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Abstract. In this paper we address for the first time the I/O
complexity of the problem of sorting strings in external mem-
ory, which is a fundamental component of many large-scale
text applications. In the standard unit-cost RAM comparison
model, the complexity of sortingK strings of total lengthN
is�(K log

2
K+N). By analogy, in the external memory (or

I/O) model, where the internal memory has sizeM and the
block transfer size isB, it would be natural to guess that the
I/O complexity of sorting strings is�(K

B
logM=B

K
B

+ N
B
),

but the known algorithms do not come even close to achiev-
ing this bound. Our results show, somewhat counterintu-
itively, that the I/O complexity of string sorting depends upon
the length of the strings relative to the block size. We first
consider a simple comparison I/O model, where one is not
allowed to break the strings into their characters, and we
show that the I/O complexity of string sorting in this model is
�(N1

B
logM=B

N1

B
+K2 logM=BK2+

N
B
), whereN1 is the to-

tal length of all strings shorter thanB andK2 is the number
of strings longer thanB. We then consider two more general
I/O comparison models in which string breaking is allowed.
We obtain improved algorithms and in several cases lower
bounds that match their I/O bounds. Finally, we develop
more practical algorithms without assuming the comparison
model.
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1 Introduction

The problem of lexicographically sorting a set of strings
in the internal memory of computers has received much at-
tention in the past (see e.g. [3, 34]). This problem is the
most general formulation of sorting because it comprises in-
teger sorting (i.e., strings of length one), multikey sorting
(i.e., equal-length strings) and variable-length key sorting
(i.e., arbitrarily long strings). Very recently several authors
have considered the importance of this problem from differ-
ent points of view: multikey sorting (e.g. [11, 14, 39]), inte-
ger sorting and its variants (e.g. [4, 5, 25, 43]), and parallel
string sorting (e.g. [29, 30, 32]), just to cite a few.

Today’s applications, however, tend to manipulate tex-
tual data sets of amazingly large size that do not fit into
the internal memory of computers. Examples include tex-
tual databases [26], digital libraries [24], and relational
databases [37]. In these cases, the data need to be stored
on external storage devices like disks or CD ROMs, which
are roughly one million times slower than internal caches
in terms of access time (or latency). This disparity in la-
tency has given rise in many applications to an input/output
(or I/O) bottleneck, in which the time spent on moving data
between internal and external memory dominates the over-
all execution time [27]. I/O bottlenecks are increasing in
significance since the relative speed of disks versus internal
memories is decreasing, especially with more and more use
of parallel computers [42].

The performance of currently used algorithms for sorting
strings can seriously degrade when the space occupied by the
strings is larger than the available internal memory. In this
paper, we address for the first time the important problem of
how to sort strings when they are stored in external memory.
We derive new lower and upper bounds as well as practical
algorithms.

1.1 The I/O Model

The slow part of disk access is positioning the read-write
head and waiting for the disk to rotate into position; once
done, data in subsequent locations on disk can be accessed
very quickly. To amortize (or hide) disk latency, each in-
put/output operation (orI/O) transfers a large block of con-
tiguous data. We use the standard model of I/O complex-



ity [2, 46] and define the following parameters:

K = # of strings to sort;

N = total # of characters in theK strings;

M = # of characters �tting in internal memory;

B = # of characters per disk block (or track);

whereM < N and1 � B �M=2. We measure the perfor-
mance of an algorithm in terms of the number of I/Os it per-
forms. The quantity�(N=B) corresponds to “linear time”
in the I/O model, sinceN=B I/O operations are needed to
read or write the whole set ofK strings.

We shall see that the I/O complexity of string sorting de-
pends upon the lengths of the strings relative to the block
sizeB. We use the termshort stringto denote any string
with fewer thanB characters, and we define along stringto
be a string of lengthB or greater. This distinction naturally
introduces four additional input parameters:

K1 = # of short strings;

K2 = # of long strings;

N1 = total # of characters in the short strings;

N2 = total # of characters in the long strings;

whereK = K1 + K2 is the total number of strings, and
N = N1 +N2 is their total number of characters. Note that
N1 < K1B andN2 � K2B.

We assume that theK input strings are initially stored
on disk in contiguous locations; the long strings are stored
in contiguous blocks. We assume without loss of generality
that the length of each long string is a multiple ofB. Every
block on disk has a unique integer-valued address, and when
we talk about a pointer to a (long) string we mean the address
of its first block. We can locate the block containing theith
character of a long string by using simple arithmetic opera-
tions on the string’s address. We assume that�(B) pointers
or integers fit in a block.

When discussing string sorting algorithms we shall dis-
cuss short and long strings separately. Given a set of strings
we can easily separate it into a set of short strings and
a set of long strings usingO(N=B) I/Os; similarly, two
sorted sets of strings can be merged together inO(N=B)

I/Os. Our algorithms for sorting long strings first produce
the sorted sequence of pointers to the strings (usually called
rank sorting); the final sorted sequence can be obtained with
O(K2 + N2=B) = O(N2=B) extra I/Os by moving the
strings into their final position one at a time.

