
Practical Techniques for Constructing

Binary Space Partitions for Orthogonal Rectangles

Pankaj K. Agarwal� T. M. Muraliy Je�rey Scott Vitterz

Center for Geometric Computing

Department of Computer Science, Duke University

Box 90129, Durham, NC 27708-0129

Email: fpankaj,tmax,jsvg@cs.duke.edu

Abstract

We present the �rst systematic comparison of the perfor-
mance of algorithms that construct Binary Space Partitions
for orthogonal rectangles in R3 . We compare known algo-
rithms with our implementation of a variant of a recent al-
gorithm of Agarwal et al. [1]. We show via an empirical
study that their algorithm constructs BSPs of near-linear
size in practice and performs better than most of the other
algorithms in the literature.

1 Introduction

The Binary Space Partition (BSP) [3, 5] is a versa-
tile and popular data structure, with applications in
many problems|hidden-surface removal, global illumina-
tion, shadow generation, solid geometry, geometric data re-
pair, ray tracing, network design, and surface simpli�cation;
see [1] for a detailed list of references.

The e�ciency of most BSP-based algorithms depends on
the size and/or the depth of the BSP (we formally de�ne the
size of a BSP later). Therefore, several algorithms have been
developed to construct BSPs of small size and depth; see [1]
for a list of references.

Recently, Agarwal et al. [1] developed an algorithm that
constructs a BSP for orthogonal rectangles in R3when most
rectangles have aspect ratio bounded by a constant. We
have implemented their algorithm to study its performance
on \real" data sets. We have also systematically compared
its performance to that of various existing algorithms. We
show that the algorithm of Agarwal et al. is indeed practical:

�Support was provided by National Science Foundation re-

search grant CCR{93{01259, by Army Research O�ce MURI

grant DAAH04{96{1{0013, by a Sloan fellowship, by a National

Science Foundation NYI award and matching funds from Xerox

Corp, and by a grant from the U.S.-Israeli Binational Science

Foundation.
yThis author is a�liated with Brown University. Sup-

port was provided in part by National Science Foundation re-

search grant CCR{9522047 and by Army Research O�ce MURI

grant DAAH04{96{1{0013.
zSupport was provided in part by National Science Foun-

dation research grant CCR{9522047, by Army Research O�ce

grant DAAH04{93{G{0076, and by Army Research O�ce MURI

grant DAAH04{96{1{0013.

it constructs a BSP of near-linear size on real data sets (the
size varies between 1:5 and 1:8 times the number of input
rectangles). This algorithm performs better than not only
Paterson and Yao's algorithm [4] but also most heuristics
described in the literature [2, 3, 7].

To compare the di�erent algorithms, we measure the size
of the BSP each algorithm constructs and the total number
of pieces into which the rectangles are partitioned by the
BSP. The size measures the storage needed for the BSP.

2 Geometric Preliminaries

A binary space partition B for a set S of pairwise-disjoint
rectangles in R

3 is a tree de�ned as follows: Each node v
in B represents a box (rectangular parallelepiped) Rv and
a set of rectangles Sv = fs \Rv j s 2 Sg that intersect Rv.
The box associated with the root is R3 itself. If Sv is empty,
then node v is a leaf of B: Otherwise, we partition Rv

into two boxes by an orthogonal cutting plane Hv. At v,
we store the equation of Hv and fs \ Hv j s 2 Svg, the
subset of rectangles in Sv that lie in Hv. If we let H+

v

be the positive halfspace and H�

v the negative halfspace
bounded by Hv, the boxes associated with the left and
right children of v are Rv \H�

v and Rv \H+
v , respec-

tively. The left subtree of v is a BSP for the set of rect-
angles S�

v = fs \H�

v j s 2 Svg and the right subtree of v
is a BSP for the set of rectangles S+

v = fs \H+
v j s 2 Svg.

The size of B is the sum of the number of interior nodes in B
and the total number of rectangles stored at all the nodes
in B.1

Given a set of rectangles R, let RB = fs\B j s 2 Rg be
the set of rectangles obtained by clipping the rectangles in R
within B. We say that a rectangle in SB is free if none of
its edges lies in the interior of B; otherwise it is non-free. A
free cut is a cutting plane that does not cross any rectangle
in S and that either divides S into two non-empty sets or
contains a rectangle in S.

