 We have 0 � ti < 1=i and di < 0, for

all i � 1.

Proof : By induction, with the base case that tn = 0.

Recall we are assuming that � � 4. We get

di =
1

i
� �+ ti <

2

i
� �;

� 1

di
� 1

4� 2

i

<
1

4
�
1� 1

i

� ;
ti�1 <

1

i
+

1

4
�
1� 1

i

� �1
i
+
1

i

�2

=
1

i
+

1

i(i� 1)
=

1

i� 1
;

di =
1

i
� �+ ti < 1� 4 + 1 < 0:

We get ti�1 � 0 once we note di < 0. 2

The matrix has non-zero determinant, and � cannot

be an eigenvalue. Thus the eigenvalues of M are at

most 4, and Greedy is 4-competitive in the L2 norm.

3 Lower Bound

It is easy to get a lower bound of 
(p) in the Lp
norm for any deterministic algorithm.

Theorem 3.1 There is a lower bound of 
(p) on the

competitive ratio for any deterministic algorithm for

the load balancing problem, even for the special case

when all jobs have equal load.



Proof : Let the number of servers be n = 2k, for some

k � 1. The adversary proceeds in k = lgn phases.

Initially, all 2k servers are active. In each phase, the

adversary matches the servers into pairs. For each pair

of servers (a; b), the adversary presents one job whose

permissible servers are a and b to the algorithm. The

adversary assigns its job in opposition to the algo-

rithm. If the algorithm assigns the job to a, then the

adversary assigns it to b, and vice versa. The servers

assigned jobs by the algorithm (half of the servers

from the start of the phase) remain active for the next

phase.

Given 2k servers initially, the adversary places one

job on each of 2k � 1 servers, and the algorithm will

place a total of i jobs on each of 2k�1�i servers, for 1 �
i � k � 1, and k jobs on one server. The competitive

ratio is 
kp +

Pk�1
i=1 i

p2k�1�i

2k � 1

!1=p

� p lg e

e
= �(p):

2

4 Generalized Load Balancing

We have been assuming that the load on any server

is the number of jobs assigned to it. We now look

at a generalized version of load balancing where each

job has a load vector associated with it. When a job is

assigned to a server, the load of the server increases by

the amount speci�ed by the corresponding coordinate

of the load vector.

We will show that an obvious extension of Greedy

has a competitive ratio of O(p) for any Lp norm, and

in particular we get a ratio of 1+
p
2 for the Euclidean

(L2) norm.

Each job j is represented by its \load vector" ~r(j) =

(r1(j); r2(j); : : : ; rn(j)), where ri(j) � 0. Let `i(j) de-

note the load on server i after we have already assigned

jobs 1 through j. Assigning job j to server i increases

the load on that server by ri(j), in other words:

`k(j) =

�
`k(j � 1) + rk(j) if k = i;

`k(j � 1) otherwise.

Let Y (j) = (`1(j); : : : `n(j)) be the load vector

of the server after we have already assigned jobs 1

through j. Consider a sequence of jobs de�ned by

� = (~r(1); ~r(2); : : : ; ~r(t)). Denote by `�i (j) the load

on server i achieved by the optimal algorithm A� af-
ter assigning jobs 1 through j in � and Y �(j) as the

load vector of the servers. From now on we omit the

parenthesis \(j)" for j = t; for example, `�i denotes

`�i (t). We measure the performance of the online al-

gorithm by the supremum over all possible sequences

of jY jp=jY �jp. We denote by J(i) and J�(i) the set

of jobs that were assigned by the online and optimal

algorithms to server i, respectively.

How can we assign a job with a varying load in a

greedy fashion? If we are trying to minimize the Lp
norm, then we minimize the increase in the pth power

of the load. When job j arrives we compute weights

to the servers,

Increase(j) = (`i(j � 1) + ri(j))
p � `

p
i (j � 1)

and assign the job to a server with minimum increase.

4.1 The case p = 2

Theorem 4.1 Greedy is 1+
p
2 competitive with re-

spect to the L2 norm.