1.2 Previous Results in I/O-efficient Compu-
tation

Early work on I/O algorithms concentrated on sorting and
permutation related problems [2, 9, 18, 41, 40, 46]. Work
has also been done on matrix algebra and related problems
arising in scientific computation [2, 45, 46]. More recently,

researchers have designed I/O algorithms for a number of
problems in different areas, such as in computational geom-
etry [6, 10, 28], graph theoretic computation [6, 7, 16] and
string matching [11, 17, 20, 22, 23].

Aggarwal and Vitter [2] proved that the number of I/Os
needed to sortN indivisibleelements is
(N

B
logM=B

N
B
) in

thecomparison I/O model(where the order between two el-
ements can be inferred only by their comparison or by tran-
sitivity).1 They also proved that rearranging a set ofN in-
divisible elements according to a given permutation requires

(minfN; N

B
logM=B

N
B
g) I/Os. Thus in general, permuting

is harder in external memory than in internal memory where
it takes linear time. Aggarwal and Vitter also developed op-
timal sorting algorithms based upon merge and distribution
sort.

In internal memory a balanced search tree can be used in
the context of insertion sort to sort optimally. If we use the
standard external memory search tree, the B-tree [12, 19], we
get anO(N logB N)-I/O insertion sort. This algorithm’s I/O
efficiency is a multiplicative factor ofB logB(M=B) larger
than optimal. In [6, 8] a so-calledbuffer technique for lazy
updates in external data structures is developed, and using
this technique thebuffer treeis designed. Using this struc-
ture in the external insertion sort yields an optimal sorting
algorithm.

As far as the general string sorting problem is concerned,
there are a number of data structures like prefix B-trees [13],
SB-trees [20], compacted tries [38], suffix trees [17, 36],
and suffix arrays [35] that can be used to sort arbitrarily
long strings in external memory. Among them, the SB-tree
is the most I/O-efficient in the worst case; it can be em-
ployed to sort a set of strings inO(K logBK + N

B
) I/Os.

This sorting algorithm can be converted into an optimal
�(K log

2
K + N)-time algorithm for the internal compar-

ison model by fixingB to a constant [21]. Very recently,
Bentley and Sedgwick [14] emphasized the practical impor-
tance of string sorting and presented a version of quicksort
that also achieves the optimal�(K log

2
K+N) comparison

bound. Analyzed in the I/O model, however, the algorithm
usesO(K log

2
K +N) I/Os, which is worse than the bound

obtained using the SB-tree.

1.3 Our Results

Since algorithms exist that match the
(K log
2
K + N)

lower bound for sorting strings in the internal compari-
son model, it seems reasonable to expect that the com-
plexity of sorting strings in the comparison I/O model is
�(K

B
logM=B

K
B

+ N
B
). However, the existing sorting algo-

rithms do not even come close to meeting this bound. In this
paper we show as far as optimal I/O bounds are concerned
that sorting strings in external memory is not nearly as sim-
ple as it is in internal memory. We analyze the problem in the
following three variants of theI/O comparison model, which

1We define for conveniencelogM=B
N
B

= maxf1; (log N
B
)= log M

B
g.



differ from one another in how strings can be processed:

Model A: Strings are consideredindivisible (i.e., they are
moved in their entirety and cannot be broken into char-
acters), except that long strings can be divided into
blocks.

Model B: We relax the indivisibility assumption of Model A
by allowing strings to be divided into single characters
in internal memory only.

Model C: We waive the indivisibility assumption com-
pletely and allow division of stringsin both internal and
external memory.

The algorithm by Bentley and Sedgwick [14] can easily be
modified to work in Model A; the SB-tree algorithm [20]
requires the power of Model C.

One of our results is counterintuitive in the sense that we
prove that the conjectured�(K

B
logM=B

K
B
+ N

B
) I/O bound

is too low. We also formally confirm the intuition that break-
ing up strings into their individual characters can reduce the
I/O complexity of string sorting. Specifically, Models A
and B have different string sorting complexities. One of our
main results is that the I/O complexity of string sorting de-
pends upon thenumber of charactersfor small strings (N1)
and thenumber of stringsfor long strings (K2). In addition,
our theoretical study gives some crucial insights into the de-
sign of practical string sorting algorithms. Our specific re-
sults are summarized in the remainder of this section.

Model A. In Section 2 we prove the following optimal
sorting bound for Model A:

Theorem 1 In Model A, the I/O complexity of sorting
a set ofK1 short strings andK2 long strings of total
lengthsN1 and N2, respectively, is�(N1

B
logM=B

N1

B
+

K2 logM=BK2 +
N1+N2

B
).

