
Implementing I/O-efficient Data Structures
Using TPIE

Lars Arge�, Octavian Procopiuc��, and Jeffrey Scott Vitter� � �

Center for Geometric and Biological Computing, Department of Computer Science,
Duke University, Durham, NC 27708, USA

{large,tavi,jsv}@cs.duke.edu

Abstract. In recent years, many theoretically I/O-efficient algorithms
and data structures have been developed. The TPIE project at Duke Uni-
versity was started to investigate the practical importance of these the-
oretical results. The goal of this ongoing project is to provide a portable,
extensible, flexible, and easy to use C++ programming environment for
efficiently implementing I/O-algorithms and data structures. The TPIE
library has been developed in two phases. The first phase focused on
supporting algorithms with a sequential I/O pattern, while the recently
developed second phase has focused on supporting on-line I/O-efficient
data structures, which exhibit a more random I/O pattern. This paper
describes the design and implementation of the second phase of TPIE.

1 Introduction

In many modern massive dataset applications I/O-communication between fast
internal memory and slow disks, rather than actual internal computation time, is
the bottleneck in the computation. Examples of such applications can be found
in a wide range of domains such as scientific computing, geographic information
systems, computer graphics, and database systems. As a result, much attention
has been focused on the development of I/O-efficient algorithms and data struc-
tures (see e.g. [4, 20]). While a lot of practical and often heuristic I/O-efficient
algorithms and data structures in ad-hoc models have been developed in the
database community, most theoretical work on I/O-efficiency in the algorithms
community has been done in the Parallel Disk Model of Vitter and Shriver [21].
To investigate the practical viability of the theoretical work, the TPIE1 project
was started at Duke University. The goal of this ongoing project is to provide a

� Supported in part by the National Science Foundation through ESS grant EIA–
9870734, RI grant EIA–9972879, CAREER grant CCR–9984099, ITR grant EIA–
0112849, and U.S.-Germany Cooperative Research Program grant INT–0129182.

�� Supported in part by the National Science Foundation through ESS grant EIA–
9870734 and RI grant EIA–9972879.

� � � Supported in part by the National Science Foundation through research grants
CCR–9877133 and EIA–9870734 and by the Army Research Office through MURI
grant DAAH04–96–1–0013.

1 TPIE: Transparent Parallel I/O Environment. Pronunciation: ’tE-’pI (like tea-pie)

R. Möhring and R. Raman (Eds.): ESA 2002, LNCS 2461, pp. 88–100, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Implementing I/O-efficient Data Structures Using TPIE 89

portable, extensible, flexible, and easy to use programming environment for effi-
ciently implementing algorithms and data structures developed for the Parallel
Disk Model. A project with similar goals, called LEDA-SM [13] (an extension of
the LEDA library [15]), has also been conducted at the Max-Planck Institut in
Saarbrucken.

TPIE is a templated C++ library2 consisting of a kernel and a set of I/O-
efficient algorithms and data structures implemented on top of it. The kernel is
responsible for abstracting away the details of the transfers between disk and
memory, managing data on disk and in main memory, and providing a uni-
fied programming interface appearing as the Parallel Disk Model. Each of these
tasks is performed by a separate module inside the kernel, resulting in a highly
extensible and portable system. The TPIE library has been developed in two
phases. The first phase focused on supporting algorithms with a sequential I/O
pattern, that is, algorithms using primitives such as scanning, sorting, merging,
permuting, and distributing [19]. However, in recent years, a growing number
of on-line I/O-efficient data structures have been developed, and the sequential
framework is ill-equipped to handle the more random I/O patterns exhibited
in these structures. Therefore a second phase of the TPIE development has fo-
cused on providing support for random access I/O patterns. Furthermore, just
like a large number of batched algorithms were implemented in the first phase
of the project, a large number of data structures have been implemented in the
second phase, including B-trees [12], persistent B-trees [9], R-trees [10], CRB-
trees [1], K-D-B-trees [18] and Bkd-trees [17]. The two parts of TPIE are highly
integrated, allowing seamless implementation of algorithms and data structures
that make use of both random and sequential access patterns.3

While the first part of TPIE has been described in a previous paper [19], this
paper describes the design and implementation details of the second phase of
the system. In Section 2 the Parallel Disk Model, as well as disk and operation
technology that influenced the TPIE design choices are first described. Section 3
then describes the architecture of the TPIE kernel and its design goals. Sec-
tion 4 presents a brief description of the data structures implemented using the
random access framework, and finally Section 5 contains a case study on the
implementation of the K-D-B-tree [18] along with some experimental results.

