
On Two-Dimensional Indexability and

Optimal Range Search Indexing

(Extended Abstract)

Lars Arge� Vasilis Samoladasy Je�rey Scott Vitterz

Abstract

In this paper we settle several longstanding open problems in

theory of indexability and external orthogonal range search-

ing. In the �rst part of the paper, we apply the theory of

indexability to the problem of two-dimensional range search-

ing. We show that the special case of 3-sided querying can

be solved with constant redundancy and access overhead.

From this, we derive indexing schemes for general 4-sided

range queries that exhibit an optimal tradeo� between re-

dundancy and access overhead.

In the second part of the paper, we develop dy-

namic external memory data structures for the two query

types. Our structure for 3-sided queries occupies O(N=B)

disk blocks, and it supports insertions and deletions

in O(log
B
N) I/Os and queries in O(log

B
N + T=B)

I/Os, where B is the disk block size, N is the num-

ber of points, and T is the query output size. These

bounds are optimal. Our structure for general (4-sided)

range searching occupies O
�
(N=B)(log(N=B))= log log

B
N
�

disk blocks and answers queries in O(log
B
N + T=B)

I/Os, which are optimal. It also supports updates in

O
�
(log

B
N)(log(N=B))= log log

B
N
�
I/Os.

�Center for Geometric Computing, Department of Computer
Science, Duke University, Box 90129, Durham, NC 27708{0129.

Supported in part by the U.S. Army Research O�ce through

MURI grant DAAH04{96{1{0013 and by the National Science

Foundation through ESS grant EIA{9870734. Part of this work

was done while visiting BRICS, Department of Computer Science,

University of Aarhus, Denmark. Email: large@cs.duke.edu.
yDepartment of Computer Sciences, University of Texas at

Austin, Austin, TX 78712-1188. Email vsam@cs.utexas.edu
zCenter for Geometric Computing, Department of Computer

Science, Duke University, Box 90129, Durham, NC 27708{0129.

Supported in part by the U.S. Army Research O�ce through

MURI grant DAAH04{96{1{0013 and by the National Science

Foundation through grants CCR{9522047 and EIA{9870734.
Part of this work was done while visiting BRICS, Depart-

ment of Computer Science, University of Aarhus, Denmark and

I.N.R.I.A., Sophia Antipolis, France. Email: jsv@cs.duke.edu.

1 Introduction

There has recently been much e�ort toward develop-

ing worst-case I/O-e�cient external memory data struc-

tures for range searching in two dimensions [1, 2, 4, 8,

12, 13, 20, 26, 28, 29]. In their pioneering work, Kanel-

lakis et al. [13] showed that the problem of indexing

in new data models (such as constraint, temporal, and

object models), can be reduced to special cases of two-

dimensional indexing. (Refer to Figure 1). In particu-

lar they identi�ed the 3-sided range searching problem

(Figure 1(c)) to be of major importance.

In the �rst part of this paper (Section 2), we apply

the theory of indexability [10] to two-dimensional range

searching problems. In indexability theory the focus is

on bounding the number of disk blocks containing the

answers to a query (access overhead) given a bound on

the number of blocks used to store the data points (re-

dundancy). The search cost of computing which blocks

to access is ignored. We generalize the results in [26, 14]

and show a lower bound on redundancy for a given

access overhead for the general 4-sided problem. We

then show that this bound is tight by constructing an

indexing scheme with a matching tradeo� between re-

dundancy and access overhead. The indexing scheme

is based upon an indexing scheme for the 3-sided range

searching problem with constant redundancy and access

overhead.

In the second part of the paper, we develop opti-

mal dynamic external data structures for 3-sided range

searching (Section 3) and 4-sided range searching (Sec-

tion 4). (The update time is not provably optimal in

the 4-sided case.) Unlike in indexability theory, we

do not ignore the search cost when designing external

data structures. Our dynamic data structure for 3-sided

range searching is an optimal external version of the

priority search tree [16] based upon weight-balanced B-

trees [2].