The first term in the bound is the cost of sorting the short
strings, the second term is the cost of sorting the long strings,
and the last term accounts for the cost of reading the whole
input. The result shows that sorting short strings is as diffi-
cult as sorting their individual characters, while sorting long
strings is as difficult as sorting their firstB characters.

The lower bound for small strings in Theorem 1 is proved
by extending the technique in [2] and considering the spe-
cial case where allK1 small strings have the same length
N1=K1. The lower bound for the long strings then follows
by considering theK2 small strings obtained by looking at
their firstB characters. The upper bounds in Theorem 1 are
obtained by using a novel external merge sort approach that
takes advantage of a lazy trie in internal memory to guide
the merge passes. Our upper bound represents a significant
improvement over the previously known algorithms, since
N1

B
< K1 and the base of the logarithm terms isM=B.

Model B. In Section 3 we discuss the more complex situa-
tion of Model B, in which we need to handle long and short
strings separately.

Theorem 2 In Model B, the I/O complexity of sortingK2

long strings of total lengthN2 is�(K2 logM K2 +
N2

B
).

The optimal bound in Theorem 2 differs from the corre-
sponding bound in Theorem 1 in terms of the base of the
logarithm; the base isM rather thanM=B. This shows that
breaking up long strings in internal memory is provably help-
ful in external string sorting. We again prove the lower bound
by a generalization of the technique used in [2]. We obtain
the upper bound by means of a novel combination of the SB-
tree data structure [20] and the buffer tree technique [6]. This
allows us to get a�(M) SB-tree node fanout rather than a
�(B) fanout. Our algorithm is based upon a type of insertion
sort with a new batched insertion procedure for SB-trees.

For short strings, we can prove the following upper
bound:

Theorem 3 In Model B,K1 short strings of total length
N1 can be sorted inO(minfK1 logM K1;

N1

B
logM=B

N1

B
g)

I/Os.

The bound in Theorem 3 is the same as the cost of sort-
ing all the characters in the strings (i.e.,O(N1

B
logM=B

N1

B
))

when the average lengthN1=K1 of the short strings is
O(B=logM=BM). For the (in practice) narrow range
B=logM=BM < N1=K1 < B, the bound in Theorem 3 be-
comesO(K1 logM K1). In this range, the sorting complex-
ity for Model B is lower than the one for Model A, which
shows that breaking up short strings in internal memory is
provably helpful. We derive Theorem 3 by using either the
merge sort algorithm proposed for Model A or by executing
the sorting algorithm for long strings in Model B.

As far as the lower bound is concerned, we prove the fol-
lowing result:

Theorem 4 In order to sortK1 short strings in Model B,

(maxfN1

B
logMN1=BK1

N1

B
; minfN1

B
logM=B

N1

B
;K1gg)

I/Os are needed, whereN1 is the total length of the strings.

The lower bound in Theorem 4 is the maximum of two
terms. The first term is derived using the same technique
as in the proofs of Theorems 1 and 2. The second term ac-
counts for the cost of permutingK1 short strings once their
ranks in the final sorted sequence are given. When the av-
erage (short) string lengthN1=K1 isO(B=logM=B

N1

B
), the

lower bound becomes
(N1

B
logM=B

N1

B
). In this case, The-

orem 3 gives a matching upper bound. For the narrow range
B=logM=B

N1

B
< N1=K1 < B, in which there are very few

short strings per block, our bounds are only sometimes tight;
the full characterization will appear in the full paper.

Model C. Although the original SB-tree data structure [20]
fits in Model C (it keeps a variant of tries in some blocks of



the external memory and thus it divides strings into charac-
ters), it does not improve the bounds that we can immediately
derive from Model B (Theorem 2 and 3). As a consequence,
the algorithms designed for Model B also turn out to be the
fastest known for Model C. In Section 3, we discuss more in
detail the relation between Model B and Model C.

Practical Algorithms. Waiving the comparison model as-
sumption and using the insights we have gained during the
theoretical considerations, we have designed a number of
practical algorithms. These algorithms exploit the limited
size of the alphabet� from which the characters are cho-
sen in practice. By compressing the input strings in three
different ways and using a variant of thedoubling tech-
nique [33], we have obtained three different algorithms.
Their I/O bounds areO(N

B
logM=B

N
B
),O( N

FB
logM=B

N
F
+

N
B
) (whereF is a positive integer such thatF j�jF �M ),

andO(K
B
logM=B

K
B
+ N

B
logM=B j�j) (if there is a positive

integerF such thatj�jF � N ), respectively. In Section 4 we
sketch the idea behind the second algorithm. Note that in the
third algorithm, compression techniques and a constant-size
alphabet� allow us to beat the theoretical lower bounds we
proved for the I/O-comparison models above. An important
property of the three algorithms is that their I/O complexities
are typically linear in practice.