2 The I/O Model of Computation

In this section we discuss the physical disk technology motivating the Parallel
Disk Model, as well as some operating system issues that influenced important
TPIE design choices.
2 The latest TPIE release can be downloaded from http://www.cs.duke.edu/TPIE/
3 The LEDA-SM library takes a slightly different approach, optimized for random
access patterns. The algorithms and data structures implemented using LEDA-SM
are somewhat complementary to the ones implemented in TPIE. The kernels of the
two libraries are compatible, and as a result algorithms and structures implemented
for one of the systems can easily be ported to the other.

90 Lars Arge et al.

Magnetic Disks. The most common external memory storage device is the mag-
netic disk. A magnetic disk drive consists of one or more rotating platters with
one read/write head per platter. Data are stored on the platter surface in con-
centric circles called tracks. To read or write data at a certain position on the
platter, the read/write head must seek to the correct track and then wait for
the desired position on the track to pass by. Because mechanical movement
is involved, the typical read or write time is on the order of milliseconds. By
comparison, the typical transfer time of main memory is a few nanoseconds—a
factor of 106 faster! Since the seek and wait time is much larger than the time
needed to read a unit of data, magnetic disks transfer a large block of contigu-
ous data items at a time. Accessing a block involves only one seek and wait, so
the amortized cost per unit of data is much smaller than the cost of accessing
a single unit.

Parallel Disk Model. The Parallel Disk Model (PDM) was introduced by Vitter
and Shriver [21] (see also [3]) in order to more accurately model a two-level main
memory-disk system with block transfers. PDM has become the standard the-
oretical model for designing and analyzing I/O-efficient algorithms. The model
abstracts a computer as a three-component system: a processor, a fixed amount
of main memory, and one or more independent disk drives. Data is transferred
between disks and main memory in fixed-size blocks and one such transfer is
called an I/O operation (or simply an I/O). The primary measures of algorithm
performance in the model are the number of I/Os performed, the amount of
disk space used, and the internal computation time. To be able to quantify these
measures, N is normally used to denote the number of items in the problem in-
stance, M the maximum number of items that fit in main memory, B the number
of items per block, and D the number of independent disks. In this paper we
only consider the one-disk model.

Random versus sequential I/O. Using the Parallel Disk Model, a plethora of
theoretically I/O-efficient algorithms and data structures have been developed—
refer to [4, 20] for surveys. Experimental studies (many using the TPIE sys-
tem) have shown the model’s accuracy at predicting the relative performance of
algorithms—refer to the above mentioned surveys for references. However, they
have also revealed the limits of the model, primarily its inability to distinguish
between the complexities of sequential and random I/O patterns. Intuitively,
accessing data sequentially is more efficient than accessing blocks in a random
way on disk, since the first pattern leads to less seeks and waits than the latter.
Furthermore, since studies have shown that the typical use of a disk file is to
open it, read its entire contents sequentially, and close it, most operating systems
are optimized for such sequential access.

UNIX I/O primitives. In the UNIX operating system, optimization for sequen-
tial access is implemented using a buffer cache. It consists of a portion of the
main memory reserved for caching data blocks from disk. More specifically, when
a user requests a data block from disk using the read() system call, the block
is looked up in the buffer cache, and if not there, it is fetched from disk into the

Implementing I/O-efficient Data Structures Using TPIE 91

cache. From there, the block is copied into a user-space memory location. To op-
timize for sequential access a prefetching strategy is also implemented, such that
blocks following a recently accessed block are loaded into the buffer cache while
computation is performed. Similarly, when a block is written using a write()
system call, the block is first copied to the buffer cache, and if necessary, a block
from the buffer cache is written to disk.

