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As detailed terrain data becomes available, GIS terrain applications target larger geographic areas at finer resolutions. Processing

the massive data involved in such applications presents significant challenges to GIS systems and demands algorithms that are

optimized both for data movement and computation. In this paper we develop efficient algorithms for flow routing on massive

terrains, extending our previous work on flow accumulation. We have implemented these algorithms in the Terraflow system,

which is the first comprehensive terrain flow software system designed and optimized for massive data. We compare the performance

of Terraflow with that of state of the art commercial and open-source GIS systems. On large terrains, Terraflow outperforms

existing systems by a factor of 2 to 1000, and is capable of solving problems no system was previously able to solve.

1. INTRODUCTION

Terrain analysis is central to a range of important geographic information systems (GIS) applications concerned

with the effects of topography. Two of the most important concepts in terrain analysis are flow routing and flow

accumulation. Intuitively, flow routing assigns flow directions to every point in a terrain to globally model water

flow through the terrain. Flow accumulation quantifies how much water flows through each point of the terrain

if water is poured uniformly onto the terrain. Flow routing and flow accumulation are used in the computation

of other terrain attributes such as topographic convergence, drainage network, and watersheds, that are in turn

used to model various hydrological, geomorphological and biological processes in the terrain, like soil water

content, erosion potential, plant species distribution, and sediment flow [Moore et al. 1991b].

Remote sensing projects make large amounts of massive terrain data readily available. NASA’s Shuttle

Radar Topography Mission (SRTM) acquired 30-meter resolution data for 80% of the Earth’s land area, or

about 10 terabytes of data, forming the most complete high-resolution database of the Earth. As applications

target larger geographic regions at finer resolution, the data movement between the fast main memory and slow

disk, rather than the CPU time, is becoming the bottleneck in terrain computations. However, most current

GIS systems are designed for CPU efficiency and are inefficient in terms of data movement. The explosion of

massive data in GIS thus presents significant challenges and demands systems which optimize data movement

as well as computation.
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Our previous work [Arge et al. 2000] demonstrated that I/O-efficient algorithms reduce the running time

of the flow accumulation computation on large terrains from weeks to hours. In this paper we extend this

work by developing an I/O-efficient algorithm for the flow routing problem. We have implemented our new

algorithm and together with our previous work it constitutes a complete and comprehensive software system

called Terraflow. Terraflow is the first terrain analysis software system designed and optimized for

massive terrains. It is available on the web at http://www.cs.duke.edu/geo*/terraflow/. We present a

comparison of the efficiency of Terraflow with that of state of the art commercial and open-source GIS

systems (including ArcInfo and GRASS) using data for real-life terrains of various sizes and characteristics.

Our system scales very well with problem size and outperforms existing software on large terrains by factors of

2 up to 1000. Terraflow is capable of processing terrains no other software system is capable or processing.

1.1 Background and Previous Work

Terrains are represented using Digital Elevation Models (DEMs). Much of the terrain data encountered in

GIS applications is obtained from remote sensing devices in raster or grid form: the coordinates of the data

correspond to a uniform lattice, and elevations are given for each cell in the lattice. Two other popular DEM

representations are triangulated irregular networks (TINs) and contour lines. Grids are the the most common

DEM representation because of their simplicity and because data is readily available in this form. On the other

hand, TINs often use less space than grid-based DEMs. A discussion of the advantages and disadvantages of

the different representations can be found in [Moore et al. 1991b; Kreveld 1997]. In this paper we only consider

the grid DEM representation. Figure 1 shows an example of a terrain and its grid representation.

Fig. 1. A terrain and its grid DEM representation.

The neighbors of a grid cell s are the eight cells around s. A neighbor of s is called a downslope (upslope)

neighbor if it has a strictly lower (higher) elevation than s. The gradient of s towards one of its neighbors

can be estimated as the ratio between the height difference of the cells and the horizontal distance between

them. The gradient at s is positive towards its downslope neighbors, negative towards its upslope neighbors,

and zero towards neighbors at the same height. The steepest downslope neighbor of s is the downslope neighbor

with the largest gradient. We are interested in computing the flow directions of s, representing the directions

in which water would flow if poured onto s. Several methods for modeling flow have been proposed in the



Flow Computation on Massive Grid Terrains · 3

3 2 4

7 5 8

7 1 9

3 2 4

7 5 8

7 1 9

Fig. 2. Example of SFD and MFD flow routing.

literature [O’Callaghan and Mark 1984; Jenson and Domingue 1988; Freeman 1991; Wolock 1993; Tarboton

1997]. The two most commonly used methods are as follows, illustrated in Figure 2:

(1) Single-flow-direction (SFD): water flows along a single direction toward the steepest downslope neighbor;

(2) Multi-flow-directions (MFD): water flows along multiple directions toward all the downslope neighbors.

Note that cells with no downslope neighbors are not assigned
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Fig. 3. Example of a flat area with multiple

spill-points. Cells are annotated with their

height and the flat cells are shaded. The darker

cells fulfill condition (1), the lighter cells (spill-

points) fulfill condition (2).

flow directions by either of the two methods. In reality, water

may of course flow through such cells and we want to assign flow

directions in a way such as to most realistically model the global

water flow through the terrain. In order to assign flow to all

cells of the terrain, we define a cell to be flat if (1) it has height

less than or equal to all its neighbors or (2) it has a neighbor

of the same height which satisfies (1). Cells not assigned a flow

direction by SFD or MFD are all flat. A flat area is a maximal

set of adjacent flat cells. A cell satisfying condition (2) above is called spill-point – a cell in a flat area that has a

downslope neighbor (Figure 3). We distinguish between two types of flat areas: plateaus and sinks. A plateau is a

flat area with at least one spill-point. Figure 4(a) and (b) show examples of plateaus. Intuitively, flow directions

should be assigned such that, globally, the flow of a plateau is directed towards its spill-points [Jenson and

Domingue 1988]. A sink is a flat area without spill-points. Figure 4(c) shows an example of a sink. Intuitively,

water will accumulate in a sink until the sink fills up and water flows out of it. One way of modeling this is

to assign flow directions from lower to higher cells, allowing water to flow “uphill” and thus “escape” the sink.

However, since uphill flow is counter-intuitive, and since many applications considers sinks to be artifacts of

the input data generation rather than real geographic features, an alternative solution is to remove them by

modifying the terrain [Garbrecht and Martz 1997; O’Callaghan and Mark 1984; Jenson and Domingue 1988;

Tribe 1992]. The intuitive way of removing sinks is by flooding [Jenson and Domingue 1988] the terrain, that

is, by uniformly pouring water onto the terrain (while viewing the outside of the terrain as a giant sink) until

all sinks in the terrain are filled and steady-state is reached (Figure 5).

Following the above discussion we are now ready to define the flow routing problem. We define a flow path
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(a) Plateau. (b) Plateau. (c) Sink.

Fig. 4. Examples of plateaus and sinks in a terrain.
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Fig. 5. Flooding a terrain: Sinks fill and overflow to form a filled terrain.

to be a list of cells s1, s2, ... such that water can flow from si to si+1 using the assigned flow directions. If flow

directions are assigned using SFD on a terrain without flat cells, then there is a unique flow path from any cell

s. Using MFD, s may have multiple flow paths. The flow routing problem consists of flooding the terrain and

then assigning flow directions to all cells in the terrain such that the following three conditions are fulfilled:

(1) Every cell has at least one flow direction;

(2) No cyclic flow paths exist; and

(3) Every cell in the terrain has a flow path to the edge of the terrain.

Flow routing models “steady-state flow” since flow directions are assigned to the flooded terrain. Note that if

we map the flow directions of a flooded terrain onto the original terrain, the corresponding flow paths fulfill the

three conditions but with water routed “uphill” from sinks.

If flow directions are assigned using the SFD model then we call the solution SFD flow routing; if the MFD

model is used we call it MFD flow routing. From a computational point of view, the choice of SFD or MFD flow

routing is not critical – as we will see, the choice will not affect the computational complexity of the problem.