3 The Agarwal et al. Algorithm

In this section, we describe a variant of the algorithm of
Agarwal et al. [1] that we have implemented. In our im-
plementation, we have modi�ed their algorithm slightly in
order to improve its performance. We call this algorithm
Rounds.

A box B in R3 has six faces|top, bottom, front, back,
right, and left. We assume, without loss of generality, that
the back, bottom, left corner of B is the origin (i.e., the back

1We do not store the leaves of B explicitly since all the in-

formation about a leaf is captured by its parent and the cutting

plane at the parent.



face of B lies on the yz-plane). We say that a rectangle r
in SB is long with respect to a box B if none of the vertices
of r lie in the interior of B. Otherwise, r is said to be
short. We can partition long rectangles into three classes: a
rectangle s that is long with respect to B belongs to the top
class if two parallel edges of s are contained in the top and
bottom faces of B. We similarly de�ne the front and right
classes. For a set of points P , let PB be the subset of P
lying in the interior of B.

The algorithm proceeds in rounds. At the beginning of
the ith round, where i > 0, the algorithm has a top sub-
tree Bi of the BSP for S: LetQi be the set of boxes associated
with the leaves of Bi containing at least one rectangle. The
initial tree B1 consists of one node and Q1 consists of one
box that contains all the input rectangles. If Qi is empty, we
are done. Otherwise, in the ith round, for each box B 2 Qi,
we construct a top subtree TB of the BSP for the set SB
and attach it to the corresponding leaf of Bi. This gives us
the new top subtree Bi+1. Thus, it su�ces to describe how
to build the tree TB on a box B during a round.

Let F � SB be the set of rectangles that are long with
respect to B. Set f = jFj, and let k be the number of
vertices of rectangles in SB that lie in the interior of B (note
that each such vertex is a vertex of an original rectangle
in S). As in the Agarwal et al. algorithm, we choose a

parameter a = 2
p

log(f+k), which remains �xed throughout
the round. In a round, we partition B using a sequence of
cuts in two stages, the separating stage and the dividing
stage. The separating stage divides B into a set of boxes C
such that for each box C 2 C, FC contains only two classes
of rectangles. The dividing stage further re�nes each such
box C until a new round is to be started in the resulting
boxes. We now describe each stage in detail.

Separating Stage: Assume without loss of generality that
the longest edge of B is parallel to the x-axis. The rect-
angles in F that belong to the front class can be par-
titioned into two subsets: the set R of rectangles that
are vertical (and parallel to the right face of B) and
the set T of rectangles that are horizontal (and parallel
to the top face of B). Let e be the edge of B that lies
on the z-axis and e0 be the edge of B that lies on the y-
axis. The intersection of each rectangle in R with the
back face of B is a segment parallel to the z-axis. Let �r
denote the projection of this segment onto the z-axis,
and let �R = f�r j r 2 Rg. Let z1 < z2 < � � � < zk�1 be
the endpoints of intervals in �R that lie in the interior
of e but not in the interior of any interval of �R. Simi-
larly, for each rectangle t in the set T , we de�ne �t to be
the projection of t onto the y-axis, and �T = f�t j t 2 Tg.
Let y1 < y2 < � � � < yl�1 be the endpoints of intervals
in �T that lie in the interior of e0 but not in the interior
of any interval of �T .

We divide B into kl boxes by drawing the planes z = zi
for 1 � i < k and the planes y = yj for 1 � j < l. We
refer to these cuts as �-cuts. Let C be the set of boxes
into which B is partitioned in this manner.

Dividing Stage: We re�ne each box C in C by apply-
ing cuts as described below. Let VC be the set of
vertices of rectangles in SC that lie in the interior
of C. We recursively invoke the following steps un-
til jFC j+ 2ajVC j < (f + ak)=a and SC does not con-
tain any free rectangles.

1. If C has any free rectangle, we use the free cut
containing that rectangle to split C into two

boxes.

2. If the rectangles in FC belong to two classes, we
make

(i) either one cut that partitions C into two
boxes C1 and C2 so that for i = 1; 2 jRCi

j +
wjVCi

j � 2(jRC j+ wjVC j)=3, or
(ii) at most two parallel cuts that divide C

into three boxes C1; C2; and C3 such
that jRC2

j+ wjVC2
j � (jRC j+ wjVC j)=3 and

such that all rectangles in RC2
belong to the

same class (these two cuts are unique).

