
Theory and Practice of I/O-E�cient Algorithms

for Multidimensional Batched Searching Problems

(Extended Abstract)

Lars Arge� Octavian Procopiucy Sridhar Ramaswamyz

Torsten Suel x Je�rey Scott Vitter{

Abstract

We describe a powerful framework for designing e�cient

batch algorithms for certain large-scale dynamic problems

that must be solved using external memory. The class

of problems we consider, which we call colorable external-

decomposable problems, include rectangle intersection, or-

thogonal line segment intersection, range searching, and

point location. We are particularly interested in these prob-

lems in two and higher dimensions. They have numerous

applications in geographic information systems (GIS), spa-

tial databases, and VLSI and CAD design. We present sim-

pli�ed algorithms for problems previously solved by more

complicated approaches (such as rectangle intersection), and

we present e�cient algorithms for problems not previously

solved in an e�cient way (such as point location and higher-

dimensional versions of range searching and rectangle inter-

section).

We give experimental results concerning the running time

for our approach applied to the red-blue rectangle intersec-

tion problem, which is a key component of the extremely

important database operation spatial join. Our algorithm

scales well with the problem size, and for large problems sizes

it greatly outperforms the well-known sweepline approach.

1 Introduction

In the past few years much attention has been focused

on the development of I/O-e�cient algorithms. I/O

� Center for Geometric Computing, Department of Computer

Science, Duke University, Durham, NC 27708{0129. Supported

in part by U.S. Army Research O�ce grant DAAH04{96{1{0013.

Email: large@cs.duke.edu.
y Center for Geometric Computing, Department of Computer

Science, Duke University, Durham, NC 27708{0129. Supported

in part by the U.S. Army Research O�ce under grant DAAH04{

96{1{0013 and by the National Science Foundation under grant

CCR{9522047. Email: tavi@cs.duke.edu.
z Bell Laboratories, Murray Hill, NJ 07974{0636. Email:

sridhar@research.bell-labs.com.
x Bell Laboratories, Murray Hill, NJ 07974{0636. Email:

suel@research.bell-labs.com.
{ Center for Geometric Computing, Department of Computer

Science, Duke University, Durham, NC 27708{0129. Supported

in part by the U.S. Army Research O�ce under grants DAAH04{

93{G{0076 and DAAH04{96{1{0013 and by the National Science

Foundation under grant CCR{9522047. Part of this work was

done while visiting Bell Laboratories, Murray Hill, NJ. Email:

jsv@cs.duke.edu.

communication is the bottleneck in many large-scale

applications such as those arising in VLSI and CAD

design, spatial databases, and geographic information

systems (GIS). In this paper we consider I/O-e�cient

algorithms for batched searching problems. We consider

both batched static and batched dynamic problems, and

use the correspondence which often exists between a d-

dimensional static problem and a (d�1)-dimensional dy-
namic problem to obtain a number of new d-dimensional

algorithms.

One prominent example of the problems we con-

sider is the rectangle intersection problem, which is a

key component in VLSI design rule checking [31] and

in the extremely important database operation spatial

join [34]. We illustrate the practical signi�cance of

our algorithms by comparing the empirical performance

of our algorithm for this problem with the well-known

sweepline algorithm developed for internal memory.

1.1 Problem de�nition and memory model

A searching problem involves a question asked about a

query object x with respect to a set V of objects. In

a batched static searching problem, a number of queries

is asked on a static object set V , and we are concerned

only with the overall e�ciency over the course of all the

queries. In a batched dynamic searching problem we are

given a sequence of insertions, deletions, and queries,

and we must report all answers to the queries as the

sequence of actions is performed. Clearly, a batched

problem can be solved using a data structure on which

the queries are answered one by one, but often much

better performance can be obtained. Batched prob-

lems play an important role in large-scale performance

sensitive applications, because the problem load is of-

ten too big to allow complicated online computation,

and computation must then be delayed until the load

is lighter. One example is a banking application where

demand deposits (checks) are processed while the banks

are closed at night. Another example is a database ap-

plication where the index structure is recomputed (or

\rebalanced") when the query load is low.

In this paper we consider batched problems in the

standard two-level I/O model [2], and we de�ne the fol-

lowing parameters:

N = # of objects in the problem;

K = # of queries in the problem;

T = # of objects in the solution;

M = # of objects=queries �tting in main memory;

B = # of objects=queries per disk block;

whereM < N and 1 � B �M=2. For batched dynamic

problems N is the number of updates in the problem.

Computations can only be done on elements in internal

memory. An input/output operation (or simply I/O) in-

volves reading (or writing) a block from disk into (from)

internal memory. Our measures of performance of an

algorithm are the number of I/Os it performs and the

amount of space (in units of disk blocks) it uses. We

will for brevity not address the internal computation

time of our algorithms, although they are e�cient (and

often optimal) in the RAM model.

Since each I/O can transmit B objects or queries si-

multaneously, it is convenient to introduce the following

notation:

n =
N

B
; k =

K

B
; t =

T

B
; m =

M

B
:

As n = N=B is the number of I/Os needed just to read

N objects, we refer to O(n) as the linear I/O bound.

We assume that all I/O-bounds are at least linear.

The problems we will be interested in are all what is

called decomposable [8, 17, 29]. Here we de�ne an ex-

ternal memory version of this property called external-

decomposable.

De�nition 1 Let P be a searching problem and let

P(x; V) denote the answer to P with respect to a set

of objects V and a query object x. P is called external-

decomposable, if for any partition A [B of the set V

and for every query x, P(x; V) can be computed in O(1)

additional I/Os given P(x;A) and P(x,B) in appropri-

ate form.