From a modeling point of view however, the choice can be very important. SFD flow routing tends to produce

a small number of convergent flow paths, while MFD flow routing tends to produce more realistic but more

diffuse flow paths (see Section 3.3).

While flow routing models the directions of flow through a terrain, flow accumulation quantifies how much
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Fig. 6. The DEM of the terrain in Figure 1 and its flow accumulation (shown in 2D).

water flows through each cell of the terrain. To compute the flow accumulation of a terrain with precomputed

flow routing, we assume that each cell initially has one unit of flow (water) and that the flow, initial as well as

incoming, at a cell is distributed using the flow directions, proportional to the gradient. The flow accumulation

of a cell s is then the total amount of water flowing through s. Flow accumulation computed using SFD flow

routing is known as D8 [O’Callaghan and Mark 1984]. Figure 6 shows the DEM from Figure 1 and its D8 flow

accumulation.

Once flow directions and flow accumulation of a terrain have been computed, many other attributes of the

terrain can be computed based on them, including drainage network and topographic convergence index. The

drainage network of a terrain consists of all the cells with a flow accumulation value higher than a certain

threshold, and the topographic convergence index value of a cell s, which quantifies the likelihood of saturation,

is defined as the logarithm of the ratio of the flow accumulation to the local slope at s. There is a large

body of GIS literature describing various terrain attributes based on flow directions and flow accumulation

(e.g. Freeman [1991], Tribe [1992], Fairfield and Leymarie [1991], Tarboton, Bras, and Rodriguez-Iturbe [1991],

Tarboton [1997], Garbrecht and Martz [1992], Garbrecht and Martz [1992], Wolock and McCabe [1995]). Most of

this work is concentrated on the suitability in analyzing real phenomena, and is less focused on the computational

aspects.

1.2 Scalability with Massive Datasets

As mentioned, the availability of high-resolution terrain data for large geographic areas exposes scalability

problems with existing GIS software. When processing such large amounts of data the I/O between fast

internal memory and slow external storage such as disks, rather than internal computation time, often becomes

the bottleneck in the computation. While many GIS software packages include algorithms for flow routing and

flow accumulation (e.g. ArcInfo [Environmental Systems Research Inc. 1997], GRASS [GRASS Development

Team ], TOPAZ [Garbrecht and Martz ; Garbrecht and Martz 1992], TARDEM [Tarboton ; Tarboton 1997],

TAPES-G [Moore ; Moore et al. 1991a], RiverTools [Peckham ; Peckham 1995]), most of these algorithms are

designed to minimize internal computation time and consequently they often do not scale to large datasets.
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In our previous work on flow accumulation we showed that the effects of non-scalability can be quite severe,

and how the development of algorithms that explicitly manage data placement and movement on disk (External

Memory or I/O-efficient algorithms) can lead to significantly improved practical efficiency.

To our knowledge, there is no previous research focusing on both the algorithmic and practical aspects of flow

routing on massive terrains. The only approach that is concerned with performance is RiverTools [Peckham

1995]. Peckham recognizes that when large volumes of data are involved the algorithms must be changed in

order to minimize the number of times the elements are accessed. He calls these algorithms file-based and

distinguishes them from the standard RAM-based algorithms. Peckham presents file-based algorithms for SFD

flow routing based on the approach of Jenson and Domingue [1988] and for computing the flow accumulation

for any given query cell s. More precisely, let the river-tree of a cell s in the grid denote the set of all cells whose

flow paths go through the s; The river-tree can be viewed as a directed tree rooted at s if we view each cell as a

node and the flow directions as directed edges between nodes. Note that if the river-tree of s is known, the flow

accumulation of s is the number of nodes in the river-tree. Peckham describes how to compute the river-tree

of s, store it in post-order (left-child, right child, root), express the computation of the flow accumulation of s

as a bottom-up expression-evaluation on the river-tree and how to model it with a stack data structure (stacks

are I/O-efficient because accesses involve the item on the top of the stack). Note that this algorithm solves the

simpler problem of computing the basin and flow accumulation for a given cell only, and not for the whole grid

(Peckham argues that we are typically interested in only one basin). Using these ideas, the RiverTools software

is able to work rapidly with large grids up to 108 elements, but exact numbers and comparison with previous

systems are not provided [Peckham 1995]. Peckham’s work has the merit of focusing on minimizing the number

of data accesses and I/O operations. However, the algorithms are not accompanied by a rigorous analysis and

solve only a particular case of the flow accumulation problem.

Our I/O-efficient algorithms are developed using the standard two-level I/O-model with one logical disk [Ag-

garwal and Vitter 1988]. In order to amortize the extremely long access time of disks relative to that of internal

memory, typical disks read and write large blocks if data at once. Therefore the model defines the following

parameters:

N = number of elements in the problem (cells in the grid),

M = number of elements that can fit into internal memory,

B = number of elements per disk block,

where M < N and where we assume that M > B2. An Input/Output operation or simply and I/O is the

operation of transferring one block of consecutive elements between disk and internal memory. Computation

can only be performed on elements in internal memory and the measures of performance in the model are the

number of I/Os used to solve the problem, as well as the internal computation time.

The scanning or linear bound, scan(N) = Θ(N/B), represents the number of I/Os needed to read N contiguous



Flow Computation on Massive Grid Terrains · 7

items from disk. The sorting bound, sort(N) = Θ
(
(N/B) logM/B(N/B)

)
, represents the number of I/Os required

to sort N items [Aggarwal and Vitter 1988]. For practical values of B and M , scan(N) < sort(N)� N , and in

practice the difference between an algorithm doing N I/Os and one doing sort(N) I/Os can be very significant.

1.3 Outline of the Paper

The first part of this paper (Section 2) presents an I/O-efficient algorithm for the flow routing problem. Our algo-

rithm uses O(sort(N)) I/Os and O(N logN) CPU time. It uses ideas from previous work on flow routing [Jenson

and Domingue 1988], but employs I/O-techniques to make the computation I/O-efficient; all previous algorithms

use Ω(N) I/Os. The algorithm completes our previous work on flow accumulation [Arge et al. 2000]. Together

our algorithms for flow routing and flow accumulation constitute the theoretical foundation of a complete soft-

ware system which we call Terraflow. Terraflow is the first terrain analysis software system designed and

optimized for massive grids.

The second part of the paper (Section 3) demonstrates the practical merits of our work by comparing the

efficiency of Terraflow with that of commercial (ArcInfo [Environmental Systems Research Inc. 1997]) and

open-source (GRASS [GRASS Development Team ] and TARDEM [Tarboton ]) GIS systems. We present ex-

perimental results on real-life terrains of various sizes and characteristics demonstrating the practical scalability

of our system to massive grids. We observe speedups ranging from 2 to 1000 over existing software and show

that Terraflow is capable of processing terrains no other software system is capable of processing.

2. TERRAFLOW

This section describes Terraflow’s algorithms for flow routing and flow accumulation. We describe the flow

routing algorithm in detail in Sections 2.1 through 2.4 and outline the flow accumulation algorithm in Section 2.5

(our previous paper describes the flow accumulation algorithm in detail). The main result of this section is the

following:

Theorem 1. The flow routing and flow accumulation problems can be solved in O(N logN) time and

O(sort(N)) I/Os.

Proof. Follows directly from Thm. 2 and Thm. 3, proved below.

2.1 Outline of the Flow Routing Algorithm

Recall that flow routing floods the terrain and then assigns flow directions. However, flooding requires partial

information on flow directions. Therefore flow routing consists of the following steps.

(1) Compute partial flow directions and identify plateaus and sinks.

(2) Assign flow directions on plateaus.

(3) Flood the terrain.
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Fig. 7. Flow directions on a plateau with two sinks (black cells).

(4) Compute complete flow directions.

Step 1. To do so, we assign flow directions to all cells with a downslope neighbor. Flat areas are then found

by computing the connected components of the cells with no assigned flow direction (in the graph representing

adjacencies of these cells). This can be done in linear time and I/O [Arge et al. 2000].