When the I/O-pattern is random rather than sequential, the buffer cache is
mostly useless and can actually have a detrimental effect. Not only are resources
wasted on caching and prefetching, but the cache also incurs an extra copy of
each data block. Therefore most UNIX-based operating systems offer alternative
I/O routines, called mmap() and munmap(), which avoid using the buffer cache.
When the user requests a disk block using mmap(), the block is mapped di-
rectly in user-space memory.4 The mapping is released when munmap() is called,
allowing the block to be written back to disk. If properly implemented, these
routines achieve a zero-copy I/O transfer, resulting in more efficient I/O than
the read()/write() functions in applications that exhibit a random I/O access
pattern. Another important difference between the two sets of functions is that
in order to achieve zero-copy transfer, the mmap()/munmap() functions control
which user-space location a block is mapped into. In the read()/write() case,
where a copy is incurred anyway, it is the application that controls the placement
of blocks in user-space. As described in the next section, all the above issues have
influenced the design of the random access part of TPIE.

3 The TPIE Kernel

In this section we describe in some detail the architecture of the TPIE kernel and
the main goals we tried to achieve when designing it. The kernel, as well as the
rest of the TPIE library, are written in C++. We assume the reader is familiar
with object-oriented and C++ terminology, like classes, templates, constructors
and destructors.

3.1 Overview

As mentioned in the introduction, the TPIE library has been built in two phases.
The first phase was initially developed for algorithms based on sequential scan-
ning, like sorting, permuting, merging, and distributing. In these algorithms,
the computation can be viewed as a continuous process in which data is fed in
streams from an outside source and streams of results are written behind. This
stream-based view of I/O computation is not utilizing the full power of the par-
allel disk model, but it provides a layer of abstraction that frees the developer
from worrying about details like managing disk blocks and scheduling I/Os.

The TPIE kernel designed in this first phase consists of three modules: the
Stream-based Block Transfer Engine (BTE), responsible for packaging data into
4 Some systems use the buffer cache to implement mmap(), mapping pages from the
buffer cache into user-space memory.

92 Lars Arge et al.

BTE_stream_mmap

BTE_stream_ufs

BTE_stream_stdio

Stream−based Random−access
Block Transfer Engine (BTE)Block Transfer Engine (BTE)

BTE_coll_mmap

BTE_coll_ufsMemory
Manager (MM)

Access Method Interface (AMI)

Fig. 1. The structure of the TPIE kernel

blocks and performing I/O transfers, the Memory Manager (MM), responsible
for managing main memory resources, and the Application Method Interface
(AMI), which provides the public interface and various tools. The BTE imple-
ments a stream using a UNIX file and its functionality, like reading, writing, or
creating a block, is implemented using UNIX I/O calls. Since the performance
of these calls is paramount to the performance of the entire application, dif-
ferent BTE implementations are provided, using different UNIX I/O calls (see
Figure 1): BTE stream mmap uses mmap() and munmap(), BTE stream ufs uses
the read() and write() system calls, and BTE stream stdio uses fread() and
fwrite(). Other implementations can easily be added without affecting other
parts of the kernel. The Memory Manager (MM) module maintains a pool of
main memory of given size M and insures that this size is not exceeded. When
either a TPIE library component or the application makes a memory alloca-
tion request, the Memory Manager reserves the amount requested and decreases
a global counter keeping track of the available memory. An error is returned if no
more main memory is available. Finally, the AMI provides a high-level interface
to the stream functionality provided by the BTE, as well as various tools, includ-
ing templated functions for scanning, merging, and sorting streams. In addition,
the AMI provides tools for testing and benchmarking: a tool for logging errors
and debugging messages and a mechanism for reporting statistics.

As mentioned, the stream-based view of I/O provided by these modules is
ill-equipped for implementing on-line I/O-efficient data structures. The second
phase of TPIE provides support for implementing these structures by using the
full power of the disk model. Maintaining the design framework presented above,
the new functionality is implemented using a new module, the Random-access
BTE, as well as a new set of AMI tools. Figure 1 depicts the interactions between
the various components of the TPIE kernel. The rest of this section describes
the implementation of the Random-access BTE module and the new AMI tools.