An increasingly popular approach to increase the through-
put of I/O systems is to use a numberD of disks in parallel,
such that one can read (or write)D blocks in one I/O pro-
vided that they come fromD distinct disks [15, 46]. An
important property of our three practical algorithms is that
they are all able to take full advantage of multiple disks; that
is, they obtainlinear speedupwith respect to the number of
available disks. In contrast, we can make our theoretical
algorithms work onD disks but without obtaining a linear
speedup. To do so we use thedisk stripingtechnique [46],
which in terms of performance has the effect of using a single
large disk with block sizeB0 = DB. Even though disk strip-
ing does not in theory achieve asymptotic optimality whenD

is large, it is often the method of choice in practice [44].

2 Model A—Indivisible Strings

In this section we prove Theorem 1 in two parts. In Sec-
tion 2.1 we consider the upper bound and in Section 2.2 the
lower bound.

2.1 Upper Bounds

We use variants of external merge sort to sort both short
and long strings. For the small strings the algorithm is almost
identical to the standard single-character external merge sort
algorithm [2]: We first produce�(N1=M) sorted “runs” us-
ing O(N1=B) I/O by repeatedly loading as many strings as
can fit in internal memory, sorting them, and writing them
back to disk. Next we continually merge�(M=B) sorted

runs into a longer sorted run, until we end up with one sorted
run containing all the strings. The crucial property is that we
can merge�(M=B) sorted runs of small strings together in
a linear number of I/Os in terms of their total length. Since
there arelogM=B

N1

M
= logM=B

N1

B
� 1 levels in the merge

process, each requiringO(N1=B) I/Os, we obtain the fol-
lowing result:

Lemma 1 In Model A,K1 short strings of total lengthN1

can be sorted inO(N1

B
logM=B

N1

B
) I/Os.

We now focus on merging long strings, where we have
K2 � N2=B. The main difficulty is that we cannot
compare strings character by character, since we could
end up loading every block of every string during each of
the logM=BK2 levels of the merge process, resulting in
a total ofO(N2

B
logM=BK2) I/Os. We instead obtain an

O(K2 logM=BK2 + N2

B
) I/O algorithm by modifying the

merging process in a novel way.
Let us assume that we are givenM=B string sequences

S1; : : : ;SM=B as input in a merging process. All string se-
quences have the same number of strings but are possibly of
different total length. Each string in the sequence is repre-
sented by a block of characters (initially its first block) and
the length of its longest common prefix with the previous
string in the sequence. We denote byXi the next nonmerged
string inSi. Since we want to merge theM=B sequences
into a new ordered string sequenceS, we maintain a heap-
like data structureH on X1; : : : ; XM=B in internal mem-
ory. At the beginning of the merging process, we initialize
H with the first string of each sequenceSi. At the generic
step, we useH to obtain the minimum stringXr among the
M=B strings inH , and we append (a block of)Xr and its
longest common prefix length with the previous output string
to the output sequenceS. We then insert the string follow-
ing Xr in Sr into H . We call this sequence of operations
extract min.

TheH data structure, which is always stored in internal
memory, is a lazy and slightly modified version of a com-
pacted search trie [34, 38] storingX1, . . . ,XM=B in lexico-
graphical order. Only the leftmost path of the trie is main-
tained (soH is actually in the form of a linear list), and no
characters are explicitly stored with the arcs, but for concep-
tual purposes its function is that of a trie. The leftmost leaf
in the trie stores the current minimum stringXr; the rest
of the strings are stored in lists associated with the internal
nodes ofH . We label each nodeu on the leftmost path inH
by the lengthlen(u) of the stringW (u) spelled out by the
path from the root tou. Nodeu has associated with it a list
of all the strings whose longest common prefix withXr has
length len(u); the block from each string containing char-
acter numberlen(u) is also stored in internal memory. The
number of nodes inH is bounded byM=B and the structure
occupiesO(M=B) blocks in internal memory even though
theM=B strings can collectively be much longer.

We now describe how to implement theextract min oper-
ation. LetXr be the (minimum) string stored in the leftmost



leaf f 2 H , and letX 0

r be its succeeding string in the se-
quenceSr (stored in external memory). Associated with the
header information forX 0

r is the length of the longest com-
mon prefix betweenXr andX 0

r, denoted bylcp(Xr; X
0

r).
We load the block of stringX 0

r containing character number
lcp(Xr; X

0

r) and insertX 0

r intoH in two phases. In the first
phase,X 0

r is inserted into an existing or new node on the
leftmost path based upon the value oflcp(Xr; X

0

r). Then
leaf f is deleted fromH , and (a block of)Xr is appended
to the merged output (along with the length of the longest
common prefix betweenXr and the last output string). In
the second phase, a new leftmost leaf node is constructed by
expanding the currently lowest internal nodeu in H . Several
strings—each represented by one block of characters in in-
ternal memory, including character numberlen(u)—may be
associated withu. Succeeding blocks from these strings are
read until a unique leftmost leaf (i.e., minimum string) can
be determined. In this process the strings stored in nodeu

are “pushed” down the tree. Several new internal nodes may
be formed immediately above the new leaf. The longest
common prefix between this new minimum string and the
previous minimum stringXr is the value previously stored
aslen(u).