Step 2. We then assign flow directions on plateaus by performing breadth-first search (BFS). First all the

spill-points of the plateaus are visited. Next all cells adjacent to a spill-point are visited, then all cells adjacent

to these cells, and so on, until all cells of the plateau have been visited. When a cell is visited, its flow direction

is set towards the neighbor cell that has already been visited. If the SFD model is used and several such cells

exist, flow direction is set towards the neighbor that was visited first. If the MFD model is used, flow direction

points to all of them. At the end of the BFS process the total flow of the plateau is partitioned between its

spill-points (Figure 7). It is easy to see that this assignment of flow directions fulfills flow routing condition (1)

(every cell is assigned a direction) and (2) (no cycles). Furthermore, if condition (3) is fulfilled for the rest of

the terrain, it will also be fulfilled for the cells on the plateau. The BFS traversal of a plateau of P cells can be

performed in O(sort(P )) I/Os and O(P logP ) time, or O(sort(N)) I/Os and O(N logN) time in total for all

plateaus.

Step 3. At this point, flow directions have been assigned to all but the sink cells of the terrain. Below we show

how we can use the computed directions to flood the terrain (and thus remove the sinks) in O(sort(N)) I/Os

and O(N logN) time. After flooding we compute the final flow directions simply by repeating the two steps

above (the previously computed values can not be used, since flooding modifies the terrain).

Step 4. A key element of our algorithm for flooding is the partitioning of the terrain into watersheds. A

watershed of a sink consists of the set of cells that route some flow to the sink, i.e., cells which have a flow path

that ends in the sink. The delineation of watersheds depends on the flow model used. In the SFD model each

cell is on a unique flow path and routes flow to a unique sink, hence the cell belongs to a unique watershed and

thus the partitioning of the terrain into watersheds is uniquely defined. In the MFD model, a cell is on multiple

flow paths and may thus be part of several watersheds and the partitioning of the terrain into watersheds is not

uniquely defined. In this case we assign the cell arbitrarily to one of the possible watersheds.

In Section 2.2 we describe how to efficiently partition the terrain into watersheds and compute the adjacency
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information among watersheds. Section 2.3 describes the flooding algorithm based on the watershed computa-

tion. Section 2.4 shows that the final result of our flooding algorithm does not depend on this arbitrary choice.

This concludes the description of the main phases of Terraflow flow routing algorithm. We summarize the

result in the following theorem:

Theorem 2. The flow routing problem can be solved in O(N logN) time and O(sort(N)) I/Os.

Proof. Partitioning the terrain into watersheds and computing the watershed graph can be done inO(N logN)

time and O(sort(N)) I/Os by Lemma 1. Given the watershed graph flooding can be solved in O(N logN) time

and O(sort(N)) I/Os by Lemma 11.

2.2 Computing Watersheds

Watersheds and their adjacencies are naturally expressed in terms of the watershed graph, a directed weighted

graph with a node for each watershed, and edges between adjacent watersheds labeled with the lowest elevation

that occurs along the boundary between the two watersheds. Given a terrain with precomputed flow directions

for all but the sink-cells, we compute the watersheds as follows. We initially assign a watershed label to each

sink using O(scan(N)) I/Os and O(N) time. We assign this label to each cell in the corresponding watershed

by sweeping. Sweeping processes the terrain bottom-up with a horizontal plane, propagating watershed labels

of a cell to the neighbors that “flow” into it (a cell s flows into a cell t if one of the flow directions assigned to s

is towards t). The main idea is that the sweep plane touches the cells in the grid in reverse topological order of

the flow directions (a cell s comes before a cell t in reverse topological order if there is a flow path from s to t).

In this way, when a cell is processed, the cell(s) that it flows into have already been touched by the sweep plane

and hence have already been assigned a watershed label. Next we describe the sweep process in more detail.

Let L be a list of the elevations of the cells in the grid, where each elevation hij is augmented with its

position (i, j) and its BFS depth BFSij (computed in Section 2.1; if the cell is not part of a plateau then

BFSij = 0). We want to process a cell at position (i, j) before a cell at position (k, l) if there is a flow path

from the cell (k, l) to cell (i, j). For this it is sufficient to process a cell at position (i, j) before a cell at position

(k, l) if: (1) hij < hkl; or (2) hij = hkl and the cells are part of the same plateau and BFSij < BFSkl. We

therefore sort list L using hij as the primary key and BFSij as the secondary key. We can do so in O(sort(N))

I/Os and O(N logN) time. We then sweep the terrain simply by scanning through L. To process a cell during

this scan we read its watershed label and propagate (assign) it “up” to the neighbors that flow into it. The

straightforward way to do so would be to keep the watershed labels in a grid W and to access the entry Wij and

its neighbors as needed when processing cell (i, j). However, to process the N cells, we might do O(N) I/Os,

since the accesses to W may be very scattered: this is because the cells are processed in reverse topological

order and are not necessarily well clustered spatially in this order.

To eliminate these scattered accesses to W and reduce the I/O-complexity from O(N) to O(sort(N)) we
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observe that when processing a cell s the (relevant) neighbors of s only need to know the watershed label

of s when they are processed, that is, when the sweep plane reaches their elevation. Thus we do not need

to write the watershed labels to the neighbors individually. Instead of maintaining the watershed labels in a

grid W , we maintain an I/O-efficient priority queue containing the watershed labels “sent forward” to cells

which have not yet been processed. Let the priority of a cell be equal to its position in the list L (i.e., its rank

in reverse topological order of the flow directions). When a cell is processed during the sweep, we propagate

its watershed label to the relevant neighbors by inserting an element for each such neighbor into the priority

queue with key equal to the priority of the neighbor. In order to obtain the priorities of the neighbors without

accessing the elevation grid, we augment each cell in L with the priorities of its neighbors which flow into it;

this can be easily done in O(scan(N)) I/Os. Note that this means that we work with a list of size up to 5N .

To obtain the watershed label of a cell being processed, we can now simply perform extract min operations

on the priority queue. Since a cell s obtains labels from all the cells it flows into, the priority queue may

contain several elements for s. All these elements have the same priority and will be returned by successive

extract min operations. Following the discussion about watershed delineation in Section 2.1, we just choose one

of these labels to further propagate. We perform a constant number of insert and extract min operations for

each cell, resulting in a total of O(N) operations. Since the amortized I/O cost of a priority queue operation is

O( 1
B logM/B

N
B ) [Arge 1995; Brodal and Katajainen 1998], the sweep uses O

(
N
B logM/B

N
B

)
= O

(
sort(N)

)
I/Os

in total.

Finally, as the watershed label of a cell is determined during the sweep we write it to a list instead of to the

relevant grid position. We do it this way in order to avoid scattered accesses. After the sweep, we sort this list

by position to obtain the grid of watershed labels. This concludes our algorithm for assigning a watershed label

to each cell.

Having assigned a label to each cell, we can now construct the watershed graph efficiently – we simply need

to construct an edge for each adjacent pair of watersheds and label it with the lowest elevation on the boundary

between them. We do so by scanning the watershed label grid to detect adjacencies; each time two neighbor

cells have different watershed labels u and v, we construct edges (u, v) and (v, u) in the watershed graph. We

label the edge with the height of the higher cell. At the end of the scan we sort the edges by watershed label

and eliminate all but the lowest-height edge between two watersheds. All these can be done in O(sort(N)) I/Os

and O(N logN) time and the resulting list is the edge-list representation of the watershed graph.

Finally, for later use, we add another “watershed” to the watershed graph, called the outside watershed,

representing the outside of the terrain. We introduce a special node ζ for it and include an edge (u, ζ) between

any watershed u on the boundary of the terrain and ζ. We can easily do this in linear time and with a linear

number of I/Os. Figure 8 outlines the algorithm for partitioning the terrain into watersheds and computing the

watershed graph. We have the following.
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(1) Assign flow directions to cells with downslope neighbors.