3.2 The Random Access Block Transfer Engine (BTE)

The Random-access BTE implements the functionality of a block collection,
which is a set of fixed-size blocks. A block can be viewed as being in one of

Implementing I/O-efficient Data Structures Using TPIE 93

two states: on disk or in memory. To change the state of a block, the block col-
lection should support two operations: read, which loads a block from disk to
memory, and write, which stores an in-memory block to disk. In addition, the
block collection should be able to create a new block and delete an existing block.
In order to support these operations, a unique block ID is assigned to each block
in a block collection. When requesting a new block using the create operation,
the collection returns a new block ID, which can then be used to read, write, or
delete the block.

In our implementation, a block collection is organized as a linear array of
blocks stored in a single UNIX file. A block from a collection is uniquely deter-
mined by its index in this array—thus this index is used as the block ID. When
performing a read or write operation we start by computing the offset of the
block in the file using the block ID. This offset is then used to seek in the file
and transfer the requested block. Furthermore, the write operation uses a dirty
flag to avoid writing blocks that have not been modified since they were read.
This per-block dirty flag should be set by the user-level application whenever the
contents of the in-memory block are modified. Unlike read and write, the create
and delete operations modify the size of the block collection. To implement these
operations, we employ a stack storing the IDs of the blocks previously deleted
from the collection. When a block is deleted, its ID is simply pushed onto this
stack. When a new block is requested by the create procedure, the stack is first
checked, and if it’s not empty, the top ID is popped and returned; if the stack
is empty, the block ID corresponding to a new block at the end of the file is re-
turned. The use of the stack avoids costly reorganization of the collection during
each delete operation. However, it brings up a number of issues that need to be
addressed. First, the stack has to reside on disk and has to be carried along with
the file storing the blocks. In other words, a collection consists of two files: one
containing data blocks and one containing block IDs. The second issue concerns
space overhead. When multiple create and delete operations are performed on
a collection, the number of blocks stored in the data blocks file can be much
larger than the number of blocks in the collection. To eliminate this space over-
head, the collection can be reorganized. However, such a reorganization would
change the IDs of some blocks in the collection and therefore it cannot be per-
formed by the BTE, which has no knowledge of the contents of the blocks: If
a block contains IDs of other blocks, then the contents of that block would need
to be updated as well. A reorganization procedure, if needed, should therefore
be implemented on the application level.

We decided to implement the block collection on top of the UNIX file system
and not, e.g., on the raw disk, to obtain portability and ease of use. Using raw
disk I/O would involve creating a separate disk partition dedicated to TPIE
data files, a non-trivial process that usually requires administrator privileges.
Some operating systems offer user-space raw I/O, but this mechanism is not
standardized and is offered only by a few operating systems (such as Solaris and
Linux). On the other hand, storing a block collection in a file allows the use of
existing file utilities to copy and archive collections.

94 Lars Arge et al.

A BTE block collection is implemented as a C++ class that provides a
standard interface to the AMI module. The interface consists of a constructor
for opening a collection, a destructor for closing the collection, the four block-
handling routines described above, as well as other methods for reporting the
size of the collection, error handling, etc. Except for the four block-handling rou-
tines, all methods are implemented in a base class. We implemented two BTE
collections as extensions to this base class: BTE coll mmap and BTE coll ufs. As
the names suggest, BTE coll mmap uses mmap() and munmap() to perform I/O
transfers, while BTE coll ufs uses the read() and write() system calls. The
implementation of choice for most systems is BTE coll mmap since, as mentioned
in Section 2, the mmap()/munmap() functions are more suited for the random I/O
pattern exhibited by online algorithms. We implemented BTE coll ufs to com-
pare its performance with BTE coll mmap and to account for some systems where
mmap() and munmap() are very slow.