Proof : For a �xed j let i0 be the server to which job j

was assigned by the online algorithm. Similarly, let i�

be the server to which job j was assigned by the opti-

mal algorithm. We have

`2i0(j)� `2i0(j � 1)

= (`i0(j � 1) + ri0 (j))
2 � `2i0(j � 1)

� (`i�(j � 1) + ri�(j))
2 � `2i�(j � 1)

= 2`i�(j � 1)ri�(j) + r2i�(j)

� 2`i�ri�(j) + r2i�(j);

where the �rst inequality follows from the de�nition

of the algorithm. We sum all the above inequalities

for all j and classifying them according to the server's

indices, J(i) and J�(i). This yieldsX
i

X
j2J(i)

`2i (j)� `2i (j � 1)

�
X
i

X
j2J�(i)

(2`iri(j) + r2i (j)): (1)

The sum on the left-hand side of (1) telescopes for

each i. Also X
j2J�(i)

ri(j) = `�i

and thus X
j2J�(i)

r2i (j) � `�i
2
:

Substituting these bounds into (1), we getX
i

`2i �
X
i

2`i`
�
i + `�i

2

� 2

sX
i

`2i

X
i

`�i
2 +

X
i

`�i
2
:



p c x 1:77p

2 1.47 4.52 3.54

3 1.67 6.64 5.31

4 1.76 8.61 7.08

5 1.80 10.51 8.85

10 1.84 19.72 17.70

50 1.80 91.13 88.50

100 1.78 179.70 177.00

500 1.77 885.96 885.00

Table 1: Bounds on the competitive ratio x implied

by (6). The values of c and x were derived using a

C program. The column for 1:77p is given for help in

comparsion with the experimentally determined value

for x.

The last inequality follows from the Cauchy-Schwartz

inequality. Let us denote the ratio of the 2-norms by

x =

s P
i `

2

iP
i `
�
i
2
:

We can divide the above inequality by
P

i `
�
i
2 to get

x2 � 2x+ 1

and hence

x � 1 +
p
2:

2

4.2 The general case p > 2

Theorem 4.2 Greedy is �(p)-competitive with re-

spect to the Lp norm.

As p grows, our bound on the competitive ratio is

cp + O(log p), where c � 1:77 is the solution to the

equation c ln c = 1, as indicated in Table 1.

Proof : As before, for a �xed j, let i0 be the server

to which job j was assigned by the online algorithms.

Similarly, let i� be the server to which job j was as-

signed by the optimal algorithm. We have

`
p
i0(j)� `

p
i0(j � 1)

= (`i0(j � 1) + ri0(j))
p � `pi0(j � 1)

� (`i�(j � 1) + ri�(j))
p � `

p
i�(j � 1)

� (`i� + ri�(j))
p � `

p
i�

� p(`i� + ri�(j))
p�1ri�(j): (2)

The �rst inequality follows from the greedy nature of

the algorithm. The second inequality follows the fact

that `i�(j � 1) � `i�(t) = `i� . The third inequality

makes use of the derivative pxp�1 of the function xp

at x = `i� + ri�(j).

Lemma 4.1 We can bound the term (`i� +ri�(j))
p�1

in (2) by

c`
p�1
i� +

�
ri�(j)

�
p� 1

ln c
+ 1

��p�1
; (3)

for any c > 1.

Proof : The second term of (3) clearly upper bounds

(`i� + ri�(j))
p�1 when `i� � ri�(j)(p � 1)= ln c. We

now show that the �rst term of (3) is an upper bound

on (`i� + ri�(j))
p�1 for the other case, namely, when

`i� > ri�(j)(p� 1)= ln c. In that case, we have

ri�(j)(p� 1)

`i�
< ln c;

exp

�
ri�(j)(p� 1)

`i�

�
< c;

�
1 +

ri�(j)

`i�

�p�1
< c;

(`i� + ri�(j))
p�1 < c`

p�1
i� :

2

We substitute the upper bound (3) into (2) and get

`
p
i0(j)� `

p
i0(j � 1)

� p(`i� + ri�(j))
p�1ri�(j)

� p

 
c`
p�1
i� +

�
ri�(j)

�
p� 1

ln c
+ 1

��p�1!
ri�(j)

� cp`
p�1
i� ri�(j) + p

�
p� 1

ln c
+ 1

�p�1
r
p
i�(j):

We sum the above inequality for all j and classify

them according to the server's indices J(i) and J�(i).