(2) Identify the flat areas (plateaus and sinks).

(3) Assign flow directions on each plateau by performing a multi-source BFS starting from its spill-points. Compute a list
BFS = {BFSij} containing the BFS labels of all cells in the grid, where the BFSij = 0 if the cell (i, j) is not part of a
plateau.

(4) Produce a list L = {(pij , {pn})}, where pij = (hij , BFSij , i, j) is the priority of cell (i, j) and {pn} are the priorities of its
neighbors which flow into it.

(5) Sort L by increasing height, and secondarily by increasing BFS depth in order to get reverse topological order.

(6) Assign a unique watershed label to each sink and insert the cells on the boundary of each sink and their labels into an
(initially empty) priority queue PQ. Scan L and for each cell (pij , {pn}) do:
(a) Determine the watershed label l of the cell by performing extract mins on PQ.
(b) Propagate l to all neighbors which flow into the cell by performing inserts on PQ.
(c) Write l and the position (i, j) of the cell to a list L1.

(7) Sort L1 by position to obtain watershed label grid. Scan L1 and for each pair of neighbor cells with different watershed
labels u and v add edges (u, v) and (v, u) labeled with the lower height of the two cells to a list L2. For every cell on the
boundary of the terrain add an edge (u, ζ) from its watershed u to the outside watershed labeled with the height of the cell.

(8) Sort L2 so that all edges between the same two watersheds are contiguous; remove all but the lowest edge between each
pair of adjacent watersheds. The resulting list L2 is the edge-list of the watershed graph.

Fig. 8. I/O-efficient algorithm for partitioning a terrain into watersheds and constructing the watershed graph.

Lemma 1. Partitioning a terrain into watersheds and computing the watershed graph can be done in O(N logN)

time and O(sort(N)) I/Os.

Proof. Follows directly from above.

We have described the conceptual steps of Terraflow flow
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Fig. 9. Border of the terrain. Data cells are white,
edge nodata cells are black, and nodata cells in the
interior are hatched.

routing omitting the treatment of special situations which would

have burdened the algorithm. One such situation which arises

frequently in practice is missing data in the grid. In the above

description we assumed that all cells in the grid contained a data

(height) value. In practice, data values are often missing in many

cells. These cells are represented using a special nodata value.

Most real datasets use nodata values to fill in the boundary of

the terrain, which is irregular, and is different from the edge of

the grid, which is rectangular (Figure 9). This “ocean” of nodata on the boundary of the terrain acts as a

giant sink; all flow is ultimately routed there and it constitutes part of the outside watershed. Besides the

boundary nodata, the terrain may contain pockets of nodata values which are isolated from the border, and

are essentially holes in the grid. These pockets do not act as sinks; they are treated as if they did not exist:

they do not get assigned flow-directions and they do not influence the flow of their neighbors. We have also

encountered (rare) cases of islands in a sea of nodata (for example the East-Coast USA described in Section 3.1).

In order to distinguish between these very different cases, Terraflow needs to distinguish between the inner

nodata pockets and the boundary nodata. This can be expressed as finding connected components in scan(N)
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I/Os [Arge et al. 2000] in the graph that corresponds to the nodata cells, which has a node for each nodata cell,

and an edge between any two nodata cells which are adjacent.

2.3 Flooding the Terrain

We can now describe our new flooding algorithm, which can be elegantly expressed in terms of sweeping the

terrain using the watershed graph.

Recall that flooding is the process of raising the terrain by uniformly pouring water until all sinks are filled

and steady-state is reached. In the steady-state, there is a downslope flow path from each cell to the edge of the

terrain (the height of the cells along the path is non-increasing). After flooding, we say that a watershed u has

been raised to height h if every cell in u lower than h is raised to height h. Using the watershed graph we can

formally define flooding as follows.

Definition 1. Let G be the watershed graph of a terrain T and let the height of a path p in G be defined

as the maximum height of the edges along p. Flooding T raises each watershed u in T to height hu, where hu is

the height of the lowest-height path from u to the outside watershed ζ.

In order to compute hu for each watershed u we define the flow graph F . Let huv be the height of edge (u, v)

in the watershed graph G = (V,E), i.e., the lowest-height on the boundary between watersheds u and v. We

define the spill-elevation Su of u to be the height of the lowest edge leaving u: Su = min{huv|(u, v) ∈ E)}. The

flow graph F is a subset of G with same nodes (one node for each watershed including the outside watershed),

and with an edge from u to v if huv is the spill-elevation of u. Note that each node in the flow graph except

for ζ, the outside watershed, has at least one outgoing edge (it may have more than one in case of ties). Before

describing an algorithm for computing the lowest-height path for each watershed, we prove a few simple results

about the structure of F .

Lemma 2. A directed graph in which each node has at least one outgoing edge contains a cycle.

Proof. Proof by induction. The lemma is obviously true for a graph with 2 nodes. Assume it is true for

any graph of n nodes, n ≥ 2 and consider a graph of n+ 1 nodes. The graph must contain three distinct nodes

u1, u2, u3 such that u1 → u2 → u3 is a path (otherwise it contains a cycle). Consider the graph obtained by

contracting the edge u1 → u2. This graph has n nodes and each node has at least one outgoing edge, so by the

induction hypothesis it contains a cycle. Therefore the uncontracted graph must also contain a cycle.

Lemma 3. If the flow graph F is acyclic then for each node u in F there is a path from u to ζ.

Proof. By contradiction, assume that there is a node u in F which does not have a path to the outside

watershed ζ. Let X be the set of nodes in F which do not have a path to ζ. Since each node in F (except ζ)

has an outgoing edge, u has an outgoing edge (u, v). Node v cannot have a path to ζ, which means that v ∈ X
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and thus X contains at least two nodes. Since all nodes in X have at least one outgoing edge, X must contain

a cycle by Lemma 2. This contradicts the assumption that F is acyclic.

Lemma 4. The heights of the edges along a path in F form a non-increasing sequence. The heights of the

edges along a cycle in F are equal and all other edges incident to the cycle have height bigger than the height of

the cycle.

Proof. Consider a path u1 → u2 → u3 → . . . uk in F . By definition, hu1u2 is the spill-elevation of watershed

u1 and hu2u3 is the spill-elevation of watershed u2, that is, hu1u2 = min{hu1v|(u1, v) ∈ G} and hu2u3 =

min{hu2v|(u2, v) ∈ G}. Since G must contain an edge (u2, u1) with height equal to hu1u2 , it follows that

hu2u3 ≤ hu1u2 . Similarly we can prove that huiui+1 ≤ hui−1ui for any i ∈ {2, ..., k − 1}. For a cycle uk = u1

and thus hu1u2 = hu2u3 = . . . = huku1 . For any node ui on the cycle, the edge (ui, ui+1) is by definition the

lightest edge incident on ui. Thus any edge incident on ui has height ≤ than the height of (ui, ui+1). Since

hu1u2 = hu2u3 = . . . = huku1 , it follows that all edges incident on the cycle have smaller heights than any edge

of the cycle.

Lemma 5. If a node u has a path to ζ in F , the path must be the lowest path from u to ζ in G.

Proof. Let p1 = u → u1 . . . → ζ be the path from u to ζ in F . Assume, by contradiction, that there is a

lower path p2 = u → v1 . . . → ζ from u to ζ in G. By Lemma 4 the maximum height along a path in F is

the height of its first edge, so the height of p1 is huu1 . The height of p2 is at least huv1 , and by construction

of F , huu1 < huv1 . Thus it follows that the height of p2 is larger then the height of p1, contradicting the

assumption.