Lemma 2 In Model A,K2 long strings of total lengthN2

can be sorted inO(K2 logM=BK2 +
N2

B
) I/Os.

Proof (sketch): In each merge pass, disregarding for now the
initialization of H , each string requires no more than one
I/O plus some extra I/Os needed to push the string down
theH structure. The extra I/Os are to blocks of the string
that are not reloaded in later merge passes. Summed over
the logM=BK2 merge passes, the total number of I/Os done
for each string is

P
(1 + # extra I/Os) = logM=BK2 +

(length of string)=B. Hence, over all theK2 strings, the to-
tal number of I/O operations done isK2 logM=BK2+N2=B.

All that remains is to analyze the I/O cost of all the ini-
tializations ofH . At the beginning of each merge pass, we
initializeH at a cost bounded by the number of blocks in the
M=B strings initially stored inH . Except for the minimal
stringXr, we charge the I/O cost of examining the blocks of
a string to the string itself. ForXr, we charge its I/O cost
to the string among the otherM=B � 1 strings that has the
longest prefix withXr; the number of blocks of this string is
at least the I/O cost forXr. The stringXr is the only string
from this merge pass that will participate in the initialization
of H in a later merge pass. By the above charging scheme,
no string is charged in more than one merge pass, and no
string is charged more than double the number of blocks that
it contains. Hence, the total number of I/Os needed to initial-
ize the lazy triesH among all the merge passes is bounded
by 2N2=B.

2.2 Lower Bounds

Lemma 3 In Model A, the number of I/Os needed to sortK1

short strings of total lengthN1 is
(N1

B
logM=B

N1

B
).

Proof (sketch): Given the input parametersK1 andN1, we
consider a special instance in which all short strings have
the same lengthN1=K1 (hence, we haveX = BK1=N1

strings per block), and apply a modified version of the argu-
ment used in [2]. Initially there areK1! possibilities for the
correct ordering of theK1 equal-length short strings; every
input operation and the string comparisons done after it de-
crease this number. Consider an input operation loadingX

short strings from one block and assume that their relative
order is not known (this may happenN1=B times). After
the input operation, there are at most( (M=B)X

X
)X ! sets of

possible outcomes to the comparisons between the strings in
internal memory. Conversely, if the order of theX strings is
known, there are at most( (M=B)X

X
) possible outcomes. An

adversary always chooses the outcome that maximizes the
number of total orderings consistent with the comparisons
done so far. Aftert I/Os, the number of consistent orderings
is at leastK1!=(X !)N1=B( (M=B)X

X
)t. Setting this expression

to 1, we get t =
(N1

B
logM=B

N1

B
).

We now have all the ingredients to prove the sorting lower
bound for long strings. It suffices to observe that sortingK2

long strings is at least as difficult as sorting their prefixes of
lengthB. Consequently, by using Lemma 3 and the fact that
we need to read all theN2 characters (which takesN2

B
I/Os),

we obtain the following corollary, which completes the proof
of Theorem 1.

Corollary 1 In Model A,
(K2 logM=BK2 +
N2

B
) I/Os are

needed to sort a set ofK2 long strings of total lengthN2.

3 Model B—Strings Indivisible in External
Memory

In this section we prove Theorems 2, 3 and 4. The up-
per bounds (Theorems 2 and 3) are discussed in Section 3.1
and the lower bounds (Theorems 2 and 4) are discussed in
Section 3.2.

3.1 Upper Bounds

In this section we describe an algorithm for sorting long
strings, and this proves the upper bound in Theorem 2. As
mentioned in the introduction the algorithm for short strings
is obtained by applying either this long string algorithm or
the short string algorithm for Model A. Our solution for long
strings will be based upon the SB-tree and the buffer tree
data structures which we briefly review below (we refer the
reader to [6, 8, 20] for more details). We then describe our
improved algorithm which is a combination of these two data
structures.