3. If FC has only one class of rectangles, let g be the
face of C that contains exactly one of the edges
of each rectangle in RC . Let P be the set of those
vertices of the rectangles in RC that lie in the
interior of g. We use a plane that is orthogonal
to g to partition C into two boxes C1 and C2

so that jP \ Cij+ wjVCi
j � 2(jP j+ wjVC j)=3;

for i = 1; 2.

In Steps 2i and 3, if there are many planes that satisfy the
conditions on the cuts, we use the plane that intersects the
smallest number of rectangles in SC .

4 Other Algorithms

In this section we discuss our implementation of some algo-
rithms available in the literature for constructing BSPs. All
the algorithms work on the same basic principle: examine
all the planes containing the rectangles in SB and deter-
mine how \good" each plane is. Split B using the \best"
plane and recurse. Our implementation re�nes the original
descriptions of these algorithms in two respects: (i) At a
node B, we �rst check whether SB contains a free rectangle;
if it does, we apply the free cut containing that rectangle.2

(ii) If there is more than one \best" plane, we choose one
of these planes based on some simple criteria. To complete
the description of each technique, it su�ces to describe how
it measures how \good" a candidate plane is.

For a plane �, let f� denote the number of rectan-
gles in SB intersected by �, f+� the number of rectangles
in SB completely lying in the positive halfspace de�ned
by �, and f�� the number of rectangles in SB lying com-
pletely in the negative halfspace de�ned by �. We also
de�ne the occlusion factor �� to be the ratio of the total
area of the rectangles in SB lying in � to the area of �
(when � is clipped within B), the balance �� to be the ra-
tio minff+� ; f�� g=maxff+� ; f�� g between the number of poly-
gons that lie completely in each halfspace de�ned by �,
and �� to be the split factor of �, which is the fraction
of rectangles that � intersects, i.e., �� = f�=jSB j. We now
discuss how each algorithm measures how good a plane is.

ThibaultNaylor: We discuss two of the three heuristics that
Thibault and Naylor [7] present (the third performed
poorly in our experiments). Below, w is a positive
weight that can be changed to tune the performance
of the heuristics.

1. Pick a plane the minimizes the func-
tion jf+� � f�� j+ wf� .

2. Maximize the measure f+� � f�� � wf�.

2Only Paterson and Yao's algorithm [4] originally incorporated

the notion of free cuts.



In our experiments, we use w = 8, as suggested by
Thibault and Naylor [7].

Airey: Airey [2] proposes a measure function that is a linear
combination of a plane's occlusion factor, its balance,
and its split factor: 0:5�� + 0:3�� + 0:2�� :

Teller: Let 0 � � � 1 be a real number. Teller [6] chooses
the plane with the maximum occlusion factor �� , pro-
vided �� � � . If there is no such plane, he chooses
the plane with the minimum value of f�. We use the
value � = 0:5 in our implementation, as suggested by
Teller.

PatersonYao: For a box B, let sx (resp., sy; sz) denote
the number of edges of the rectangles in SB that lie
in the interior of B and are parallel to the x-axis
(resp., y-axis, z-axis). We de�ne the measure of B
to be �(B) = sxsysz. We make a cut that is perpen-
dicular to the smallest family of edges and divides B
into two boxes, each with measure at most �(B)=4.

5 Experimental Results

We have implemented the above algorithms and run them
on the following data sets containing orthogonal rectangles:3

1. the Fifth oor of Soda Hall containing 1677 rectan-
gles,

2. the Entire Soda Hall model with 8690 rectangles,
3. the Orange United Methodist Church Fellowship Hall

with 29988 rectangles,
4. the Sitterson Hall Lobby with 12207 rectangles, and
5. Sitterson Hall containing 6002 rectangles.

We performed our experiments on a Sun SPARCstation 5
running SunOS 5.5.1 The table below displays the size of
the BSP and the total number of times the rectangles are
fragmented by the cuts made by the BSP.

Fifth Entire Church Lobby Sitt.