By Definition 1, in order to flood the terrain we need to find for each node its lowest path to ζ in G. Based

on these Lemmas, we see that if F is acyclic then we are done: every node in F has a path to ζ (Lemma 3) and

this path is the lowest path from u to ζ in G (Lemma 5). The height of the path has to be the height of the first

edge on it (Lemma 4), i.e., the spill-elevation of u. If F is not acyclic, we may have computed the lowest-height

path for some nodes in G (the ones with a path to ζ in F ), but not all. In earlier work the remaining paths were

computed using a cycle contraction method [Jenson and Domingue 1988; Peckham 1995]. A cycle-contraction

is the process of replacing a cycle u1 → u2...→ uk = u1 with one node u and all edges (ui, v) and (v, ui) with

edges (u, v) and (v, u), respectively. The method is based on the following lemma.

Lemma 6. The height of the lowest-height path from any node u to ζ in G is invariant under cycle contraction

in F .

Proof. Consider contracting a cycle C, let u be an arbitrary node in G and p = u ; ζ the lowest-height

path from u to ζ in G. If C and p are disjoint, the path is obviously not affected by the contraction. If C

and p are not disjoint, we now show that the highest edge in p is not in the contracted cycle C, and thus the
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height of the path is unchanged by contraction. Because ζ is not in C, p must contain an edge leaving the cycle.

Moreover, because C is in F , the edges incident to C are all higher than the edges in C by Lemma 4. Therefore

p contains at least an edge that is higher than C, hence the highest edge in p is not in C.

Note that every node in G has (at least) a path to ζ, just that it may not be a downslope path. Intuitively,

cycle contractions transform G such that the lowest path from every node in G to ζ is a downslope path.

It follows from Lemma 6 that after first computing F and then repeatedly finding a cycle in F , contracting

the corresponding cycle in G, and updating F (contracting the cycle and computing the new outgoing edge of

the contracted node) until F is acyclic, we have effectively computed the flooded terrain. As discussed above,

it then follows from Lemma 2 through Lemma 6 that all we need to do to finish this computation is to raise

each watershed u to the spill-elevation of u, that is, the height of u’s outgoing edge in F . This algorithm is

sketched in Figure 10. A similar approach was employed in the previous work by Jenson and Domingue and

others [Jenson and Domingue 1988; Peckham 1995].

(1) Initialize: For each node u in G set Raise[u] = Su.

(2) Contract: While F is not acyclic do
—Find a cycle C in F .
—Contract C in G and compute the new spill-elevation edge of the contracted node.
—Contract C in F and insert the new spill-elevation edge in F .
—For every watershed in C set Raise[u] to the height of C.

Fig. 10. Previous (Jenson and Domingue) approach to flooding.

Contracting a cycle naturally corresponds to merging the watersheds into a single watershed. Intuitively, the

above algorithm repeatedly identifies two or more watersheds (a cycle in F ) which will spill into each other

when the terrain is flooded, and merges (contracts) them into one watershed with spill-elevation equal to the

lowest adjacent edge of the contracted node. The problem with this approach is that it seems difficult to predict

the order in which the watersheds are merged, and therefore difficult to store F and G such that cycle finding

and cycle contraction can be modeled I/O-efficiently. If W is the number of watersheds, it may take O(W )

I/Os (and time) to identify a cycle, contract it and find the lowest adjacent edge. The contracted node and its

outgoing edge may create a new cycle which, in turn, requires O(W ) I/Os (and time) to identify and contract.

A straightforward implementation of these ideas leads to an algorithm having I/O- and CPU-complexity O(W 2).

The main idea of our improved flooding algorithm is merging the watersheds in a predefined order that avoids

the expensive computation of cycles and spill-elevations of the merged watersheds. The order is obtained by

modeling the way flooding occurs in real-life. Conceptually, our algorithm is a bottom-up sweep of the terrain

with a horizontal plane. Imagine water falling onto the terrain and gradually filling watersheds. As the level
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of the water increases and reaches the spill-point of two adjacent watersheds, it causes them to merge (refer to

Figure 5). If water can flow from one of the watersheds to the outside watershed, then so can water flow from

the other one too. This means that the water level will not increase further. To model this process, we process

the edges in the watershed graph G in increasing order of height. We say that a watershed is done when we

have found its lowest-height path to the outside watershed. Initially only the outside watershed is done. When

processing edge (u, v) with height huv (meaning that water can flow between watersheds u and v at height huv),

there can be one of three situations:

(1) Neither u nor v is done: We merge the two watersheds by contracting the edge (u, v).

(2) Precisely one of u and v, say v, is done: Since water can flow from u to v at height huv and then from v

to ζ, it means that u has found a flow path to ζ at height huv. Since edges are processed in increasing order

of height, this path must be the lowest path from u to ζ and therefore huv must be the spill-elevation for u.

We raise u to huv, contract edge (u, v) and mark u as done.

(3) Both u and v are done: We have already found the (lower) spill-elevation for the two watersheds and can

ignore the edge.

Note that during the algorithm all we need to keep track of is which watersheds (nodes) have been merged

and which watersheds are done. We do not need to explicitly detect cycles or find the lowest adjacent edge to

a contracted node. Instead we process edges in a predetermined (sorted) order and use the watersheds flags

to decide between Case (1), (2) or (3). Even though we contract edges instead of cycles and do not explicitly

construct the flow graph F , the final results of our algorithm are the same as of the previous algorithm. By

Lemma 4, all edges of a contracted cycle have the same height; thus, even though the edges of a cycle are not

detected and contracted all at once, they are all hit by the sweep plane in the same time and are processed after

each other resulting in the whole cycle being contracted. As we shall show below, the key to the correctness of

this approach is that edges are processed in increasing order if height (height).

The full algorithm is given in Figure 11. We keep track of merged watersheds using a UnionFind struc-

ture [Cormen et al. 1990]. Initially each watershed is in a separate set (created using a MakeSet operation) and

only the outside watershed ζ is done. We contract an edge (u, v) by unioning the two corresponding sets of

watersheds FindSet(u) and FindSet(v) using a UnionSet operation. When the height of the lowest path to ζ

is found for a node u it is stored in Raise[u] and Done[u] is set to True.

To prove the correctness if our algorithm, first note that each watershed is raised and marked as done at most

once because once it is set, it is never unset. More precisely, the watershed which happens to be representative

for a set of merged watersheds is marked when the set merges with a watershed which is already marked.

Similarly, the Raise value is only set for this watershed. After the sweep, the same Raise value is assigned to all

watersheds in the set (Step (3) in Figure 11). For simplicity, in the proofs below we can assume that an operation
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(1) Initialize:
—Initialize the UnionFind structure: For each watershed u, MakeSet(u).
—Initialize the flags: For each watershed u, Done[u] = False, Raise[u] =∞.
—Set Done[ζ] = True, Raise[ζ] = 0.

(2) Sweep: Build a list L1 with all the edges (u, v, huv) in the watershed graph sorted by elevation huv. Scan through L1; for
edge (u, v, huv) do: u′ = FindSet(u), v′ = FindSet(v) and
(a) If (u′ = v′) or (Done[u′] and Done[v′]) then (ignore this edge and) continue with next edge.
(b) If (not Done[u′] and not Done[v′]) then

UnionSet(u′, v′)
(c) If (not Done[u′] and Done[v′]) then

—Raise[u′] = huv
—Done(u′) = True

(d) If (not Done[v′] and Done[u′]) then
—Raise[v′] = huv
—Done[v′] = True

(3) Find raise elevation: For each watershed u set Raise[u] = Raise[FindSet(u)].

(4) Raise terrain: Build a list L2 = {(hij ,Wij , i, j)} and a list L3 = {(Wij , Raise[Wij ])}. Sort L2 by Wij and merge with

L3 to produce L4 = {(hij ,Wij , Raise[Wij ], i, j)}. Scan through L4: for each cell set hfillij = max(hij , Raise[Wij ]) and write

(hfillij , i, j) to a list L5. Sort L5 by position (i, j). L5 represents the elevation grid of the flooded terrain.

Fig. 11. Flooding algorithm.

(marking as done or assignment of Raise value) on a set of watersheds {u1, u2, . . .} (on its representative) is

actually performed on each of the watersheds in the set. We can prove the following:

Lemma 7. If the sweep plane has reached height h, then for every edge (u, v) in G with huv < h, u and v are

union-ed (have the same representative) or u and v are both done.