The Buffer Tree. The basic buffer tree onR integer keys is
a B-tree (or rather an (a; b)-tree [31]) with fanout�(M=B)

and with blocks of elements in the leaves; thus the tree has
heightO(logM=B

R
B
). A buffer of size�(M=B) blocks is



assigned to each internal node and the operations on the
structure are done in a “lazy” manner. For example, when
inserting a new key, one does not search all the way down
the tree to find the place among the leaves to insert the ele-
ment. Instead, one waits until a block of insertions has been
collected, and then this block is inserted into the buffer of the
root. When a buffer “runs full,” its elements are “pushed”
one level down to the buffers on the next level. Thisbuffer
emptying processis performed by loading the elements (and
the splitting/routing elements) into internal memory, sorting
them, and writing them back to the appropriate buffers on
the next level. If the buffer of any of the nodes on the next
level becomes full, the buffer emptying process is applied
recursively. The main point is that a buffer emptying pro-
cess can be performed inO(M=B) I/Os, and since it pushes
�(M=B) blocks of elements one level down, a constant
number of I/Os is used on each block (as opposed to each el-
ement) on each of theO(logM=B

R
B
) levels of the structure.

In [6] it is thus shown that the total number of I/Os used to
insertR elements in a buffer tree, including I/Os used for
rebalancing, isO(R

B
logM=B

R
B
).

The SB-Tree. From a high level point of view an SB-tree
storing a set ofR strings is a B-tree [12, 19] built on the set of
pointers to the strings: The pointers are stored in the leaves
of the tree (�(B) pointers per leaf) and are ordered accord-
ing to the lexicographical order of the strings they point to.
Each internal node contains�(B) string pointers, namely, a
copy of the leftmost and rightmost pointer contained in each
of its �(B) children. The SB-tree has heightO(logB R)
and rebalancing after an update is done by splitting or fusing
nodes (or by sharing sons).

In order to allow I/O-efficient search and update opera-
tions, each internal node� contains the so-calledblind trie
data structureBT �, which is built on the set of stringsS�
pointed to by the pointers in�. The blind trie is a variant of
the compacted trie [34, 38] where each nodeu is labeled with
the lengthlen(u) of the stringW (u) spelled out by the path
from the root tou, just like in theH structure in Section 2.1.
The substring normally labeling an arc is replaced by its first
character, called thebranching character. (In theH struc-
ture the substring was instead completely removed.)BT �

occupiesO(jS� j) space (it containsO(jS� j) characters and
pointers), even though the total length of the strings inS� can
be much larger. Consequently,BT � fits in one block. This
is one of the important properties used in [20], where it is
shown how the blind tries can be used to efficiently guide the
search for the lexicographical position of a stringP among
the strings (i.e., pointers) stored in the leaves. This can then
be used to design anO(logB R +

jP j

B
) I/O insertion proce-

dure, which in turn can be used to obtain an external sorting
algorithm usingO(R logB R+ N

B
) I/Os, whereN is the total

length of theR strings. Note that the SB-tree uses the power
of Model C because single characters from many strings are
used to form the blind tries.

The Buffered SB-Tree. We obtain the improved long
string sorting algorithm by means of a novel combination of
the the buffer tree and the SB-tree which we call thebuffered
SB-tree.

We modify the SB-tree by increasing the fanout (and thus
the size of bothBT � andS�) to �(M) in order to obtain
heightO(logM K2). Furthermore, in order to make the SB-
tree work in Model B (where strings are considered indivisi-
ble in external memory), we do not explicitly store the blind
trie branching characters but ratherpointersto them. Each
SB-tree node� can then be stored in�(M=B) blocks in
external memory. However, when we need to use the blind
trie BT� of a node� in internal memory, we have to per-
formO(M=B) I/Os to load� andO(M) extra I/Os to load
the branching characters ofBT� from theO(M) strings be-
longing toS�.

If we were to insert strings in the above structure on an in-
dividual basis, we would get anO(M logM K2+

jP j

B
) inser-

tion I/O bound for a stringP , because we would useO(M)

I/Os on each level of the structure to load a blind trie. The
main idea to go around this problem is (as in the buffer tree)
not to insert strings on an individual basis, but to collect
�(M) strings (pointers) in a bufferB� associated with the
node� and to push the strings one level down the structure
onceB� gets full. In this way theO(M) I/Os used to load
BT � can be charged to the strings inB� so that only a con-
stant number of I/Os is charged to each of them. As a conse-
quence, we get an amortizedO(logM K2+

jP j

B
) insertion I/O

bound for each stringP , and thus anO(K2 logM K2 +
N2

B
)

I/O algorithm for sortingK2 long strings of total lengthN2.
It is worth noting that the insertion procedure developed

in [20] needs to be modified to work in the setting described
above. We describe here the new batched insertion proce-
dure, leaving a lot of details to the full paper: When a buffer
B� contains�(M) elements, we perform a buffer emptying
process on node� as follows. We first load blind trieBT �

into internal memory usingO(M) I/Os, and then we route
each string pointer inB� through�’s children by executing
the procedureBT Search described below. In order to do
the routing efficiently, we inductively maintain the invariant
that each element in bufferB� is actually a triplehP; `;Xi,
such thatP is the string pointer andX is a (pointer to a)
string in S� that shares the first̀ characters withP (i.e.,
lcp(P;X) � `).