A simple and important example of an external-

decomposable problem is one-dimensional range search-

ing : Given a set V of integers, build a data structure

such that given a query range [x1; x2], all points in V

that lie within the range can be reported e�ciently.

The problem is external-decomposable as we easily can

compute the result for V = A [B, given the result

of a query on A and B. The problem can of course

be generalized to higher dimensions where it is also

external-decomposable. Another important external-

decomposable problem which has received a lot of at-

tention in the computational geometry literature is the

d-dimensional rectangle intersection problem, that is,

the problem of determining all intersecting pairs among

a set of axis-parallel hyperrectangles in d-dimensional

space [15, 17, 16, 35, 9]. The problem is a key compo-

nent in VLSI design rule checking [31], and in databases

it is a component in the fundamental join operator in

relational [19], temporal [36], spatial [33, 34], and con-

straint [22] models.

1.2 Previous related results

As mentioned, considerable attention has recently been

given to the development of provably I/O-e�cient al-

gorithms. Aggarwal and Vitter [2] considered sort-

ing and permutation related problems in the two-level

I/O model and proved that external sorting requires

�(n logm n) I/Os.1 I/O-e�cient algorithms were later

developed for several other problem domains, including

computational geometry [1, 3, 6, 18], string problems [5]

and graph theory [3, 12, 37, 25]. See the mentioned pa-

pers for more complete references; a recent survey is

also included in [4]. In the database literature a lot

of attention has also been given to I/O-e�cient com-

putation, but with more emphasis on practical perfor-

mance on \real-life" data. Special attention has been

given to the development of I/O-e�cient spatial join

algorithms [10, 20, 21, 24, 26, 27, 30].

A number of I/O-e�cient algorithms have been de-

veloped for decomposable problems and most of them

can be formulated as batched static or dynamic search-

ing problems. Goodrich et al. [18] presented a tech-

nique called distribution sweeping and used it to de-

velop I/O-e�cient algorithms for a number of two-

dimensional problems, including the batched range

searching problem, the orthogonal line segment inter-

section problem, and the rectangle intersection problem.

The �rst problem is a batched problem by de�nition,

and the latter two can easily be transformed to one-

dimensional batched dynamic problems using the plane

sweep paradigm [31]. Arge [3] considered the three prob-

lems, and developed I/O-e�cient algorithms by looking

at them as batched dynamic one-dimensional problems

and developing I/O-e�cient data structures for such

problems. His so-called bu�er trees are only e�cient in

a batched setting and cannot be used to answer single

queries e�ciently. Recently, Arge et al. [6] considered a

large number of problems involving line segments in the

plane.

In the internal memory setting, batched dynamic

problems were considered by Edelsbrunner and Over-

mars [17]. They were motivated by the fact that for a

number of problems dynamic data structures were not

1All optimality claims in this paper are in the comparison I/O-

model , where comparisons are the only allowed operations in in-

ternal memory.

known. Even for problems where dynamic structures

were known they showed that batched techniques can

sometimes be more e�cient overall. In external memory

the latter motivation plays an even bigger role because

of fundamental computational limitations. A simple il-

lustration of this is the one-dimensional range searching

problem. The obvious data structure for this problem

is the B-tree [7, 13]. A B-tree on N elements uses opti-

mal O(n) space, can be built in O(n logB n) I/Os, and

can be used to answer a range query in O(logB n + t)

I/Os. It is easy to realize that the query bound is op-

timal. The batched static version of the problem can

thus obviously be solved by building a B-tree on V and

then performing the K queries one by one. This re-

sults in an O((n + K) logB n + t) solution. However,

unlike in internal memory where a similar approach us-

ing a balanced binary search tree results in an optimal

O((K +N) log
2
N +T)-time solution, we can get a bet-

ter (and optimal) O((n+ k) logm n+ t)-I/O solution by

using distribution sweeping or bu�er trees.

Recently, some research has also been done on the

practical merits of the algorithms. Chiang [11] imple-

mented the orthogonal line segment intersection algo-

rithm developed in [18] using distribution sweeping and

showed that it outperforms internal memory solutions

even on moderately sized instances. Vengro� [38, 39]

designed TPIE (Transparent Parallel I/O programming

Environment), a set of C++ functions and templated

classes that allow for a simple and e�cient implementa-

tion of two-level external-memory algorithms. E�cient

TPIE implementations for a variety of sorting and sci-

enti�c computing applications are given in [40].

1.3 The results in this paper

The main result in this paper is a technique for design-

ing I/O-e�cient and space-e�cient batched dynamic

algorithms for external-decomposable problems. Our

technique works for a wide range of problems that we

call \colorable." We de�ne the colorable property in

Section 2 and show that a number of natural one-

dimensional problems such as range searching are col-

orable.

In Section 3 we describe our technique and use it to

obtain algorithms for some of the two-dimensional prob-

lems also considered in [3, 18]. Our algorithms have

the same O(n logm n + t) optimal performance as the

previously developed algorithms, but in some sense our

technique provides a general framework for the solu-

tion of the problems. We also show how our technique

can be used to obtain new I/O-e�cient algorithms by

providing the �rst dynamic version of external planar

point location. In Section 3 we also show that our tech-

nique can be used recursively, and thus we obtain the

�rst known I/O-e�cient algorithms for d-dimensional

batched range searching, orthogonal line segment inter-

section, and rectangle intersection. Our algorithms use

O(n logd�1m n + t) I/Os and linear space. We believe

that our technique will prove useful in the design of

other I/O-e�cient algorithms. In Section 3 we give one

further application of our result to a batched dynamic

problem for which no solution was previously known.