3.3 The Access Method Interface (AMI)

The AMI tools needed to provide the random access I/O functionality consist of
a front-end to the BTE block collection and a typed view of a disk block. In the
BTE, we viewed the disk block as a fixed-size sequence of “raw” bytes. However,
when implementing external memory data structures, disk blocks often have
a well-defined internal structure. For example, a disk block storing an internal
node of a B+-tree contains the following: an array of b pointers to child nodes, an
array of b− 1 keys, and a few extra bytes for storing the value of b. Therefore,
the AMI contains a templated C++ class called AMI block<E,I>. The contents
of a block are partitioned into three fields: an array of zero or more links to
other blocks (i.e., block IDs), an array of zero or more elements of type E (given
as a template parameter), and an info field of type I (also given as a template
parameter). Each link is of type AMI bid and represents the ID of another block
in the same collection. This way the structure of a block is uniquely determined
by three parameters: the types E and I and the number of links. Easy access to
elements and links is provided by simple array operators. For example, the ith
element of a block b is referenced by b.el[i], and the jth link is referenced by
b.lk[j].

The AMI block<E,I> class is more than just a structuring mechanism for
the contents of a block. It represents the in-memory image of a block. To this
end, constructing an AMI block<E,I> object loads the block in memory, and
destroying the object unloads it from memory. The most general form of the
constructor is as follows.

AMI_block<E,I>(AMI_collection* c, size_t links, AMI_bid bid=0)

When a non-zero block ID is passed to the constructor, the block with that
ID is loaded from the given collection. When the block ID is zero, a new block is
created in the collection. When deleting an AMI block<E,I> object, the block is
deleted from the collection or written back to disk, depending on a persistence
flag. By default, a block is persistent, meaning that it is kept in the collection after

Implementing I/O-efficient Data Structures Using TPIE 95

the in-memory image has been destroyed. The persistence flag can be changed
for individual blocks.

As its name suggests, the AMI collection type that appears in the above
constructor represents the AMI interface to a block collection. The functionality
of the AMI collection class is minimal, since the block operations are handled
by the AMI block<E,I> class. The main operations are open and close, and are
performed by the constructor and destructor. An instance of type AMI collec-
tion is constructed by providing a file name, an access type, and a block size.

AMI_collection(char* fn, AMI_collection_type ct, size_t bl_sz)

This constructor either opens an existing collection or creates and opens
a new one. The destructor closes the collection and, if so instructed, deletes the
collection from disk. The exact behavior is again determined by a persistence
flag, which can be set before calling the destructor.

3.4 Design Goals

This subsection summarizes the main goals we had in mind when designing the
TPIE kernel and the methods we used to achieve these goals.

Ease of use. The usability of the kernel relies on its intuitive and powerful
interface. We started from the parallel disk model and built the Random-access
BTE module to simulate it. Multiple BTE implementations exist and they are
easily interchangeable, allowing an application to use alternative low-level I/O
routines. The user interface, provided within the AMI, consists of a typed view
of a block—the AMI block<E,I> class—and a front-end to the block collection—
the AMI collection class. The design of these two classes provides an easy to
understand, yet powerful application interface. In addition, the AMI block<E,I>
class provides structure to the contents of the block in order to facilitate the
implementation of external memory data structure.

Flexibility. As illustrated in Figure 1, the TPIE kernel is composed of four
modules with a well-defined interface. Each of the modules has at least a default
implementation, but alternative implementations can be provided. The best can-
didates for alternative implementations are the two BTE modules, since they
allow the use of different I/O mechanisms. The Stream-based BTE has three
implementations, using different system calls for performing the I/O in stream
operations. The Random-access BTE has two implementations, which use dif-
ferent low-level system calls to perform the I/O in block collection operations.

Efficiency. In order to obtain a fast library, we paid close attention to optimizing
disk access, minimizing CPU operations, and avoiding unnecessary in-memory
data movement. To optimize disk access, we used a per-block dirty flag that
indicates whether the block needs to be written back or not. To minimize CPU
operations, we used templated classes with no virtual functions; because of their
inherently dynamic nature, virtual functions are not typically inlined by C++
compilers and have a relatively high function call overhead. Finally, to avoid in-
memory copying, we used the mmap()/munmap() I/O system calls; they typically
transfer blocks of data directly between disk and user-space memory.