#rectangles 1677 8690 29988 12207 6002

Size of the BSP

Rounds 2744 14707 45427 22225 9060

Teller 2931 14950 33518 13911 7340

PatersonYao 3310 22468 56868 30712 20600

Airey 3585 24683 41270 21753 19841

ThibaultNaylor1 6092 32929 65313 25051 10836

ThibaultNaylor2 3235 20089 58175 23159 12192

Number of Fragments

Rounds 113 741 838 475 312

Teller 301 1458 873 514 153

PatersonYao 449 5545 12517 9642 6428

Airey 675 7001 5494 5350 8307

ThibaultNaylor1 1868 10580 13797 3441 1324

ThibaultNaylor2 262 2859 6905 1760 1601

Examining this table, we note that, in general, the num-
ber of fragments and size of the BSP scale well with the
size of the data set. For the Soda Hall data sets (Fifth and
Entire), algorithm Rounds creates the smallest number of
fragments and constructs the smallest BSP. For the other
three sets, algorithm Teller performs best in terms of BSP
size. However, there are some peculiarities in the table. For
example, for the Church data set, Rounds creates a smaller
number of fragments than Teller but constructs a larger BSP.
We believe that this di�erence is explained by the fact that

3We discarded all non-orthogonal polygons from these data

sets. The number of such polygons was very small.

the 29998 rectangles in the Church model lie in a total of
only 859 distinct planes. Since Teller makes cuts based on
how much of a plane's area is covered by rectangles, it is
reasonable to expect that the algorithm will \place" a lot of
rectangles in cuts made close to the root of the BSP, thus
leading to a BSP with a small number of nodes.

The time taken to construct the BSPs also scaled well
with the size of the data sets. Rounds took 11 seconds
to construct a BSP for the Fifth oor of Soda Hall and
about 4.5 minutes for the Church data set. Typically, Pa-
tersonYao took about 15% less time than Rounds while the
heuristics (Airey, ThibaultNaylor, and Teller) took 2-4 times
as much time as Rounds to construct a BSP.

6 Conclusions

Our comparison indicates that Rounds and Teller are the best
algorithms for constructing BSPs for orthogonal rectangles
in R3 . We plan to extend our algorithm to construct BSPs
for triangles in R3 . One algorithm we intend to implement
is to enclose each triangle in an orthogonal bounding box
and construct a BSP for the bounding boxes. We also plan
to compare the di�erent BSPs in terms of the time they take
to answer standard visibility queries like ray shooting and
line stabbing.

Acknowledgments We would like to thank Seth Teller
for providing us with the Soda Hall data set created at the
Department of Computer Science, University of California
at Berkeley. We would also like to thank the Walkthrough
Project, Department of Computer Science, University of
North Carolina at Chapel Hill for providing us with the
data sets for Sitterson Hall, the Orange United Methodist
Church Fellowship Hall, and the Sitterson Hall Lobby.

References

[1] P. K. Agarwal, E. F. Grove, T. M. Murali, and J. S. Vit-
ter, Binary space partitions for fat rectangles, Proceed-
ings of the 37th IEEE Annual Symposium on foundations
of Computer Science (FOCS '96), October 1996.

[2] J. M. Airey, Increasing Update Rates in the Building
Walkthrough System with Automatic Model-space Sub-
division and Potentially Visible Set Calculations, Ph.D.
Thesis, Dept. of Computer Science, University of North
Carolina, Chapel Hill, 1990.

[3] H. Fuchs, Z. M. Kedem, and B. Naylor, On visible
surface generation by a priori tree structures, Comput.
Graph., 14 (1980), 124{133. Proc. SIGGRAPH '80.

[4] M. S. Paterson and F. F. Yao, Optimal binary space par-
titions for orthogonal objects, J. Algorithms, 13 (1992),
99{113.

[5] R. A. Shumacker, R. Brand, M. Gilliland, and W. Sharp,
Study for applying computer-generated images to visual
simulation, Report AFHRL-TR-69-14, U.S. Air Force
Human Resources Lab., 1969.

[6] S. J. Teller, Visibility Computations in Densely Occluded
Polyhedral Environments, Ph.D. Thesis, Dept. of Com-
puter Science, University of California, Berkeley, 1992.

[7] W. C. Thibault and B. F. Naylor, Set operations on
polyhedra using binary space partitioning trees, Com-
put. Graph., 21 (1987), 153{162. Proc. SIGGRAPH '87.