In Section 4 we demonstrate the practical merits of

our approach, by comparing the empirical performance

of an O(n logm n+t)-I/O algorithm developed using our

technique with an optimal O(N log
2
N +T)-time sweep

algorithm developed for internal memory. The problem

we consider is a special case of the rectangle intersection

problem, and one of the two subproblems of spatial join.

Algorithms with a similar I/O bound for this problem

can be developed using known techniques. However,

our algorithm is very simple and practical and is read-

ily implemented in TPIE. Our experiments show that

the sweep algorithm \breaks down" once the size of the

sweepline structure becomes bigger than the available

internal memory, whereas our external algorithm scales

well.

2 Batched static colorable problems

In this section we de�ne the notion of colorability and

show that a number of simple one-dimensional batched

static problems are colorable.

De�nition 2 Let P be an external-decomposable

batched searching problem. Consider the problem

PC where a color chosen from a set C is associated

with each query x, and where a set of colors Cv is

associated with each object v 2 V . Only objects where

color(x) 2 Cv are considered when answering x.

Problem P is called (I(N;K); S(N;K)) m1=c-colorable

if the following two conditions hold:

1. For all colorings where jCj = �(
p
m1=c) and where

the number of di�erent color sets Cv is O(m1=c),

for some constant c � 1, PC can be solved in

O(I(N;K)+t) I/O operations and O(S(N;K)) space

after an initial sorting step, and

2. If (V1; Q1) and (V2; Q2) are two valid instances of P
then (V1 [V2; Q1 [Q2) is also a valid instance.

We call an m-colorable problem just a colorable prob-

lem. Note that such a problem is m1=c-colorable for

any c. We can show that the one-dimensional batched

range searching problem as well as a number of other

simple one-dimensional problems are (n + k; n + k)

colorable. Here we consider a more general prob-

lem, namely, the batched interval intersection searching

problem, where a query and the objects in V are inte-

ger intervals. A query with interval e must return all

intervals in V having a point in common with e. The

1. Sort the intervals according to their left endpoints.

2. Scan the sorted list of intervals, maintaining O(m) (initially empty) active lists, one color list C for each of the �(
p
m)

colors and one set list S for each of the O(m) di�erent color sets. For every interval r do the following:

(a) If r is a query then add r to color list Ccolor(r), and scan through all set lists SU corresponding to color sets U

containing color(r) one at a time, reporting intersections between r and intervals in SU and removing intervals from

SU that do not intersect r.

(b) If r 2 V then add r to the set list corresponding to r's color set and scan through every color list Cc corresponding to
colors in the color set, reporting intersections between intervals in Cc and r and removing intervals from Cc that do

not intersect r.

Figure 1: Algorithm for the batched colored interval intersection searching problem.

algorithm showing that the problem is (n+k; n+k) col-

orable is given in Figure 1. After an initial sorting step,

the sorted list of intervals is scanned and intersections

are reported using a number of active lists .

Lemma 1 The batched static one-dimensional interval

intersection searching and range searching problems are

(n+ k; n+ k) colorable.

Proof : In order to establish the correctness of the al-

gorithm we observe that an interval v 2 V and a query

q that intersect can be classi�ed into two cases: (i) v

begins before q and (ii) q begins before v. Step 2a of

the algorithm reports all intersections between a query

interval and currently \active" intervals from V with a

relevant colorset, thus handling case (i), while Step 2b

similarly handles case (ii). Note that when an interval is

removed from an active list we are sure that it will not

intersect relevant intervals processed later in the scan.

The complete scan after the initial sorting step can

be performed in O(n+t) I/Os, as can be seen by the fol-

lowing reasoning: The number of active lists is O(m), so

there is room for one block from each of the lists in inter-

nal memory. We collect intervals inserted into an active

list in internal memory and only write them to disk once

B of them have been collected. Thus N +K insertions

can be processed in O(n+k) I/Os. An interval is added

only once to an active list, and in each subsequent scan

of the list the interval is either removed permanently or

contributes an intersection to the interval that initiated

the scan. A simple amortization argument completes

the proof.

3 Batched dynamic problems

In this section we develop a general technique for solving

a batched dynamic version of a colorable problem in

an I/O-e�cient manner. Our approach is inspired by

an approach used by Edelsbrunner and Overmars [17].

An instance of a batched dynamic problem P consists

of a sequence of N actions a1; a2; : : : ; aN , where each

action is either an insertion of a set object, a deletion

of a set object, or a query with a query object. For

an action ai we can regard i as the time at which the

action is performed. For each object v that ever belongs

to the set V , there is a time i1 (possibly �1) when it is

inserted and a time i2 (possibly +1) when it is deleted;

we refer to [i1; i2] as v's existence interval. When a query

q is performed at time j, it should be performed relative

to the set of objects present at that time, that is, relative

to all objects whose existence interval contains j. The

basic idea in [17] is to use a segment tree [9, 31] to �nd

these objects.

Here we use the same basic idea, but the use of an

external segment tree [3] complicates things consider-

ably. The base structure of an external segment tree

is a perfectly balanced tree with branching factor
p
m

over the N +K action times. Each leaf represents M

consecutive action times and thus the tree has height

O(logpm((N + K)=M)) = O(logm(n + k)). (See Fig-

ure 2.) The �rst level of the tree partitions the action

times into
p
m intervals �i|for illustrative reasons we

call them slabs|separated by dotted lines in Figure 2.

Existence intervals such as CD in Figure 2 that com-

pletely span at least one slab are called long intervals;

a copy of the object corresponding to each long exis-

tence interval is stored in the root. Existence intervals

that are not long are called short intervals; the objects

corresponding to such intervals are not stored in the

root, but are passed recursively down to lower levels of

the tree where their existence intervals span slabs. AB

and EF are examples of such existence intervals. Fur-

thermore, we imagine that we \cut" each long existence

intervals at the leftmost (rightmost) boundary of the

leftmost (rightmost) slab it completely spans, and treat

the portions that do not span a slab as small intervals.