Throughout the paper we use capital letters to denote

parameter sizes in units of data points:

N = size of the data set;

B = disk block size;

T = size of the query output:

1

ba

d

c

ba

cb

a

a

a

(d) 4-sided query q = (a,b,c,d)(a) diagonal corner query at point a (b) 2-sided query q = (a,b) (c) 3-sided query q = (a,b,c)

��
��
��
��

��
��
��
��

�
�
�
��
�
�
�

��

�
�
�
�

�
�
�
�

��

��
��
��
��

��

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
�
�
�
� ��

��
��
��

��

��
��
��
��
��
��
��
��

�
�
�
�����

����
����

��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
� ��

��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

������

��
��
��
��

�� ��
��
��
��

�
�
�
��

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
� ��

��
��
��

��
��
��
��

�
�
�
�

Figure 1: Di�erent types of two-dimensional range queries.

For notational simplicity, we de�ne

n =
N

B
and t =

T

B

to be the data set size and query output size in units of

blocks rather than points. An I/O operation (or simply

I/O) is de�ned as the transfer of a block of data between

internal and external memory.

Indexability: Background and outline of results

The theory of indexability was formalized by Heller-

stein, Koutsoupias, and Papadimitriou [10]. As men-

tioned it studies an abstraction of an indexing problem

where search cost is omitted. An instance of a problem

is described by a workload W , which is a simple hyper-

graph (I;Q), where I is the set of instances, and Q is a

set of subsets of I . The elements ofQ are called queries.

For a given workload W = (I;Q), and for a parameter

B � 2 called the block size, we can construct an index-

ing scheme S as a B-regular hypergraph (I;B), where
each element of B is a B-subset of I , and is called a

block. We require that I = [B. An indexing scheme S
can be thought of as a placement of the instances of I
on disk pages, possibly with redundancy. It can thus be

seen as a solution to a data structure problem, assum-

ing that searching for the appropriate blocks incurs no

cost.

An indexing scheme is quali�ed by two parameters:

its redundancy r and its access overhead A. The redun-
dancy is a measure of space e�ciency and is de�ned as

r = BjBj=jI j. The access overhead A is de�ned as the

least number such that every query q 2 Q is covered by

at most A
�
jqj=B

�
blocks of S , where jqj denotes the

number of points that satisfy query q. The reader is

referred to [10, 24] for a more detailed presentation.

Koutsoupias and Taylor [14] applied indexability to

two-dimensional range searching and showed that a par-

ticular workload, the Fibonacci workload, seems to be

worst-case for two-dimensional range queries. Using this

result, they showed logarithmic upper and lower bounds

on the redundancy for range search indexability.

In Section 2, we extend the previous results on the

Fibonacci workload by computing the exact worst-case

indexability trade-o� between redundancy and access

overhead. We demonstrate that the lower bound is tight

by exhibiting a matching indexing scheme.

External range search data structures:

Background and outline of results

Research on two-dimensional external range searching

has traditionally been concerned with the general 4-

sided problem. Many external data structures such as

grid �les [17], various quad-trees [22, 23], z-orders [18]

and other space �lling curves, k-d-B-trees [21], hB-

trees [15], and various R-trees [9, 25] have been pro-

posed. Often these structures are the data structures of

choice in applications, because they are relatively sim-

ple, require linear space, and in practice perform well

most of the time. However, they all have highly sub-

optimal worst-case performance, and although most are

dynamic structures, their performance deteriorates af-

ter repeated updates. The relevant literature is huge

and well-established, and is recently surveyed in [7].

Some progress has recently been made on the con-

struction of external two-dimensional range searching

structures with provably good performance. The im-

portant subproblem of dynamic interval management is

considered in [13, 2]. A key component of the problem is

how to answer stabbing queries. Given a set of intervals,

a stabbing query with query point q asks for all the in-
tervals that contain q. A stabbing query with query q is
equivalent to a diagonal corner query (a special case of

2-sided two-dimensional range searching) in which the

corner of the query is located at (q; q) on the diagonal

line x = y. (See Figure 1(a).) Arge and Vitter [2] devel-
oped an optimal dynamic structure for the diagonal cor-

ner query problem. The structure uses O(n) disk blocks
to store N points, and supports queries and updates in

O(logB N + t) and O(logB N) I/Os, respectively.