Proof. When edge (u, v) is processed, if u and v are not both done or union-ed, then one of Steps 2(b), (c)

or (d) in Figure 11 is executed. If Step 2(b) is executed, it calls UnionSet(u, v); If Step 2(c) or Step 2(d) is

executed, then one of u and v must be done, and the watershed which is not done becomes done. So after

processing edge (u, v), u and v are in the same set or are both done. Once a watershed is union-ed or done, it

stays like that.

Lemma 8. If watershed u has a path p to ζ of height hp then u is done when the sweep plane has reached a

height h ≥ hp.

Proof. Let p = (u = u0, u1, u2, . . . , uk−1, uk = ζ) be a path from u to ζ. When the sweep plane has reached

height h > hp, every edge (ui, ui+1) of p has been processed. After processing edge (ui, ui+1), ui and ui+1 are

in the same set or both done by Lemma 7. Since uk = ζ is done, it follows by induction that ui is done for all i.

Therefore u is done.

Lemma 9. If u becomes done when the sweep reaches edge (u, v) of height huv, then Raise[u] is set to huv

and u has found a path to ζ of height huv.

Proof. Whenever Done[u] is set, Raise[u] is also set, so the first part of the lemma is true. We prove the

second part of the lemma by induction on huv. Consider the lowest edge in G which results in a node w being
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marked done; This edge must be the lowest edge in G incident on ζ. The claim holds trivially for (w, ζ) because,

when the plane reaches (w, ζ), w is marked done and w has found a path to ζ, namely w → ζ, of height hwζ .

Now assume that the claim holds for any height lower than huv. We will prove that it is true at huv. If u

becomes Done when the sweep reaches edge (u, v), then v must already be marked done; that is, Done[v] must

have been set when the sweep plane reached some height h′, h′ < huv. By induction hypothesis, this means that

there is a path p from v to ζ of height h′. Thus u has found a path to ζ through v, of height max{huv, hp} =

max{huv, h′} = huv.

Lemma 10. At the end of the sweep, every watershed u is done and Raise[u] is set to the height of the lowest

path from u to ζ.

Proof. First note that during the sweep Raise and Done are set precisely once for every watershed: it is

easy to see that they are set at most once, and they are set at least once because every watershed has at least

a path to ζ in G and by Lemma 8 it must be done by the end of the sweep. Let (u, v) be the edge at which

watershed u becomes done. By Lemma 9 there is a path from u to ζ of height huv. Next we show that huv (and

Raise[u]) must be the height of the lowest path from u to ζ. Assume, that there is a lower path of height hp.

Then, by Lemma 8, u becomes done when the sweep plane reaches hp < huv. Contradiction.

The correctness of our flooding algorithm follows from the discussion above. The only thing that remains is

to analyze its complexity.

Lemma 11. Flooding a terrain given its watershed graph G uses O(N logN) time and O
(
N√
M
·α(O( N√

M
), N√

M
)
)

I/Os, where α is the inverse Ackerman function.1

Proof. Let W be the number of watersheds in the terrain. Apart from the sorting of the edges, our algorithm

performs O(W ) MakeSet, UnionSet and FindSet operations. The standard implementation of the UnionFind

structure uses O
(
α(O(W ),W )

)
time (and thus I/Os) per operation, which results in our flooding algorithm

using O(W · α(O(W ),W )) time and I/O. The lemma follows trivially if W < N√
M

. If W > N√
M

we use a

preprocessing “tiling” algorithm to reduce the number of watersheds to O
(

N√
M

)
. The tiling step first divides

the elevation grid into sub-grids of size
√
M by

√
M , loads each sub-grid in memory and fills the watersheds

inside the sub-grid using a straightforward in-memory version of our flooding algorithm. This can be easily

done in O(scan(N)) I/Os and O(N) time. The number of watersheds in a subgrid is now O(
√
M) (since the

boundary of a subgrid has O(
√
M) cells). Overall the grid now has N

M ·O(
√
M) = O

(
N√
M

)
watersheds. Thus

our flooding algorithm uses O
(
N√
M
· α(O( N√

M
), N√

M
)
)

= O(N logN) time O
(
N√
M
· α(O( N√

M
), N√

M
)
)

I/Os.

1Subsequent discussions consider this to be O(sort(N)) I/Os: Let A be the Ackerman function. It is known that A(3, 3) is much

larger than the number of atoms in the known universe (approximately 1080). For N√
M
≤ A(3, 3), α

(
O( N√

M
), N√

M

)
≤ 3. But

dlogM/B N/Be is at least 2. Thus α

(
O( N√

M
), N√

M

)
≤ dlogM/B(N/B)e + 1 for practical values of N√

M
.



18 · Arge, Chase, Halpin, Toma, Urban, Vitter, Wickremesinghe

2.4 On watershed partitioning

As discussed in Section 2.1 the watershed of a sink (and thus the flow graph G) is not uniquely defined when

using the MFD model to assign flow directions: a point of the terrain may have flow paths to multiple sinks

and hence may be in the watersheds of any of the sinks. In this section we prove that the final result of our

flooding algorithm is not affected by this ambiguity.

Fig. 12. A terrain showing the catchments of two sinks as dark areas. The corresponding watershed for each catchment could
include the entire light area.

Recall that the watershed of a sink is a set of cells that route flow to the sink. If a cell routes flow to several

sinks (when using MFD), we arbitrarily assign it to the watershed of one of these sinks. We define a dedicated

catchment (or catchment for brevity) of a sink to be the set of cells that contribute all their flow to the sink.

That is, all flow from the cells in the dedicated catchment is eventually routed to the sink. Unlike the watershed,

the catchment of a sink is uniquely defined. Watersheds and catchments are equivalent when using SFD; but

in general, when using MFD, a watershed may encompass an area larger than the corresponding catchment, as

shown in Figure 12. Cells in the watershed (but not in the catchment) may have flow paths to other sinks as

well as the sink of the watershed as shown for instance, in Figure 13(a). Different choices of which watershed

to assign a cell to result in different watersheds and in different adjacency between them. This in turn leads

to different watershed graphs. Figure 13(b) shows three possible delineations of watersheds among the three

catchments, A,B,C, of the terrain depicted in Figure 13(a).

In order to show that all these watershed graphs lead to the same flooding results we define the extended

watershed graph G̃. G̃ contains a node for each catchment and two types of edges: a black edge between

each pair of adjacent catchments, and a gray edge between catchments which are not adjacent, but whose

corresponding watersheds could be made adjacent by an appropriate assignment of cells to watersheds. Black

edges are labeled with the lowest elevation on the boundary of the watersheds. Unlike the watershed graph G,

the extended watershed graph G̃ is unique for a given terrain (and independent of the delineation of watersheds).

Furthermore, any watershed graph G is a subgraph of G̃: Both graphs contain a node for each sink and by
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Fig. 13. A terrain cross-section and three catchments A,B and C. (a) The point y may have flow paths to all three catchments
and the watersheds corresponding to the three catchments can be delineated in several ways as shown in (b), where the shaded
areas are catchments and white areas are watersheds.

definition all edges of G are in G̃. Moreover, all black edges of G̃ are in G (but there may be edges in G which

are gray in G̃).

To prove that our flooding algorithm uniquely floods the terrain, we consider what happens to G̃ as we sweep

G and contract edges (fill watersheds). Define the catchment of a set of sinks S to be the set of cells that route

all their flow to S. The catchment of S contains at least the catchments of the sinks in S. Every time we

contract an edge (u, v) in G, we also update G̃ as follows:

(1) We contract (u, v) in G̃.

(2) We compute the catchment of the {u, v}.

(3) For each edge between {u, v} and a node w in G̃, we color the edge black if the catchment of w is now

adjacent to the catchment {u, v}.

We can now prove the following key lemma.