For example CE is cut at the boundary between slabs

�0 and �1 and between slabs �3 and �4, and the por-

tions in slabs �0 and �4 are stored further down the

tree. Note that at most M=2 objects are stored in a

leaf. Each object can be stored in several nodes of the

structure, but at most twice on each level; thus, the

total space utilization is O(n logm(n+ k)).

To answer a query q at time j, we search down the

tree to the leaf containing j and in each visited node we

answer the query relative to all the \relevant" objects

�4�1�0

BA

C

FE

O(log
m
n) � � �� � �� � � � � �

� � �

D

� � �

� � � (N +K)=M

p
m nodes

m nodes

p
m slabs �

i

�3

� � �

�2

.

.

.

� � � � � �
leaves

Figure 2: External-memory segment tree

stored in the node. The fact that P is decomposable is

used when combining the results of the individual node

queries. In a node where q lies in slab �i, we de�ne

the relevant objects to be objects corresponding to ex-

istence intervals that completely span �i. Each object

present at time i will be relevant exactly once on the

search path. In the internal memory solution [17] where

the segment tree is binary, all objects in a node are rel-

evant for all queries passing the node. This is not the

case in the external memory setting, which is one reason

why the problem is more challenging to solve in exter-

nal than in internal memory. Another is that a single

query cannot be answered I/O-e�ciently, and therefore

we perform all the queries simultaneously (normally re-

ferred to as batched �ltering [18]) and take advantage

of the fact that when we do so the problem we need to

solve in each node is a batched static \colored" version

of P . To realize this fact, consider a node r in the seg-

ment tree, the set of objects Vr assigned to it, and the

set of queries Qr passing through it. Imagine that we

associate a distinct color with each of the
p
m slabs and

color each of the queries in Qr with the color of the slab

containing it. Now consider an object e in Vr . The ex-

istence interval for e completely spans a set of slabs and

e is relevant for all queries in these slabs. We associate

with e the colors of the slabs that its existence interval

spans. The key property is that the maximum number

of distinct contiguous ranges of slabs (what is normally

called multislabs [3, 6])|and thus the maximum num-

ber of color sets associated with the objects in Vr|is

a quadratic function of the branching factor, and thus

is O(m). Therefore, the problem we need to solve in r is

a colored batched static version of P on the objects Vr
and queries Qr. A sketch of the complete algorithm is

given in Figure 3.

Theorem 1 The batched dynamic version of an

(I(N;K); S(N;K)) colorable problem P can be solved

in O(I(N;K) � logm(n + k) + t) I/O operations using

O(S(N;K)) space.

Proof : The number of I/Os used to construct the

external segment tree and distribute the objects and

queries to the nodes of it (Steps 1 and 2 in Figure 3)

is O(n logm(n+ k)): The number of levels of the struc-

ture is O(logm n) and to construct one level we scan

the nodes on the previous level and the sorted list of

N +K objects and queries, both of which can be done

in O(n+ k) I/Os.

Consider the nodes r1; r2; : : : ; rl on one level of the

structure and let Nri and Kri denote the number of ob-

jects and the number of queries assigned to ri, respec-

tively. The number of I/Os used to solve the colored

batched static problems on the level (not counting the

initial sorting step) is then
P

i I(Nri ;Kri) + t, which is

O(I(N;K)+t) as I is at least linear and as
P

iNri � N

and
P

iKri � K. Furthermore, by presorting the

queries and objects (using O((n+k) logm(n+k)) I/Os)

and distributing them in sorted order to the nodes, we

can avoid sorting when solving a batched static prob-

lem, and thus the total number of I/Os used in Step 3

is O(I(N;K) � logm(n + k) + t). A space bound of

O(S(N;K) � logm(n + k)) follows from a similar argu-

ment, but the space can be improved to O(S(N;K))

by noting that if we solve the batched static problem

for a level of nodes before going on to build the next

level, there is no need to store more than one level of

the segment tree at any time (in [17] this idea is called

streaming).

3.1 Simple applications to one and two-

dimensional problems

Theorem 1 together with Lemma 1 immediately give us

e�cient solutions for one-dimensional batched dynamic

range searching and interval intersection. It is well

known that a number of two-dimensional batched static

problems can be regarded as one-dimensional batched

dynamic problems using the plane sweep technique. For

example, the orthogonal line segment intersection prob-

lem (namely, given a set of N line segments in the plane

parallel to the axes, report all intersecting orthogonal

pairs) can be reduced to solving a batched dynamic one-

dimensional range searching problem. Similarly, the

two-dimensional batched range searching problem can

be regarded as a simple version of batched dynamic in-

terval intersection, where the queries are points. We

can thus also obtain e�cient algorithms for these two

problems, and combining them we obtain a solution to

the rectangle intersection problem.

All the above external-decomposable problems are of

a type where the solution to P(x;A [B) is just the

concatenation of P(x;A) and P(x;B). One problem

where this in not the case is the batched static version

of the external-decomposable immediate obstacle prob-

lem [17, 28], where we are given a set of N points and

vertical line segments in the plane, and for each point p

we should compute the �rst segment hit by a horizontal

1. Sort the list A of the N +K actions by time.

2. Construct the external segment tree and distribute the objects and queries to the relevant node:

(a) Create the (n+ k)=m leaves by scanning through A.

(b) Repeatedly, scan through the last level of nodes created and the list A, creating one more level of the segment tree

and distributing the objects and queries in A to the relevant (newly created) nodes.

3. For each node r in turn solve a colored batched static version of P on the colored objects and queries associated with r.