A number of elegant internal memory solutions ex-

ist for other special cases of two-dimensional range

searching. The priority search tree [16] for example

can be used to answer 3-sided range queries in opti-

mal query and update time using linear space. A num-

ber of attempts have been made to externalize pri-

ority search trees, including [4, 12, 13, 20], but all

previous attempts have been nonoptimal. The struc-

ture in [12] uses optimal space, but answers queries

in O(logN + t) I/Os. The structure of [4] also uses

optimal space, but answers queries in O(logB N + T)
I/Os. In both these papers, a number of nonopti-

mal dynamic versions of the structures are developed.

2

The structure developed in [13] uses linear space but

answers queries in O(logB N + t + logB) I/Os. Ra-

maswamy and Subramanian [20] developed a technique

called path caching for transforming an e�cient internal

memory data structure into an I/O-e�cient one. Use of

this technique on the priority search tree results in a

structure that can be used to answer 3-sided queries in

the optimal O(logB N + t) I/Os but using nonoptimal

O
�
n(logB) log logB

�
disk blocks of space. The struc-

ture can be updated in O
�
(logN) logB

�
I/Os. Fur-

ther modi�cations led to the dynamic structure called

the p-range tree [26]. For 3-sided queries, it uses linear

space, answers queries in O
�
logB N + t+ IL�(B)

�
I/Os,

and supports updates in O
�
logB N+(logB N)2=B

�
I/Os

amortized. (The function IL� is the very slowly growing

iterated log� function, that is, the number of times that

the log� function must be applied to get below 2.)

The p-range tree can be extended to answer gen-

eral 4-sided queries in the same query bound us-

ing O(nlogn) disk blocks of space; it supports up-

dates in O
�
(logN)(logB N+(logB N)2=B)

�
I/Os amor-

tized. Ramaswamy and Subramanian also provide

a static structure with the same query bound using

O
�
n(logn)= log logB N

�
disk space. They prove for

a fairly general model that this space bound is opti-

mal for any data structure that can answers queries in

O
�
(logB N)O(1) + t

�
I/Os.

In Section 3, we present an optimal dynamic data

structure for 3-sided range searching that occupies O(n)
disk blocks, performs queries in O(logB N+t) I/Os, and
does updates in O(logB N) I/Os. Part of the structure

uses the indexing scheme developed in the �rst part of

the paper, and thus we demonstrate the suitability of

indexability as a tool in the design of data structures, in

addition to its application in the study of lower bounds.

In Section 4, we use our 3-sided structure to

construct a dynamic structure for 4-sided queries

that uses O
�
n(log n)=log logB N

�
disk blocks of

space and answers queries in O(logB N + t) I/Os,

which are optimal.1 Updates can be performed in

O
�
(logB N)(logn)= log logB N

�
I/Os.

2 Indexability of two-dimensional workloads

In this section we study the 3-sided and 4-sided range

searching problems within the indexability framework.

In Section 2.1 we provide a lower bound on the tradeo�

between the redundancy r and the access overhead A
for the 4-sided problem. We show the bound to be tight

in Section 2.2 by designing an indexing scheme with the

same tradeo�.

1For notational simplicity, we use the expression log log
B
N to

denote the more complete expression log(logB N+1), whose value

is always at least 1.

2.1 Lower bound for general range searching

Samoladas and Miranker [24] developed a general tech-

nique for computing lower bounds for arbitrary work-

loads. In this section we combine their technique with

the results of [14] to obtain a lower bound on the trade-

o� between the redundancy r and the access overhead A
for the so-called Fibonacci workload.

We begin with a brief description of the Fibonacci

workload; we refer the reader to [14] for a thorough

presentation. Let N = fk be the kth Fibonacci number.
The Fibonacci lattice FN is the set of two-dimensional

points de�ned by:

FN =
�
(i; ifk�1 mod N)

�� i = 0; 1; : : : ; n� 1
	
;

for N = fk. The Fibonacci workload is de�ned by tak-

ing the Fibonacci lattice as the set of instances I , and Q
consists of queries in the form of orthogonal rectangles.

We will only use the following property of the Fi-

bonacci lattice [14]:

Proposition 1 For the Fibonacci lattice FN of N
points and for ` � 0, any rectangle with area `N con-

tains between b`=c1c and d`=c2e points, where c1 � 1:9
and c2 � 0:45.