ProcedureBT Search(hP; `;Xi, S�) searches for the
lexicographic position ofP among the strings inS� and thus
determines the child whereP has to be routed. The proce-
dure works in two phases. In thefirst phase, we identify the
leaf v in BT � associated withX (i.e., W (v) = X). We
define thehit nodefor a pair(v; `) to bev’s ancestoru sat-
isfying len(u) � ` > len(parent(u)); if ` = 0, the hit
node is the root. We then begin a downward traversal of
BT � from the hit nodeu by matchingP ’s characters with
the branching characters of the traversed arcs, until either
a leaff is reached or no further branching is possible. In
the latter case,f is chosen to be one of the leaves descend-



ing from the last traversed node. Note thatf stores one of
the strings inS� that share the longest common prefix with
P [20]. The downward traversal ofBT � cannot be executed
without I/Os becauseP is stored in external memory. We
therefore perform it as follows: We first load the block con-
taining the characterP [`+ 1] into internal memory; assume
that this block contains the substringP [i; i + B � 1]. After
that, we traverseBT � downwards usingP [i; i+B�1] until
we end up in a nodew in which either no further branching
is possible (and thus we can determinef ), or a character of
P [i + B; jP j] is needed to continue the branching. In the
latter case, we take a leaft descending fromw and compare
P [i; i + B � 1] with the corresponding substring ofW (t)

using only one I/O. If they are different,t is the leaff we
are looking for, and we have foundlcp(P;W (f)) and the
mismatching character ofP andW (f), and thus we can go
on to the second phase described below. Otherwise, we load
the block forP [i+B; i+2B�1] and resume the downward
traversal ofBT � from nodew. This approach guarantees
that we do not rescanP . If lcp = lcp(P;W (f)) the number
of I/Os used in the first phase isO( lcp�`

B
+ 1).

The second phasebegins when leaff has been identi-
fied. Sincef stores one of the strings inS� that shares the
longest common prefix withP , the mismatching character
of P andW (f) can be used along with the hit node for
the pair(f; lcp(P;W (f))) to findP ’s position inS� with-
out any further I/Os. In [20], it has been shown that one
of the strings, sayY , adjacent toP ’s position inS� shares
lcp(P;W (f)) characters withP (i.e., lcp(P;W (f)) =

lcp(P; Y )). We therefore maintain the invariant forP by
using one I/O to store the triplehP; lcp ; Y i in the buffer of
the child of� that containsY . (Details will appear in the full
version of the paper.)

From the above discussion we get that the routing cost
for string P is O( lcp�`

B
+ 1). The O(M) I/Os used to

loadBT � are divided among the�(M) strings as described
above, such thatO(1) I/Os are charged toP . It follows
that routingP contributes withO(

PH
i=1

`i�`i�1

B
+ 1) I/Os

to the overall cost of the buffer emptying processes, where
H = O(logM K2) is the height of the SB-tree and`i is the
value of` at leveli, for all 1 � i � H . This sums up to
O(logM K2+

jP j

B
) because0 � `i�1 � `i � jP j, and hence

we need a total ofO(K2 logM K2 + N2

B
) I/Os for all the

strings.
The only I/Os we have not accounted for so far are the

ones used to rebalance the buffered SB-tree structure. Fol-
lowing the argument in [6], it can be argued that inserting
K2 strings results in�(K2=M) splits in total. Since one
split can be performed inO(M) I/Os, the rebalancing cost
adds up toO(K2). Details will appear in the full version of
this paper. This ends our proof of the following:

Lemma 4 In Model B,K2 long strings of total lengthN2

can be sorted inO(K2 logM K2 + N2

B
) I/Os using the

buffered SB-tree.

An interesting question is what happens if we waive the

indivisibility assumption and use Model C. In the above al-
gorithm for Model B, we replaced the branching characters
by their pointers to avoid string breaking in external mem-
ory. Consequently, we neededO(M) I/Os to load a blind
trie into internal memory. If we waive the indivisibility as-
sumption also in external memory, we can store the blind
trie directly in�(M=B) blocks and thus decrease the cost
of loading it to�(M=B) I/Os. However, we still obtain the
same overall I/O bound. In general, it seems that we cannot
use the buffered SB-tree technique to obtain a better bound
in Model C, because we have already obtained the maximal
�(M) fanout on every node.

3.2 Lower Bounds

Lemma 5 In Model B, the number of I/Os needed to sortK1

short strings of total lengthN1 is
(N1

B
logMN1=BK1

N1

B
).

Proof (sketch): We use a technique similar to the one in the
proof of Lemma 3 except that we bound the number of pos-
sible outcomes of the comparisons among the strings in in-
ternal memory by(M

X
)X !, as we can have characters from

as many asM different strings in internal memory. Setting
K1!=(X !)N1=B(M

X
)t � 1 and simplifying, we get the de-

sired lower bound ont.