Figure 3: Algorithm (sketch) for the batched dynamic problem P .

ray originating in p and going right. In the immediate

obstacle problem the solution to P(x;A[B) is obtained
by comparing the two segments obtained as solutions to

P(x;A) and P(x;B) to see which one is closest to x. It

is easily realized that the problem can be solved using

a batched dynamic version of a simple colorable one-

dimensional search problem, and Theorem 1 thus again

applies.

Corollary 1 The one-dimensional batched dynamic

range searching and interval intersection problems can

both be solved in O((n + k) logm(n + k) + t) I/Os and

O(n + k) space. The orthogonal line segment intersec-

tion, 2d batched range searching, and 2d rectangle in-

tersection problems can all be solved in O(n logm n+ t)

I/Os and O(n) space. The batched static version of

the immediate obstacle problem can be solved in O((n+

k) logm(n+ k)) I/Os and O(n+ k) space.

It should be noted that similar I/O and space bounds

have been, or can easily be, obtained using distribution

sweeping [18]. In the next subsection we will extend

our technique and use it to obtain solution to problems

for which no I/O-e�cient algorithms were previously

known.

3.2 Advanced and higher dimensional ap-

plications

By decreasing the fan-out of the segment tree used in

the previous section from
p
m to

4
p
m1=c we can prove

the following (proof omitted for brevity).

Theorem 2 The batched dynamic version Pbd of an

(I(N;K); S(N;K)) m1=c-colorable problem P can be

solved in O(I(N;K) logm(n + k) + t) I/O operations

using O(S(N;K)) space. Pdb is (I(N;K); S(N;K))p
m1=c-colorable.

Theorem 2 can now immediately be applied to our al-

gorithm for the batched static immediate obstacle prob-

lem in Section 3.1 to make the algorithm work on the

batched dynamic problem, and by using the theorem

recursively the algorithms discussed in Section 3.1 can

be extended to work in d dimensions.

Corollary 2 For each constant d > 1, the d-

dimensional batched range searching problem and the

d-dimensional rectangle intersection problem can both

be solved in O(n logd�1m n + t) I/Os and O(n) space.

The batched dynamic immediate obstacle problem can

be solved in O(n log2m n) I/Os and O(n) space.

A more complicated application of Theorem 2 is to

the batched dynamic planar point location problem. In

our formulation of this problem we are given a set of N

non-intersecting (and not necessarily orthogonal) line

segments in the plane and a set of K points. The goal

is to �nd for each point the �rst segment hit by an

upwards ray originating in the point. In [6] a rather

complicated O((n+k) logm n)-I/O solution to the static

problem is given. The solution shows that the prob-

lem is ((n + k) logm(n + k); n + k)
p
m-colorable, ex-

cept for the condition that given two valid instances

of the problem their union should also be a valid in-

stance. (Details will be given in the full paper.) The

union condition does not hold, since the segments in the

union can be intersecting. However, if we restrict our

attention to instances where only insertions or deletions

are allowed (the so called semidynamic problems), the

segments must be non-intersecting and the condition is

ful�lled.

Corollary 3 The batched semidynamic planar point lo-

cation problem can be solved in O(n + k) space and

O((n+ k) log2m(n+ k)) I/Os.

4 Experimental results

In this section we illustrate the practical signi�cance

of our algorithms by comparing the empirical perfor-

mance of an I/O-optimal algorithm developed using our

technique with an optimal internal memory sweep al-

gorithm. The problem we consider is a variant of the

two-dimensional rectangle intersection problem that we

call red-blue rectangle intersection: Given a set of axis-

parallel red rectangles and a set of axis-parallel blue

rectangles in the plane, report all red-blue intersecting

rectangles. The problem has been extensively studied

in the database literature as one of the two subprob-

lems of spatial join, which is a core operation in spatial

database systems such as geographic information sys-

tems [10, 20, 27, 26, 24, 30].

A simple plane sweep internal memory algorithm can

be easily derived from the algorithms for the rectan-

gle intersection problem [9, 17, 15, 16, 21, 35]. This

well-known O(N log
2
N+K)-time algorithm sweeps the

plane with a vertical line, while maintaining and query-

ing two interval trees [15]. After the initial sorting step

the algorithm can be viewed as a red-blue version of the

batched dynamic interval intersection problem. This

problem is the same as the interval intersection prob-

lem we have considered, except that the intervals are

colored red and blue, and only red-blue intersections

should be reported. It is easy to modify the algorithm

in Figure 1 to work for the red-blue problem, and Theo-

rem 1 immediately gives an optimal O(n logm n+t)-I/O

algorithm for the red-blue rectangle intersection prob-

lem. It should be noted that this is not a new theoret-

ical result, as previous solutions for the batched range

searching problem and the orthogonal line segment in-

tersection problem [3, 18] can be combined to obtain an

optimal algorithms for the problem. However, our tech-

nique suggests a new practical algorithm that solves the

problem in one go. If we imagine building the segment

tree structure level by level from the top, and solving

the batched static problem on each level, the algorithm

can be viewed as a distribution sweeping [18] algorithm,

that divides the plane into m slabs, performs a vertical

sweep over the slabs to locate intersections, and then

recursively solves the problem in each slab.

As mentioned, the red-blue rectangle intersection

problem has been extensively studied in the database

literature. The proposed algorithms can be roughly

classi�ed into two groups: those that use an indexing

structure (typically an R-tree variant) built on the two

rectangle sets [10, 20] and those that do not [27, 30, 24].