In [24] the following theorem is proved:

Theorem 1 (Redundancy Theorem) Let S be an

indexing scheme for queries q1; q2; : : : ; qM with access

ratio A, such that for every i in the range 1 � i � M ,

the following conditions hold:

jqij � B;

jqi \ qj j �
B

2("A)2
;

for all j 6= i, 1 � j �M . The redundancy r satis�es

r �
"� 2

2"

1

N

MX
i=1

jqij;

where 2 < " < B=A is any real number such that B="A
is an integer.

Let us apply this theorem to the Fibonacci workload.

The �rst step is to design a set Q of queries. Intuitively,

we should consider queries of output size B, as these
seem to be the hardest. To be slightly more general,

however, we consider queries of size at least kB, for
arbitrary integer k � 1. In this manner, we obtain a

more general result, depending upon k.

Our queries are rectangles of dimension ci � a=ci, for
appropriate integers i. (The parameter c will be deter-
mined later.) The area of each rectangle is a, which
we set to c1kBN . By Proposition 1, each such rectan-

gle contains at least kB points. For each choice of i,
we partition the Fibonacci lattice into non-overlapping

rectangles of dimension ci�a=ci, in a tiling fashion. All

these rectangles de�ne our query set Q.

3

Because no rectangle can have a side longer than N ,

we must constrain the integer i to satisfy ci � N and

a=ci � N , which puts i roughly in the range between

logc c1kB and logcN ; that is, the rectangles have ap-

proximately logc(N=c1kB) distinct aspect ratios. Since
we cover the whole set of points for each choice of i, it
follows from Theorem 1 that

r �
"� 2

2"
logc

N

c1kB
=

log N

kB

log c

!
:

We determine parameter c using the second condition
of Theorem 1, which states that no two queries can in-

tersect by more than B=2("A)2 points. We observe that

rectangles of the same aspect ratio do not intersect, and

rectangles of di�erent aspect rations have intersections

of area at most a=c. From Proposition 1 it su�ces to

have �
a=c

c2N

�
�

B

2("A)2
:

Under the restriction that B � 4("A)2, the value

c = 4
c1

c2
k("A)2

satis�es the constraint. By choosing k = 1 we get the

following theorem:

Theorem 2 For the Fibonacci workload, the redun-

dancy and the access overhead satisfy the tradeo� r =

�
(logn)=logA

�
.

More generally, we have the following theorem:

Theorem 3 For the Fibonacci workload, in order to

cover queries of T = tB points with L+Adte blocks, the
redundancy must satisfy r =

�
(logn)=(logL+ logA)

�
.

Proof : Since we have a weaker requirement on the query

cost, we only consider queries of size at least (L=A)B.
Smaller queries are not a problem, because each smaller

query is contained within a larger one. By setting k =

L=A in our analysis above, the theorem is proved. 2

If we set L = (logB N +1)O(1) and A = O(1), we ob-
tain the lower bound of [26]. For still higher values of L,
our lower bound on the required redundancy becomes

weaker.

2.2 Indexing schemes for two-dimensional

range searching

Proving the lower bound of the previous section to be

tight is not trivial. In [14], a method of deriving in-

dexing schemes is given, but its redundancy exceeds the

optimal by a factor of B.2 In fact, in order to construct

optimal indexing schemes for 4-sided range-query work-

loads, we need to construct optimal indexing schemes

for 3-sided workloads.

2Because of a slight error, the result as stated in [14] appears

to agree with our bound, but it is actually nonoptimal by a factor

of �(B).

In Section 2.2.1 we show how to construct an indexing

scheme for a 3-sided workload, with r = O(1) and A =

O(1). Interestingly, we were unable to achieve A = O(1)
for the case r = 1 in which there is no redundancy.

Whether this bound is possible is an interesting open

problem. In Section 2.2.2 we then consider general 4-

sided workloads.

2.2.1 Indexing schemes for 3-sided workloads

Consider a set of N points (xi; yi) in the plane ordered

in increasing order of their y-coordinates and let � � 2

be a constant. We describe a procedure to construct an

indexing scheme for the given points.