96 Lars Arge et al.

Portability. Being able to easily port the TPIE kernel on various platforms was
one of our main goals. As discussed in Section 3.1, the default methods used
for performing the disk I/O are those provided by the UNIX-based operating
systems and were chosen for maximum portability. Alternative methods can be
added, but the existing implementations insure that the library works on all
UNIX-based platforms.

4 Data Structures

As mentioned in the introduction, there are various external memory data struc-
tures implemented using the TPIE kernel. They are all part of the extended TPIE
library. In this section, we briefly survey these data structures.

B-tree. The B-tree [12] is the classical external memory data structure for online
searching. In TPIE we implemented the more general (a, b)-tree [14], supporting
insertion, deletion, point query, range query, and bulk loading.5 All these op-
erations are encapsulated in a templated C++ class. The template parameters
allow the user to choose the type of data items to be indexed, the key type, and
the key comparison function. A full description of the (a, b)-tree implementation
will be given in the full version of this paper.

Persistent B-tree. The persistent B-tree [9] is a generalization of the B-tree
that records all changes to the initial structure over a series of updates, allowing
queries to be answered not only on the current structure, but on any of the
previous ones as well. The persistent B-tree can be used to answer 3-sided range
queries and vertical ray shooting queries on segments in R

2. More details on the
implementation can be found in [5].

R-tree. The R-tree and its variants are widely used indexing data structures for
spatial data. The TPIE implementation uses the insertion heuristics proposed
by Beckmann et al. [10] (their variant is called the R*-tree) and various bulk
loading procedures. More details are given in [6, 7].

Logarithmic method. The logarithmic method [16] is a generic dynamization
method. Given a static index with certain properties, it produces a dynamic
structure consisting of a set of smaller static indexes of geometrically increasing
sizes. We implemented the external memory versions of this method, as pro-
posed by Arge and Vahrenhold [8] and Agarwal et al. [2]. More details on the
implementation can be found in [17].

K-D-B-tree. The K-D-B-tree [18] combines the properties of the kd-tree [11] and
the B-tree to handle multidimensional points in an external memory setting. Our
implementation supports insertion, deletion, point query, range query and bulk
loading. More details on the implementation can be found in [17].
5 Bulk loading is a term used in the database literature to refer to constructing an
index from a given data set from scratch.

Implementing I/O-efficient Data Structures Using TPIE 97

Bkd-tree. The Bkd-tree [17] is a data structure for indexing multidimensional
points. It uses the kd-tree [11] and the logarithmic method to provide good
worst-case guarantees for the update and query operations. More details can be
found in [17].

5 Case Study: Implementing the K-D-B-Tree

We conclude this paper with some details of the K-D-B-tree implementation in
order to illustrate how to implement a data structure using TPIE. We chose the
K-D-B-tree because it is a relatively simple yet typical example of a tree-based
structure implementation.

The K-D-B-tree is a data structure for indexing multidimensional points
that attempts to combine the query performance of the kd-tree with the update
performance of the B-tree. More precisely, a K-D-B-tree is a multi-way tree with
all leaves on the same level. In two dimensions, each internal node v corresponds
to a rectangular region r and the children of v define a disjoint partition of r
obtained by recursively splitting r using axis-parallel lines (similar to the kd-
tree [11] partitioning scheme). The points are stored in the leaves of the tree,
and each leaf or internal node is stored in one disk block.

The implementation of the K-D-B-tree is parameterized on the type c used
for the point coordinates and on the dimension of the space d.

template<class c, size_t d> class Kdbtree;

The K-D-B-tree is stored in two block collections: one for the (internal) nodes,
and one for the leaves. Using two collections to store the K-D-B-tree allows us
to choose the block size of nodes and that of leaves independently; it also allows
us to have the nodes clustered on disk, for improved performance.