There has been a trend towards analyzing algorithms

that do not rely on an index. For example, the PBSM

(Partition Based Spatial-Merge) algorithm by Patel and

DeWitt [30] has been shown to outperform those based

on an R-tree index when the cost of building the in-

dex is counted. PBSM can be viewed as a special case

of our approach, in which the objects that cross slabs

are duplicated in each slab rather than handled with a

sweep and recursion. Other algorithms try to avoid too

much duplication by using sophisticated partition meth-

ods but they are still vulnerable to skewed data [27, 24].

The performance of our algorithm can therefore be said

to be similar to these algorithms, except that our al-

gorithm is not prone to skewed locations or shapes of

rectangles.

4.1 Implementation considerations

Before we present our empirical results in Sections 4.2

and 4.3, a few notes should be made about our imple-

mentations of the two algorithms. We based both of our

implementations on the TPIE system [38, 39]. As men-

tioned, TPIE is a collection of templated functions and

classes, and the basic data structure in TPIE is a stream,

representing a list of objects of the same type. The

system contains I/O-e�cient implementations of algo-

rithms for scanning, merging, distributing, and sorting

streams. Looking at the two algorithms, we quickly see

that all the building blocks we need|scanning, sorting,

distributing|are already implemented in TPIE. This

made the implementation of the algorithm relatively

easy and facilitated modular design.2

In order to improve practical performance and pro-

vide a fair comparison, we made a number of modi�ca-

tions in our implementations relative to the theoretical

descriptions of the two algorithms. In the sweepline

algorithm, which we call internal join, we improved

the performance of the sorting step that is done before

the sweep by using TPIE's built-in I/O-e�cient sort-

ing algorithm. In the sweep itself, we did not delete

an interval from the interval tree when the sweepline

left the corresponding rectangle; instead we performed

a \lazy deletion" operation on the tree while processing

queries to remove \expired" intervals. We implemented

a simpli�ed version of the interval tree similar to that

described in [14] but used a randomized skip list [32]

as the underlying structure instead of a balanced tree

structure. Finally, we chose to use a horizontal sweep

line instead of a vertical one in order to have the two

algorithms sweep in the same direction.

The external algorithm, called external join, was

modi�ed to used random sampling to divide the x-

interval into slabs instead of presorting the data an ex-

tra time. Note that it is possible to solve the prob-

lem quickly in internal memory even when the problem

size N is much larger than internal memory size M ,

because the data structure size is related to the max-

imum number of rectangles that intersect a sweepline,

which may be less than M . For example, the rectan-

gles may be small and uniformly distributed, in which

case relatively few rectangles would intersect any given

sweepline. Therefore we used an optimistic implementa-

tion in external join that began each subproblem by

running internal join, hoping that the interval trees

would �t in internal memory during the sweep. If TPIE

detected that the available memory was exhausted, the

sweep was aborted and we proceeded with the external

approach.

4.2 Experimental data

Along the lines of Chiang [11], we generated four types

of input data sets with N=2 red and N=2 blue rectan-

2The TPIE system can be downloaded from

http://www.cs.duke.edu/TPIE/. The algorithms described

in this paper will be included in the next distribution of TPIE.

gles each, placed in a [0; N]� [0; N] square. In order to

guarantee that the reporting cost would not dominate

the O(n logm n) searching cost, the rectangles were cho-

sen so that the number of intersections between red and

blue rectangles was O(N). As discussed, an important

parameter for the e�ciency of the two algorithms is the

average number of rectangles cut by a horizontal sweep

line during a sweep (the average overlap). Intuitively,

this parameter decides not only the size of the interval

trees in the sweep, but also the size of the active lists in

the external algorithm. Thus we generated data with a

varying number of overlaps.

In the �rst data set, which we call small rect, we

generated data meant to resemble GIS data (small and

relatively uniform distributed rectangles). We chose the

width and height of the rectangles randomly in [0;
p
N],

and the x and y coordinates of the lower left corner were

chosen randomly in [0; N �
p
N]. It can be shown that

the expected number of intersections between red and

blue rectangles in such a set is approximatelyN=4, while

the expected average overlap and expected maximum

overlap are approximately
p
N=4 [23]. Details will ap-

pear in the full paper. The second data set, tall rect,

represents a \hard" instance as it consists of long and

skinny vertical rectangles with a large average over-

lap: We used a �xed width h (10 in the experiments),

chose the height uniformly in [0; N=2], and chose the x

and y coordinates of the lower left corner uniformly in

[0; N � h] and [0; N=2], respectively. The �xed width

ensures that the expected number of intersections is ap-

proximately hN=3, while the expected average overlap

is approximately N=4. In order to investigate the in
u-

ence of the average overlap, we produced the third set,

wide rect, simply by rotating the previous data set 90

degrees. The wide rect data set consists of long and

horizontally skinny rectangles, with the same number

of intersections as before, but with an expected aver-

age overlap of approximately h=2. The fourth data set,

wide&tall rect, consists of both wide and tall rectan-

gles. The wide rectangles were placed in [0; N=2]�[0; N],

and the tall rectangles in [N=2; N] � [0; N]. The ex-

pected average number of intersections in this set is ap-

proximately hN=4, and the expected average overlap

approximately N=8 + h=2. In the full paper we provide

a full analysis of the data sets.

4.3 Empirical results

We performed our experiments on a Sun SparcStation20

running Solaris 2.5, with 32 Mbytes of internal mem-

ory. In order to avoid network activity, a local disk

was used for the input �les as well as for scratch �les.

While we did not restrict the amount of internal memory

internal join could use (and thus relied on the virtual

memory system), the amount of internal memory used

0

200

400

600

800

1000

1200

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
Number of rectangles

Data set: small_rect

"external_join_int"
"internal_join_int"

"external_join"
"internal_join"

T
im

e
(s

ec
on

ds
)

0 N

N

Figure 4: small rect: Average no. of intersections �
N=4. Average no. overlaps �

p
N=4.