Analogously to what we was done in Section 2.2, we can
now obtain the following for long strings:

Corollary 2 In Model B,
(K2 logM K2+
N2

B
) I/Os are re-

quired to sortK2 long strings of total lengthN2.

We have now characterized the asymptotic I/O complex-
ity of sorting long strings (i.e., proved Theorem 2). As
discussed in the introduction, Lemma 5 and Lemma 6 (be-
low) allow us to characterize the complexity of sorting short
strings except for a narrow set of inputs:

Lemma 6 In Model B, 
(min(N1

B
logM=B

N1

B
;K1)) I/Os

are needed to sortK1 short strings of total lengthN1.

Proof (sketch): We again consider the equal length case
where we haveX = BK1=N1 strings per block. First
note that from apermutationpoint of view, Models A
and B are equivalent because strings are moved in and
out of internal memory in their entirety. Thus a permuta-
tion bound in Model A also holds in Model B. The per-
mutation lower bound proved in [2] shows that there ex-
ists a permutation� of N 0 indivisible elements requiring

(minfN 0; N

0

B0
logM 0=B0

N 0

B0
g) I/Os on a machine with block

sizeB0 and memory sizeM 0, respectively. An algorithm
that sortsK1 = N 0 short strings in Model A must be ca-
pable of permuting the strings according to�. Thus by re-
garding strings as single elements, we can obtain a sequence
of I/Os performing the permutation� on a machine with
B0 = X andM 0 = M

B
X from a sequence of I/Os permuting

the strings in Model A. Since the two sequences perform the



same number of I/Os, we obtain the lower bound by substi-
tutingN 0 = K1, B0 = X , andM 0 = M

B
X into the above

bound.

4 Practical Algorithms

The basic tool we use to design practical sorting algo-
rithms is an external memory version of the Karp-Miller-
Rosenberg labeling technique [33], also called thedoubling
algorithm, which usesO( N

DB
logM=B

N
B
) I/Os. We defer the

description of the external doubling algorithm to the full pa-
per. Our three algorithms share a similar overall structure:
In a preprocessing step, the input string sequenceS (of to-
tal lengthN ) is compressed into a sequenceS 0 by shrinking
each string inS by a factorF > 1, while preserving their
relative lexicographic order. Then the doubling algorithm is
applied toS 0.

In this extended abstract, we just sketch one of our three
algorithms. In this algorithm, the preprocessing step consists
of compressing the original strings as follows: We “break”
the strings into a setC of O(N

F
+K) substrings of lengthF

(strings shorter thanF form a single substring). Each string
of lengths is thus a sequence ofO(s=F ) “supercharacters”,
each one being a string inC. The parameterF > 1 is chosen
to be the maximum integer (if any) such that the whole set
C can be kept simultaneously in internal memory; it suffices
thatF j�jF � M . Since we can keepC in internal mem-
ory (by means of a ternary search tree [14]), we can sortC’s
strings by one single scan of the whole input. This clearly
gives the final rank ofC’s strings. Subsequently, we cre-
ate the new string sequenceS 0 in which each string inS is
compressed by replacing its supercharacters (i.e., length-F

substrings) with their ranks computed previously. The main
observation is that for any two substrings ofC one is lexi-
cographically smaller than the other if and only if the rank
of the former is smaller than the rank of the latter. There-
fore, sorting the strings inS 0 is equivalent to sorting the
strings inS. We finally execute the doubling algorithm onS 0

and determine the sorted string sequence. The overall cost
is O( N

FDB
logM=B

N
F

+ N
DB

), which becomes linear when
F � logM=B(N=B) (i.e., in many practical cases).

5 Conclusions and Open Problems

Our goal in this paper was to explore the I/O complexity
of sorting strings from both a theoretical and practical per-
spective. For various I/O models, we showed the relationship
between string length and sorting complexity and derived up-
per and lower bounds. All our algorithms have better I/O
performance than all previously known algorithms.

Several interesting open questions remain. One primary
open problem is to close the remaining gap between the up-
per and lower bounds in Model B. Another is to prove lower
bounds in Model C. Proving such new or better lower bounds
would probably require a fundamentally new approach.

Our strongest model (Model C) removes the indivisibi-
lity assumption on strings, but still assumes that the indi-
vidual characters are indivisible. A natural question to ask
is whether compression and coding techniques can be used
to get better algorithms when, for example, bit operations
are allowed on the characters, akin to the recent result on a
type of matrix transposition [1]. The practical algorithms in
Section 4 already exploit some of these techniques.

Another natural question to ask is how to sort strings opti-
mally usingD disks. As discussed, the practical algorithms
in Section 4 can achieve optimal (linear) speedup in theD-
disk model in many real situations. We are currently im-
plementing several of our algorithms and hope to report full
experimental results soon.
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