By the flexible design of the AMI block class, we can simply extend it and use
the appropriate template parameters in order to provide the required structure
for nodes and leaves.

template<class c, size_t d>

class Kdbtree_node: AMI_block<box<c, d>, kdbtree_node_info>;

template<class c, size_t d>

class Kdbtree_leaf: AMI_block<point<c, d>, kdbtree_leaf_info>;

In other words, a Kdbtree_node<c,d> object consists of an array of d-dimen-
sional boxes of type box<c,d>, an array of links pointing to the children of the
node, and an info element of type kdbtree_node_info. The info element stores
the actual fanout of the node (which is equal to the number of boxes stored),
the weight of the node (i.e., the number of points stored in the subtree rooted
at that node), and the splitting dimension (a parameter used by the insertion
procedure, as described in [18]). The maximum fanout of a node is computed
(by the AMI_block class) using the size of the box<c,d> class and the size of the
block, which is a parameter of the nodes block collection. A Kdbtree_leaf<c,d>
object consists of an array of d-dimensional points of type point<c,d>, no links,

98 Lars Arge et al.

and an info element of type kdbtree_leaf_info storing the number of points,
a pointer to another leaf (for threading the leaves), and the splitting dimension.

As already mentioned, the operations supported by this implementation of
the K-D-B-tree are insertion, deletion, point query, window query, and bulk
loading. It has been shown that batched algorithms for bulk loading can be much
faster than using repeated insertions [6]. For the K-D-B-tree, we implemented
two different bulk loading algorithms, as described in [17]. Both algorithms start
by sorting the input points and then proceed to build the tree level by level, in
a top down manner. The implementation of these algorithms shows the seamless
integration between the stream-handling AMI tools and the block handling AMI
tools: The initial sorting is done by the built-in AMI sort function, and the
actual building is done by scanning the sorted streams and producing blocks
representing nodes and leaves of the K-D-B-tree.

The update operations (insertion and deletion) are implemented by closely
following the ideas from [18]. The query operations are performed as in the kd-
tree [11]. Figure 2 shows the implementation of the simple point query procedure.
Starting from the root, the procedure traverses the path to the leaf that might
contain the query point. The traversal is done by iteratively fetching a node
using its block ID (line 7), finding the child node containing the query point
(line 8), and releasing the node (line 10). When the child node is a leaf, that
leaf is fetched (line 12), its contents are searched for the query point (line 13),
and then the leaf is released (line 14). These pairings of fetch and release calls
are typical examples of how applications use the TPIE kernel to perform I/O.
Intuitively, fetch_node reads a node from disk and release_node writes it
back. The point query procedure is oblivious to how the I/O is performed or
whether any I/O was performed at all. Indeed, the fetch and release functions
employ a cache manager to improve I/O performance. By using application-level
caching (instead of fixed, kernel-level caching) we allow the application developer
to choose the most appropriate caching algorithm. A few caching algorithms are

1 bool find(point_t& p) {
2 bool ans; size_t i;
3 Kdbtree_node<c,d>* bn;
4 region_t<c,d> r;
5 kdb_item_t<c,d> ki(r, header_.root_bid, header_.root_type);
6 while (ki.type != BLOCK_LEAF) {
7 bn = fetch_node(ki.bid);
8 i = bn->find(p);
9 ki = bn->el[i];

10 release_node(bn);
11 }
12 Kdbtree_leaf<c,d>* bl = fetch_leaf(ki.bid);
13 ans = (bl->find(p) < bl->size());
14 release_leaf(bl);
15 return ans;
16 }

Fig. 2. Implementation of the point query procedure

Implementing I/O-efficient Data Structures Using TPIE 99

10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

Number of points in structure (in millions)

T
im

e
(s

ec
on

ds
)

BTE_coll_mmap
BTE_coll_ufs

(a)

10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of points in structure (in millions)

T
im

e
(s

ec
on

ds
)

BTE_coll_mmap
BTE_coll_ufs

(b)

Fig. 3. (a) Performance of K-D-B-tree bulk loading (b) Performance of a range
query (averaged over 10 queries, each returning 1% of the points in the structure)

already provided in TPIE, and more can be easily added by extending the cache
manager base class.