Initially, we create n disjoint blocks, b1, b2, . . . , bn, by
partitioning the points based upon their x-order; that
is, for each i < j, if (x1; y1) 2 bi and (x2; y2) 2 bj , then
x1 � x2. We can associate an x-range with each block

in a natural way, along with a linear ordering of the

blocks. (If there are multiple blocks containing a single

x-value, any consistent linear ordering su�ces.)

We consider a hypothetical horizontal sweep line, ini-

tialized to y = �1. We say that a block is active if it

contains at least one point above the sweep line. Ini-

tially all the blocks b1, b2, . . . , bn are active. We main-

tain the invariant that in each set of � active blocks that

are consecutive in the linear ordering, at least one of the

blocks contains at least B=� points above the sweep line.

We construct the other blocks for our indexing scheme

by repeating the following procedure: We raise the

sweep line until it hits a new point. If the invariant

is violated by � consecutive active blocks, we form a

new block and �ll it with the (at most B) points that
are above the sweep line in the � blocks. We mark the

� blocks as inactive and make the new block active; it

replaces the � blocks in the linear ordering. We do this

coalescing operation as many times as necessary until

the invariant is restored. The sweep line continues up-

wards until only one active block remains.

All the blocks constructed in this way form our index-

ing scheme. We start o� with n active blocks and reduce
the number of active blocks by ��1 every time we coa-

lesce blocks, so we create a total of at most n+n=(��1)
blocks, which gives a redundancy of r � 1 + 1=(�� 1).

We can associate an active y-interval with each block

in a natural way: The active y-interval of block b is de-
limited by the y-coordinate of the point that caused b
to be made active (created) and the y-coordinate of the
point that caused b to become inactive.

To answer the 3-sided query q = (a; b; c), we consider
blocks whose active y-intervals include c, that is, the

blocks that were active when the sweep line was at y = c.
To cover the query, we look at the subset of these blocks

whose x-ranges intersect the interval [a; b]. This subset
is necessarily consecutive in the linear ordering. If there

are k such blocks, we know from the invariant that at

4

least b(k � 2)=�c of them will contribute at least B=�
points to the query output. Thus a query with output

size T satis�es T � b(k � 2)=�)c(B=�), from which we

get k � �2t+ �+ 1 and A � �2 + �+ 1.

Theorem 4 For any 3-sided range searching workload

there exists an indexing scheme with r � 1 + 1=(�� 1)

and A � �2 + �+ 1, for � � 2.

Choosing � = 2 we get r � 2 and A � 7.

Corollary 1 For any 3-sided range searching workload

there exists an indexing scheme with redundancy O(1),
such that every query of size T is covered with at most

O(t+ 1) blocks.

2.2.2 Indexing schemes for 4-sided workloads

We now describe an algorithm by which we can create

an indexing scheme for any range query workload. Our

structure is based upon Chazelle's �ltering technique [5].

We assume without loss of generality that N = �kB,
for some integers � � 2 and k � 1. We �rst partition

our data set of N points into L0 = N=�B sets S0;j ,
for 1 � j � L0, based upon their x-order. Each set S0;j
contains �B points and �ts into � blocks. We say that

the sets form level 0 of our indexing scheme. Then we

create L1 = L0=� sets S1;j , for 1 � j � L1, in which

each set S1;j is the distinct union of � consecutive sets

of level 0. These sets form level 1. We continue this

process recursively, constructing the next level by union-

ing � sets of the current level. We stop when we reach

level k � 1, for which Lk�1 = 1. Each set of level i con-
tains �i+1B points; thus, there are L = N=�i+1B sets

at level i.

The sets Si;j constructed in the above way form a �-
ary tree with k = log�(N=B) = log� n levels, where each

non-leaf node is the union of its children. Each node of

this tree corresponds naturally to an x-range, and the

sets of each level form a partition of the data set.

We organize the points of every set Si;j into blocks, by
constructing two indexing schemes on the points of Si;j :
one that can answer 3-sided queries with the unbounded

side to the left, and one the can answer 3-sided queries

with the unbounded side to the right. (In the previous

section, the unbounded side was upwards). By the tech-

nique of the previous section, these indexing schemes

each occupy O(jSi;j j=B) blocks and have access over-

head O(1). Overall, we consume O(n) blocks per level,
and since we have log� n levels, the redundancy is

r = O

�
logn

log �

�
:

To answer a 4-sided query q = (a; b; c; d), we consider
the lowest node Si;j (the one with minimum i) whose x-
range includes the query x-interval [a; b]. There are two
cases to consider. If Si;j is a leaf (i.e., at level i = 0), we

answer the query by loading the � blocks of S0;j . If Si;j

Figure 2: The solid lines represent the x-range of set

Si;j , covering query q shown as the dashed rectangle.