This yieldsX
i

X
j2J(i)

`
p
i (j)� `

p
i (j � 1) �

p

�
p� 1

ln c
+ 1

�p�1
r
p
i (j) +

X
i

X
j2J�(i)

cp`
p�1
i ri(j): (4)

The left-hand side of (4) telescopes to giveX
i

`pi :

On the right-hand size we haveX
j2J�(i)

ri(j) = `�i ;



and thus for p � 1 we haveX
j2J�(i)

r
p
i (j) � `�i

p
:

Substituting these bounds into (4), we get

X
i

`
p
i � cp

X
i

`
p�1
i `�i + p

�
p� 1

ln c
+ 1

�p�1X
i

`�i
p

� cp

 X
i

`
p
i

!(p�1)=p X
i

`�i
p

!1=p

+ p

�
p� 1

ln c
+ 1

�p�1X
i

`�i
p
; (5)

where (5) follows from Holder's inequality:

X
i

a�i b
�
i �

 X
i

ai

!� X
i

bi

!�

;

for �+� = 1. We use ai = `
p
i , bi = `�i

p, � = (p�1)=p,

and � = 1=p.

Let us de�ne x to be the competitive ratio of the

greedy online algorithm, that is,

x =
(
P

i `
p
i )
1=p

(
P

i `
�
i
p)
1=p

:

Dividing (5) by
P

i `
�
i
p and expressing the result in

terms of x, we get

xp � cpxp�1 + p

�
p� 1

ln c
+ 1

�p�1
;

x � cp+ p

 
p�1
ln c

+ 1

x

!p�1

: (6)

It is easy to see for large enough c that we get x =

�(p). 2

To get more detailed information on the best bound

on x implied by (6), we consider the corresponding

recurrence

x = cp+ p

 
p�1
ln c

+ 1

x

!p�1

; (7)

for all c > 1. Table 1 shows the bounds on the com-

petitive ratio x implied by (6), where the choice of c

is optimized for each p.

As p gets larger, the optimal value of c for use in (7)

converges to the solution of the equation c ln c = 1,

which is c � 1:77.

Theorem 4.3 The minimal solution x to (7) is x =

c�p+�(log p), where c� � 1:77 satis�es c� ln c� = 1.

Proof : It isn't hard to show from (7) that for c = c�

we have x(c�) = cp + �(log p). To get a particular

bound on the lower order terms we can bootstrap by

combining the bound with (7) to get

x(c�) = c�p+ p

 
p�1
ln c�

+ 1

x

!p�1

= c�p+�(log p);

 
p�1
ln c�

+ 1

x

!p�1

= �

�
log p

p

�
;

exp

 
(p� 1) ln

 
p�1
ln c�

+ 1

x

!!
= �

�
log p

p

�
:

Taking logarithms and dividing by p� 1, we get

ln

 
p�1
ln c�

+ 1

x

!
= � ln p

p
+
ln ln p

p
+O

�
1

p

�
: (8)

Let x(c�) = c�p+ g(p) = c�p(1+ g(p)=c�p). Using the

fact that c� ln c� = 1, we have

ln

 
p�1
ln c�

+ 1

x

!
= ln

�
1� g(p)

c�p
+O

�
1

p

��
:

By (8) and the fact that ln(1 + y) = y + O(y2), for

small y, we have

g(p)

c�p
=

ln p

p
� ln ln p

p
+O

�
1

p

�
;

g(p) = c� ln p� c� ln ln p+O(1):

Therefore, by the de�nition of g(p),

x(c�) = c�p+ c� ln p� c� ln ln p+O(1):

The rest of the proof consists of showing in a

similar manner that x � c�p + ln p implies that

c = c� + O((log p)=p), which implies that x = c�p +

�(log p). 2



5 Conclusions

In this paper we have analyzed the performance

of the greedy algorithm for the online load balancing

problem, where instead of examining the maximum

load on a server, we measure the Lp norm of the load

assignment. For the case p = 2, the L2 norm is re-

lated to the average delay seen by the jobs on the

servers. We have shown that the greedy algorithm

has a bounded competitive ratio with respect to the

Lp norm, for any �xed p � 1. In particular, the greedy

algorithm is (1+
p
2)-competitive under the L2 norm,

and is (cp+O(log p))-competitive with respect to the

Lp norm, for p � 1, where c � 1:77 is the solution to

the equation c ln c = 1. These results are optimal to

within a constant factor.
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