Lemma 12. When contracting an edge in G (during the sweep described in Figure 11) the corresponding edge

in G̃ is black.

Proof. Denote the edge being contracted by (u, v). In the terrain the edge (u, v) corresponds to two adjacent

cells, cu in watershed u and cv in watershed v, both having height equal to the height huv of edge (u, v). Recall

that the spill-elevation Su of a watershed u is equal to the height of the lowest-height edge incident to u in G,

and that it corresponds to the lowest-height the watershed need to be raised to for the water to escape the sink

(to another sink or the outside of the terrain). This means that the catchment of u contains all cells of u of

height smaller than or equal to Su. The contracted edge (u, v) is the lowest edge in (the current) G. If (u, v)

is the lowest edge in G, then it must be the lowest edge incident to both u and to v, and its height huv must

be the spill-elevation of both u and of v. Since both cu and cv are at height huv, it follows that both cu and cv
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must be in the catchment of u and v, respectively. Thus edge (u, v) is black in G̃.

Lemma 13. Given a terrain with MFD flow directions assigned to all non-sink cells, the result of our flooding

algorithm does not depend on the choice we make when assigning a cell which has flow paths to multiple sinks

to any one of these sinks.

Proof. Assume, without loss of generality, that there are no edges in G having the same height. Regardless

of how G was constructed, i.e., how cells with flow paths to multiple sinks were assigned to sinks, the edges

contracted during the sweep of G correspond to black edges in G̃ by Lemma 12. All black edges in G̃ are also

in G, and the first contracted edge is the minimum height edge in G, hence the first contracted edge is uniquely

defined. By induction the sequence of contracted edges is uniquely defined.

2.5 Flow Accumulation

The motivation for addressing the flow routing problem is its role in the computation of flow accumulation.

As mentioned, the flow accumulation of a cell represents the total amount of flow draining through that cell.

To compute the flow accumulation for each cell we assume that every cell initially has one unit of flow (water)

and that each cell distributes the flow, initial as well as incoming, to the neighbors pointed to by its flow

directions. In a previous work [Arge et al. 2000] we described the flow accumulation problem in detail and

gave an O(sort(N)) I/Os and O(N logN) time algorithm for it. Our algorithm is very similar to the watershed

computation described in Section 2.2, with the difference that the terrain is swept top-down, instead of bottom-

up. We have the following.

Theorem 3. The flow accumulation problem can be solved in O(N logN) time and O(sort(N)) I/Os [Arge

et al. 2000].

3. IMPLEMENTATION AND PERFORMANCE

This section presents implementations of the algorithms described in Section 2 in our Terraflow system. We

demonstrate the practical merits of our work through a comparison of the efficiency of Terraflow with that

of other GIS systems.

The Terraflow flow routing program, Fill, takes as input an elevation grid and outputs the flooded eleva-

tion grid and the corresponding flow direction grid. The Terraflow flow accumulation program, Flow, takes

as inputs an elevation grid and the corresponding flow direction grid and outputs the flow accumulation grid.

The two programs consist of about 14,000 lines of C++ code and are based on the TPIE (Transparent Parallel

I/O Environment) system developed at Duke University [Arge et al. 1999]. TPIE is designed to facilitate easy

and portable implementation of external memory algorithms. TPIE contains I/O-efficient implementations of

algorithms for fundamental primitives such as scanning, merging, distributing and sorting, as well as fundamen-

tal data structures such as I/O-efficient priority queue. All the I/O performed by Terraflow is controlled by
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TPIE rather than by the OS virtual memory system.

There are many commercial and open-source GIS packages available, offering varying degree of functionality.

ArcInfo [Environmental Systems Research Inc. 1997] is the most widely used commercial GIS. The largest open-

source GIS effort is Geographic Resources Analysis Support System (GRASS) [GRASS Development Team ]

originally developed by the U.S. Army. Both systems offer a broad set of functions, including functions for flow

accumulation computation. Other systems, such as TARDEM [Tarboton ] and TOPAZ [Garbrecht and Martz

1992], both offering flow accumulation functions, are more specialized. One goal of our implementation efforts

was compatibility with standard GIS software; on a given terrain, Terraflow’s outputs are similar to those

produced by ArcInfo and GRASS. In addition, we designed Terraflow to give the user flexibility in modeling

flow, for instance by providing options for choosing to route flow using SFD, MFD or a combination of the

two. We discuss these options and illustrate the outputs of Terraflow in Section 3.3. Section 3.1 describes

our experimental setup including the datasets used. Section 3.2 presents a comparison of the performance if

Terraflow, ArcInfo and TARDEM.

3.1 Experimental Setup

In order to investigate the performance of Terraflow we performed experiments with real-life terrains of

various sizes and characteristics using different main memory sizes. Table 1 summarizes the characteristics of

the ten datasets we used. The smallest are 30m-resolution datasets of Kaweah Basin and Sequoia/Kings Canyon

National Park in the Sierra Nevada region and 100m-resolution datasets of Hawaii and Puerto Rico. The 30m

dataset of the Central Appalachian Mountains, and 80m datasets of Cumberlands and Lower New England

are of moderate size, while East-Coast USA and Midwest USA are larger datasets. The largest dataset is the

Washington State at 10m resolution, containing just over 1 billion elements. The datasets represent different

terrain features and elevation distributions.

Terraflow and ArcInfo ran on 500 MHz Alphas with 1GB of main memory running FreeBSD 4.0. The

workstations have local striped disk arrays with 8GB 10,000 RPM Cheetahs. GRASS ran on an 500 MHz Intel

PIII with 1GB of main memory running FreeBSD 4.0 and a local striped disk array consisting of 36GB 10,000

Dataset Resolution Dimensions Grid Size

Kaweah 30m 1163 x 1424 3.2MB
Puerto Rico 100m 4452 x 1378 12MB
Sierra Nevada 30m 3750 x 2672 19MB
Hawaii 100m 6784 x 4369 56MB
Cumberlands 80m 8704 x 7673 133MB
Lower New England 80m 9148 x 8509 156MB
Central Appalachians 30m 12042 x10136 232MB
East-Coast USA 100m 13500 x 18200 491MB
Midwest USA 100m 11000 x 25500 561MB
Washington State 10m 33454 x 31866 2GB

Table 1. Characteristics of terrain datasets.
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RPM IBM drives. For the TARDEM experiments we used a machine identical with the one running GRASS

with 1GB of main memory running Windows2000. Although we used a slightly faster platform, GRASS and

TARDEM are significantly slower as shown in Section 3.2. We performed experiments with main memory sizes

of 128 MB, 256 MB, 512 MB, 766 MB and 1 GB (the machines are configured such that the main memory size

can be controlled at boot-up). The TPIE memory in each of these cases was set to 50MB less than the main

memory size, leaving the rest of the memory for the operating system.

3.2 Experimental Results

We first present a comparison of Terraflow and ArcInfo. ArcInfo provides the grid functions flowdirection

and flowaccumulation, which are to our knowledge based on the ideas described in the beginning of Section 2.5.

Flowdirection takes as input an elevation grid and outputs a flooded grid and the corresponding SFD flow

direction grid. Flowaccumulation takes as input the flow direction grid and computes a D8 (that is SFD) flow

accumulation grid.

Fig. 14. Comparison of the total running time of Terraflow and ArcInfo’s flowdirection and flowaccumulation commands
with 128MB and 512MB main memory (excl. Washington, which was 1GB). Area graph indicates dataset size in MB. Running
time is in hours.

Figure 14 shows the main results of our experiments. We only present results for main memory sizes of 128MB

and 512MB since the results for other memory sizes are very similar. The main conclusion of our experiments is

that while Terraflow scales well with dataset size, ArcInfo’s behavior, although very good for small datasets,

becomes unpredictable as data size increases. ArcInfo cannot process the 2GB dataset because of what appears

to be an internal grid size limit.