The vertical dashed lines represent the c-partition of

Si;j into Si�1;j0 , Si�1;j0+1, . . . , Si�1;j0+c�1.

is not a leaf, its � children partition q into k subqueries

q1, q2, . . . , qk, for some 2 � k � �, as shown in Figure 2.
Subquery q1 is a 3-sided query with the unbounded side

to the right, and it can be covered by O(jq1j=B + 1)

blocks of the appropriate child of Si;j . Similarly, sub-

query qk is a 3-sided query with the unbounded side

to the right, and it can be covered by O(jqk j=B + 1)

blocks of another child of Si;j . For each intermediate

subquery qj , for 1 < j < k, we can use either of the

indexing schemes for the appropriate child of Si;j to

cover qj in O(jqj j=B + 1) blocks. The total number of

blocks needed to cover query q is O(�+ jqj=B).

Theorem 5 For any two-dimensional range searching

workload and any parameter � � 2, there exists an in-

dexing scheme with redundancy r = O
�
(logn)=log �

�
that covers every query of size T = tB with at most

O(�+ t) blocks.

3 Dynamic 3-sided range query data structure

We now turn to the problem of designing a linear space

external data structure for answering 3-sided queries.

After designing the indexing scheme for 3-sided queries

in Section 2.2.1, the only remaining issues are how to

e�ciently �nd the O(t) blocks containing the answer to
a query and how to update the structure dynamically

during an insert or delete. The challenge is to do these

operations in O(logB N + t) I/Os and O(logB N) I/Os,

respectively, in the worst case.

Our solution is an external memory version of a pri-

ority search tree [16]. In this structure we use a num-

ber of substructures derived from the indexing schemes

developed in Section 2.2.1, applied to sets of O(B2)

points each. In the next section we show how to make

our O(B2)-sized substructures dynamic with a worst-

case optimal update I/O bound. The outer skeleton of

our external priority search tree is the so-called weight-

balanced B-tree [2], which we review in Section 3.2. In

Section 3.3, we describe the external priority search tree

and show how to use the weight-balanced properties to

do updates in the worst-case optimal I/O bound.

5

3.1 Dynamic 3-sided queries on �(B2) points

We know from Corollary 1 that it is possible to build

an indexing scheme on O(B2) points using O(B) disk
blocks such that any 3-sided query can be covered by

O(t + 1) blocks. Because such an indexing scheme

contains only O(B) blocks, we can store the activity-

interval (y-interval) and x-range information for all the

blocks in O(1) \catalog" blocks. We can then answer a

query in O(t+1) I/Os simply by loading the O(1) cata-
log blocks into main memory and using the information

in them to determine which index blocks to access.

Given the O(B2) points in sorted x-order a naive con-
struction of the O(B) blocks in the indexing scheme

using the sweep line process of Section 2.2.1 will re-

quire O(B2) I/Os. However, the algorithm can be eas-

ily modi�ed to use only O(B) I/Os: When we create a

block (make it active), we determine the y-coordinate at
which point fewer than B=c of its points will be above
the sweep line, and we insert that y-value into a priority
queue. The priority queue is used during the sweep line

process to �nd the next possible y-value where blocks

may need to be coalesced in order to restore the in-

variant. The total number of calls to the priority queue

is O(B). Furthermore, the priority queue contains O(B)
entries at any time and can be kept in O(1) blocks in
internal memory. Thus only O(B) I/Os are required to

construct the indexing scheme.

The above O(B) construction algorithm can be used

to perform updates in O(1) I/Os per operation in the

worst case, by using the technique of global rebuild-

ing [19]: We use two extra blocks, say, p and q, to log

insertions and deletions of points. When one of these

blocks becomes full, say, block p, we use block q to log

the next B updates, and at the same time we build a

new version of the structure out of the points in the cur-

rent structure, updated as logged in p. The O(B) I/Os
used to do the rebuilding can be spread evenly over the

O(B) updates needed to �ll block q, thus costing only

O(1) I/O per update. When the new version is com-

plete, which will happen before block q has �lled, we

switch to the new version of the data structure and we

swap the roles of p and q; we begin logging on block p
and building a new version using block q. Details will

appear in the full paper.