Experiments. Using the K-D-B-tree implementation, we performed experiments
to show how the choice of I/O system calls affects performance. We bulk loaded
and performed range queries on K-D-B-trees of various sizes.6 The data sets
consisted of uniformly distributed points in a squared-shaped region. The graph
in Figure 3(a) shows the running times of bulk loading, while the graph in
Figure 3(b) shows the running time of one range query, averaged over 10 similar-
size queries. Each experiment was performed using the two existing Random-
access BTE implementations: BTE_coll_mmap and BTE_coll_ufs. As expected,
the running time of the bulk loading procedure—a highly sequential process—
is not affected by the choice of Random-access BTE. On the other hand, the
performance of a range query is affected significantly by this choice: Using the
ufs-based Random-access BTE results in higher running times. This validates our
analysis from Section 2 and confirms that BTE_coll_mmap is the implementation
of choice for the Random-access BTE.

References

[1] P.K. Agarwal, L. Arge, and S. Govindarajan. CRB-tree: An optimal indexing
scheme for 2d aggregate queries. Manuscript, 2002. 89

[2] P.K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index
bulk loading and dynamization. In Proc. 28th Intl. Colloq. Automata, Languages
and Programming (ICALP), 2001. 96

[3] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116–1127, 1988. 90

6 All experiments were performed on a dedicated Pentium III/500MHz computer run-
ning FreeBSD 4.4, with 128MB of main memory and an IBM Ultrastar 36LZX SCSI
disk.

100 Lars Arge et al.

[4] L. Arge. External memory data structures. In J. Abello, P.M. Pardalos,
and M.G.C. Resende, editors, Handbook of Massive Data Sets, pages 313–358.
Kluwer Academic Publishers, 2002. 88, 90

[5] L. Arge, A. Danner, and S.-M. Teh. I/O-efficient point location using persistent
B-trees. Manuscript, 2002. 96

[6] L. Arge, K.H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations
on dynamic R-trees. Algorithmica, 33(1):104–128, 2002. 96, 98

[7] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vit-
ter. A unified approach for indexed and non-indexed spatial joins. In Proc.
Conference on Extending Database Technology, pages 413–429, 1999. 96

[8] L.A. Arge and J. Vahrenhold. I/O-efficient dynamic planar point location. In
Proc. ACM Symp. Computational Geometry, 2000. 96

[9] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymp-
totically optimal multiversion B-tree. VLDB Journal, 5(4):264–275, 1996. 89,
96

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Proc. SIGMOD
Intl. Conf. on Management of Data, pages 322–331, 1990. 89, 96

[11] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, Sept. 1975. 96, 97, 98

[12] D. Comer. The ubiquitous B-tree. ACM Comput. Surv., 11:121–137, 1979. 89,
96

[13] A. Crauser and K. Mehlhorn. LEDA-SM: Extending LEDA to secondary mem-
ory. In Proc. Workshop on Algorithm Engineering, 1999. 89

[14] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted
lists. Acta Informatica, 17:157–184, 1982. 96

[15] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000. 89

[16] M.H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes Comput. Sci. Springer-Verlag, Heidelberg, West Germany, 1983. 96

[17] O. Procopiuc, P.K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dynamic
scalable kd-tree. Manuscript, 2002. 89, 96, 97, 98

[18] J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional
dynamic indexes. In Proc. SIGMOD Intl. Conf. on Management of Data, pages
10–18, 1981. 89, 96, 97, 98

[19] D.E. Vengroff and J. S. Vitter. Supporting I/O-efficient scientific computation
in TPIE. In Proc. IEEE Symp. on Parallel and Distributed Computing, pages
74–77, 1995. 89

[20] J. S. Vitter. External memory algorithms and data structures: Dealing with
MASSIVE data. ACM Computing Surveys, 33(2):209–271, 2001. 88, 90

[21] J. S. Vitter and E.A.M. Shriver. Algorithms for parallel memory, I: Two-level
memories. Algorithmica, 12(2–3):110–147, 1994. 88, 90

	Implementing I/O-efficient Data Structures Using TPIE
	Introduction
	The I/O Model of Computation
	The TPIE Kernel
	Overview
	The Random Access Block Transfer Engine (BTE)
	The Access Method Interface (AMI)
	Design Goals

	Data Structures
	Case Study: Implementing the K-D-B-Tree
	References