Terraflow is significantly faster than ArcInfo on large inputs, but, since it is not optimized for small

datasets, it is slower on datasets which fit into main memory. For instance, at 512 MB of memory, Terraflow

processes the Kaweah dataset in 3 minutes, the Puerto Rico dataset in 8 minutes, and the Sierra Nevada dataset

in 26 minutes, while ArcInfo takes 1 minute, 3 minutes and 16 minutes to process the three datasets, respectively.
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As dataset size increases, the situation reverses and Terraflow becomes increasingly faster: at 512 MB of

memory it processes the Cumberlands dataset in 2 hours, the Lower New England dataset in 2.5 hours, the

East-Coast USA dataset in 8.7 hours and the Midwest USA dataset in 16 hours. At the same memory size

ArcInfo uses 3 hours, 2.3 hours, 78 hours and 32.5 hours, respectively. Terraflow is a factor of 9 faster on the

East-Coast USA dataset (8.7 versus 78 hours) and a factor of 2 faster on the Midwest USA dataset (16 versus

32.5).

Our experiments reveal that the running time depends not only on the dataset size, but also on other intrinsic

characteristics of the terrain (such as mountainous v.s. flat). The dependency is very pronounced for ArcInfo

and much less for Terraflow. For example, even though the East-Coast dataset is smaller than the Midwest

USA dataset, ArcInfo uses 78 hours to process it (8 hours flow routing, 70 hours flow accumulation), while

it only uses 32.5 hours to process the slightly larger Midwest USA dataset (13.5 hours flow routing, 19 hours

flow accumulation). All running times above are for 512 MB main memory. Similarly, though not visible in

the figure, ArcInfo uses 16 minutes to process the Sierra dataset but only 12 minutes to process the Hawaii

even though it is three times larger. In the later case, the reason may be the effect of the relief, Hawaii being

an island while Sierra a mountain range. In general, we believe ArcInfo uses some kind of “tiling heuristic”

to break the terrain up into small (main memory sized) pieces and process these pieces individually. Often

such a strategy works well, but in general the pieces interact (send/receive flow) with each other and cannot be

processed individually. The East-Coast USA dataset seems to be particularly bad for this strategy (Note the

big spike in the running time of ArcInfo for this dataset). Interestingly, ArcInfo does not exhibit the typical

characteristics of an I/O-bound process. On the datasets we used ArcInfo never thrashed (spent all its time

doing I/O), and CPU utilization never dropped below 65% even when we reduced the main memory to 64MB.

The use of the tiling heuristic to improve data access locality could explain this behavior.

Next we consider the performance of GRASS [GRASS Development Team ]. GRASS provides the function

r.watershed that takes as input an elevation grid and outputs a flow accumulation grid. There is no separate

flow direction computation as GRASS computes flow accumulation directly from the elevation grid. To provide

as fair a comparison as possible, we used the built-in options to optimize the performance of GRASS as much

as possible. The r.watershed function can run in two modes, ram and seg; ram uses virtual memory managed

by the operating system to store all the data structures and is faster than seg; seg uses the GRASS segment

library which manages data in disk files. In our experiments we first ran the ram version, and only if it ran out

of memory we used the seg version. We also removed the nodata values from the input grid using the r.mask

command in order to reduce the memory requirements (and thus running time) of r.watershed.

The command has many other extra options and uses an expensive least-cost search algorithm [Ehlschlaeger

1989]. This may explain why GRASS had poor performance in all our experiments, doing worse than Ter-
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raflow both at large and small memory sizes, even though we used a slightly faster hardware platform for

GRASS than for Terraflow. GRASS used 12 minutes to process the Kaweah dataset and 5 days to process

the Puerto Rico dataset, compared to Terraflow 3 and 8 minutes. We let GRASS run for 17 days on the

Hawaii dataset, in which time it only completed 65% of the task. The estimated run time on Hawaii is thus 24

days, or 960 times longer than the running time of Terraflow (38 minutes at 512MB.)

Finally, we also considered the performance of TARDEM [Tarboton ]. TARDEM is a suite of programs for

DEM analysis developed at Utah State University. It provides the functions flood, d8 and aread8. Together

they perform the same function as Terraflow. TARDEM is competitive for small datasets, but does not

scale well as dataset size increases. It used 40 hours to process the Cumberlands dataset and died with a “flood

error” on the East-Coast and Midwest USA datasets. On the Central Appalachian datasets the flood command

completed in 20 days, while the d8 command ran for 21 days before we aborted it. At that time it was thrashing

with a CPU utilization under 5% and a 3GB swap file.

The main conclusion of all our experiments is that Terraflow is significantly faster on large terrains and

has its performance is more predictable than that of the other GIS systems.

3.3 Terraflow Options

Terraflow is compatible with standard GIS software and can produce outputs similar to those produced by

ArcInfo and GRASS. In order to give the user better control over the way flow is modeled, the Terraflow Fill

and Flow allow the option of choosing between SFD and MFD flow routing. For Fill this option naturally

controls which type of flow directions are computed. For Flow it controls to what extent the input flow

directions are used. The four different choices of the options result in the following behavior:

—(Fill=MFD, Flow=MFD) Fill computes MFD directions. Flow uses the MFD directions computed by

Fill to distribute flow.

—(Fill=MFD, Flow=SFD) Fill computes MFD directions. Flow distributes flow according to the dominant

direction among the multiple directions assigned to a cell. On slopes the dominant direction is the neighbor

cell with the largest gradient.

—(Fill=SFD, Flow=SFD) Fill computes SFD directions (On plateaus, the direction is assigned to a “middle”

direction among the possible ones; Note that it has more information than Flow and can make a better choice

to break ties). Flow uses the SFD direction computed by Fill to distribute flow.

—(Fill=SFD, Flow=MFD) Fill computes SFD directions as above. Flow uses the SFD directions computed

by Fill on plateaus, while on slopes it distributes flow to all downslope neighbors. Note that (MFD, SFD)

and (SFD, SFD) will give identical results on slopes, while on plateaus the latter can make a better choice.
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If Fill and Flow are both run with the MFD option, an additional option can be used to instruct Flow to

switch from MFD to SFD when the flow accumulation value of a cell exceeds a user-defined threshold c. More

precisely, if the flow value of a cell exceeds c, Flow uses a dominant direction instead of the directions computed

by Fill. The option can be used to allow diffuse MFD flow for small streams, while obtaining the tighter SFD

stream paths for large streams. If the threshold c is set to 0 the flow accumulation algorithm becomes a D8-type

algorithm and the results are the same as if running Flow with the SFD option.

Figures 15 and 16 illustrate the options described above. Figure 15 shows a DEM, and its flow accumulation

computed by ArcInfo. Figure 16 shows the flow accumulation computed by Terraflow with the four different

options. All terrains are rendered with GRASS. Note the way in which the resulting flow accumulation depends

on the flow routing model used: The SFD-SFD combination produces many parallel flow lines across slopes,

while the MFD-MFD combination produces fewer, larger streams. We have not run experiments with switching

from MFD to SFD at different thresholds. However, investigating the accuracy of MFD-SFD results compared

to the standard SFD and MFD flow routing remains an interesting problem for terrain analysts.

(a) DEM. (b) ArcInfo flow accumulation.

Fig. 15. A DEM and its flow accumulation computed by ArcInfo.
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(a) Fill (MFD), Flow (MFD) (b) Fill (MFD), Flow (SFD)

(c) Fill (SFD), Flow (MFD) (d) Fill (SFD), Flow (SFD)

Fig. 16. Different flow accumulations computed by Terraflow.
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4. CONCLUSION

We have formulated a new approach toward flow computations on very large datasets by applying principles

of CPU- and I/O-efficient algorithms. Together with our previous work this constitutes Terraflow, the

first I/O-optimal solution for flow routing and flow accumulation on massive grids. We have demonstrated

the practical efficiency of Terraflow on real-life terrains of varying sizes and characteristics. Terraflow

provides consistent performance as data sizes increase, and significant speedups when compared to standard

GIS systems. Terraflow can be found on the web at http://www.cs.duke.edu/geo*/terraflow/.
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