0

1000

2000

3000

4000

5000

6000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
Number of rectangles

Data set: tall_rect

"external_join_int"
"internal_join_int"

"external_join"

N0

N

"internal_join"

T
im

e
(s

ec
on

ds
)

Figure 5: tall rect: Average no. of intersections �
hN=3. Average no. overlaps � N=4.

by external join was limited to a �xed amount. Ex-

perimenting with di�erent values for this parameter, as

well as with di�erent values of the logical block size used

by TPIE, we found that the best performance was ob-

tained with the main memory use (by TPIE) restricted

to 12Mbytes and with a block size of 20 times the phys-

ical block size (4Kbytes).

We ran the two programs on the four data sets, with

the number of rectangles varying between 50,000 and

1,500,000. Each rectangle consisted of an integer iden-

ti�er and two corner points represented by two dou-

bles each. Each rectangle thus used 40 bytes and the

real size of the data sets varied approximately between

2Mbytes and 60Mbytes. Figures 4 to 7 show the run-

ning times of the two programs for each of the data sets.

The external join and internal join curves repre-

sent the total running times (including sorting), while

the external join int and internal join int curves

represent the times needed to compute the intersections

of already sorted inputs.

Our experiments show that our external memory al-

gorithm is very e�cient in practice and that the run-

ning times of both algorithms depend heavily on the

N

N

0

0

200

400

600

800

1000

1200

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
Number of rectangles

"external_join_int"
"internal_join_int"

"external_join"
"internal_join"

Data set: wide_rect
T

im
e

(s
ec

on
ds

)

Figure 6: wide rect: Average no. of intersections �
hN=3. Average no. overlaps � h=2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
Number of rectangles

Data set: wide&tall_rect

"external_join_int"
"internal_join_int"

"external_join"
"internal_join"

N

N

0

T
im

e
(s

ec
on

ds
)

Figure 7: wide&tall rect: Average no. of intersections

� hN=4. Average no. overlaps � N=8 + h=2.

average overlap. The external join algorithm has a

steady and e�cient performance on the two data sets

with a large number of overlaps, but internal join

\breaks down" when the size of the problem becomes

bigger than the available main memory. On the data

sets with small overlap the performance of the two pro-

grams is comparable, and the sorting time dominates

the overall running time.

In the following we make a few comments on the re-

sults for each data set: The two algorithms perform

similarly on the small rect data set, in which the rect-

angles exhibit locality and have a small number of over-

laps. On these inputs, the external join algorithm

never breaks the plane up into slabs and is thus basi-

cally the same as internal join. The small di�erence

is the two performance curves is due to variations in

the experimental conditions (operating systems inter-

ference, randomization in the interval tree, etc.). The

number of rectangles would need to be more than 1 tril-

lion before internal memory would be exhausted. Note

however, that if a sorting algorithm developed for in-

ternal memory had been used instead of the TPIE al-

gorithm, the \breakdown" of small rect would have

occurred much before that. In tall rect the average

overlap is large, and the point where the interval trees

do not �t in internal memory is quickly reached, mak-

ing internal join thrash. As can be seen from the

graph, the thrashing point is reached around 700,000

rectangles. When the number of rectangles is between

400,000 and 600,000, internal join performs slightly

better than external join. The reason is that the lat-

ter algorithm detects that not enough memory is avail-

able, aborts the sweep algorithm, and starts the external

algorithm; the runtime penalty for the aborted sweep

counteracts the bene�ts of the later distribution sweep.

On the third data set, wide rect, the algorithms per-

form as on small rect because the average number of

nodes in the interval trees is small (constant). Finally,

on wide&tall rect, which is a mixture of the previous

two, the breakdown of external join occurs at around

1,300,000 rectangles, which is to be expected, since the

average number of overlaps is half of that of tall rect.

5 Conclusions

We have demonstrated a fairly general technique for

developing batched dynamic algorithms that are e�-

cient in an I/O setting for a variety of decomposable

problems. Our empirical study of algorithms for the

red/blue rectangle intersection problem suggests that

our approach is fast in practice and outperforms cur-

rently used methods, especially when the problem size

gets too large for internal memory.

There are several avenues of research regarding prac-

tical implementation. We are currently studying other

algorithms for red/blue rectangle intersection, as well

as improving our current implementation. One way of

doing so could be to try to predict for a given (sub)

problem (e.g. using sampling) if the interval trees in the

sweepline approach would �t in memory. We are also

implementing batched dynamic algorithms for other de-

composable problems.

References

[1] P. K. Agarwal, L. Arge, T. M. Murali, K. Varadara-

jan, and J. S. Vitter. I/O-e�cient algorithms for con-

tour line extraction and planar graph blocking. In Proc.

ACM-SIAM Symp. on Discrete Algorithms, 1998.

[2] A. Aggarwal and J. S. Vitter. The Input/Output com-

plexity of sorting and related problems. Communica-

tions of the ACM, 31(9):1116{1127, 1988.

[3] L. Arge. The bu�er tree: A new technique for opti-

mal I/O-algorithms. In Proc. Workshop on Algorithms

and Data Structures, LNCS 955, pages 334{345, 1995.

A complete version appears as BRICS technical report

RS-96-28, University of Aarhus.

[4] L. Arge. E�cient External-Memory Data Structures

and Applications. PhD thesis, University of Aarhus,

February/August 1996.

[5] L. Arge, P. Ferragina, R. Grossi, and J. Vitter. On sort-

ing strings in external memory. In Proc. ACM Symp.

on Theory of Computation, pages 540{548, 1997.

[6] L. Arge, D. E. Vengro�, and J. S. Vitter. External-

memory algorithms for processing line segments in ge-

ographic information systems. Algorithmica (to appear

in special issues on Geographical Information Systems),

1998.

[7] R. Bayer and E. McCreight. Organization and mainte-

nance of large ordered indexes. Acta Informatica, 1:173{

189, 1972.

[8] J. L. Bentley. Decomposable searching problems. In-

formation Processing Letters, 8:244{251, 1979.

[9] J. L. Bentley and D. Wood. An optimal worst case al-

gorithm for reporting intersections of rectangles. IEEE

Transactions on Computers, 29:571{577, 1980.

[10] T. Brinkho�, H.-P. Kriegel, and B. Seeger. E�cient

processing of spatial joins using R-trees. In Proc. SIG-

MOD Intl. Conf. on Management of Data, 1993.

[11] Y.-J. Chiang. Experiments on the practical I/O e�-

ciency of geometric algorithms: Distribution sweep vs.

plane sweep. In Proc. Workshop on Algorithms and

Data Structures, LNCS 955, pages 346{357, 1995.

[12] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamas-

sia, D. E. Vengro�, and J. S. Vitter. External-memory

graph algorithms. In Proc. ACM-SIAM Symp. on Dis-

crete Algorithms, pages 139{149, 1995.

[13] D. Comer. The ubiquitous B-tree. ACM Computing

Surveys, 11(2):121{137, 1979.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-

troduction to Algorithms. The MIT Press, Cambridge,

Mass., 1990.

[15] H. Edelsbrunner. A new approach to rectangle inter-

sections, part I & II. Int. J. Computer Mathematics,

13:209{229, 1983.

[16] H. Edelsbrunner and H. A. Maurer. On the intersection

of orthogonal objects. Information Processing Letters,

1981.

[17] H. Edelsbrunner and M. Overmars. Batched dynamic

solutions to decomposable searching problems. Journal

of Algorithms, 6:515{542, 1985.

[18] M. T. Goodrich, J.-J. Tsay, D. E. Vengro�, and J. S.

Vitter. External-memory computational geometry. In

Proc. IEEE Symp. on Foundations of Comp. Sci., pages

714{723, 1993.

[19] G. Graefe. Query evaluation techniques for large

databases. ACM Computing Surveys, 1993.

[20] O. G�unther. E�cient computation of spatial joins. In

Proc. IEEE International Conference on Data Engi-

neering, pages 50{60, 1993.

[21] R. H. G�uting and W. Schilling. A practical divide-and-

conquer algorithm for the rectangle intersection prob-

lem. Information Science, 42:95{112, 1987.

[22] P. C. Kanellakis, G. Kuper, and P. Revesz. Constraint

query languages. In Proc. ACM Symp. Principles of

Database Systems, pages 299{313, 1990.

[23] C. M. Kenyon and J. S. Vitter. Maximum queue size

and hashing with lazy deletion. Algorithmica, 6:597{

619, 1991.

[24] N. Koudas and K. C. Sevcik. Size separation spatial

join. In Proc. SIGMOD Intl. Conf. on Management of

Data, pages 324{335, 1997.

[25] V. Kumar and E. Schwabe. Improved algorithms and

data structures for solving graph problems in external

memory. In Proc. IEEE Symp. on Parallel and Dis-

tributed Processing, 1996.

[26] M.-L. Lo and C. V. Ravishankar. Spatial joins using

seeded trees. In Proc. SIGMOD Intl. Conf. on Man-

agement of Data, pages 209{220, 1994.

[27] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins.

In Proc. SIGMOD Intl. Conf. on Management of Data,

pages 247{258, 1996.

[28] E. McCreight. <problem 81-8>. Journal of Algorithms,

2:314, 1981.

[29] M. H. Overmars. The Design of Dynamic Data Struc-

tures. Springer-Verlag, LNCS 156, 1983.

[30] J. M. Patel and D. J. DeWitt. Partition based spatial-

merge join. In Proc. SIGMOD Intl. Conf. on Manage-

ment of Data, pages 259{270, 1996.

[31] F. P. Preparata and M. I. Shamos. Computational Ge-

ometry: An Introduction. Springer-Verlag, 1985.

[32] W. Pugh. Skip lists: a probabilistic alternative to bal-

anced trees. Commun. ACM, 35:668{676, 1990.

[33] H. Samet. Applications of Spatial Data Structures:

Computer Graphics, Image Processing, and GIS. Addi-

son Wesley, MA, 1989.

[34] H. Samet. The Design and Analyses of Spatial Data

Structures. Addison Wesley, MA, 1989.

[35] H. W. Six and D. Wood. Counting and reporting inter-

sections of d-ranges. IEEE Transactions on Computers,

31:181{187, 1982.

[36] A. U. Tanzel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev,

and R. Snodgrass. Temporal Databases: Theory, Design

and Implementation. The Benjamin/Cummings Pub-

lishing Company Inc., 1993.

[37] J. D. Ullman and M. Yannakakis. The input/output

complexity of transitive closure. Annals of Mathematics

and Arti�cial Intellegence, 3:331{360, 1991.

[38] D. E. Vengro�. A transparent parallel I/O environment.

In Proc. DAGS Symposium on Parallel Computation,

1994.

[39] D. E. Vengro�. TPIE User Manual and Reference.

Duke University, 1995. Available via WWW at

http://www.cs.duke.edu/TPIE.

[40] D. E. Vengro� and J. S. Vitter. I/O-e�cient scienti�c

computation using TPIE. In Proceedings of the Goddard

Conference on Mass Storage Systems and Technologies,

NASA Conference Publication 3340, Volume II, pages

553{570, 1996.