Lemma 1 A set of K � B2 points can be stored in a

data structure using O(K=B) blocks, so that a 3-sided

range query can be answered in O(t + 1) I/Os and an

update can be performed in O(1) I/Os worst case.

3.2 Weight-balanced B-tree

Arge and Vitter [2] de�ned weight-balanced B-trees and

used them to construct optimal interval trees in external

memory. Weight-balanced B-trees are similar to nor-

mal B-trees [3, 6] (or rather B+ trees or more generally

(a; b)-tree [11]) in that all the leaves are on the same

level (level 0), and rebalancing is done by splitting and

fusing internal nodes. However, they di�er in the fol-

lowing important way: Constraints are imposed on the

weight of each node, rather than on its number of chil-

dren. The weight of a leaf is de�ned as the number of

items in it; the weight of an internal node is de�ned

as the sum of the weights of its children. A leaf in a

weight-balanced B-tree with branching parameter a and
leaf parameter k (a > 4, k > 0) has weight between k
and 2k� 1, and an internal nodes on level ` (except for
the root) has weight between 1

2
a`k and 2a`k. A root

at level ` has weight at most 2a`k and has at least one

child. It can easily be shown that a weight-balanced tree

on N items has height loga(N=k) + �(1) and that ev-

ery internal node has between a=4 and 4a children. By

choosing a = �(B), we get a tree of height O(logB N);

when stored on disk, each internal node �ts into O(1)
blocks, and a search can be performed in O(logB N)

I/Os.

In order to insert a new item into a weight-balanced

B-tree, we search down the tree to �nd the leaf z in

which to do the update. We then insert the item into the

sorted list of items in z. If z now contains 2k items, we

split z into two leaves z0 and z00, each containing k items,
and we insert a reference to z00 in parent(z). After the
insertion of the new items, the weight constraint may

be violated at some of the nodes on the path from z
to the root; that is, the node v` on level ` may have

weight 2a`k. In order to rebalance the tree we split

all such heavy nodes, starting with the nodes on the

lowest level and working toward the root. The node v`
is split into v0` and v00` such that they both have weight

approximately a`k. The following lemmas are proved

in [2]:

Lemma 2 After a split of a node v` on level ` into

two nodes v0` and v00` , at least a
`k=2 inserts have to pass

through v0` (or v00`) to make it split again. After a new

root r in a tree containing N items is created, at least

3N inserts have to be done before r splits again.

Lemma 3 A set of N = nB items can be stored in

a weight-balanced B-tree with parameters a = �(B)
and k = O(B logB N) using O(n) disk blocks, so that

a search or an insert can be performed in O(logB N)

I/Os. An insert perform O(logB N) split operations.

3.3 External priority search tree

An external priority search tree storing a set of N points

in the plane consists of a weight-balanced base tree built

upon the x-coordinates of the points, with parameters

a = B=4 and some k in the range B=2 � k � B logB N .

Each node therefore corresponds in a natural way to a

range of x-values, called its x-range.

Each node in the base tree has an associated auxiliary

data structure. Each of the N points is stored in the

6

auxiliary structure of exactly one node or leaf, according

to the following rules:

� Each internal node v stores (at most) B2 points

in its auxiliary structure|at most B points corre-

sponding to each of the (at most) B children of v.
For a child w of v, the set Y (w) of points con-

tributed to v's auxiliary structure is called the Y-set
of w, by which we mean that the points in Y (w)
have the highest y-coordinates among the points

within the x-range of w that are not already stored

in ancestors of v. See Figure 3.

� Each leaf stores (at most) 2k points in its auxiliary

data structure. The points stored in leaf z consist

of the points in z's x-range that are not already

stored in ancestors of z.

� If a node or leaf v has a non-empty auxiliary struc-
ture, then its Y-set (which it contributes to the

auxiliary structure of parent(v)) contains at least
B=2 points.

We call the auxiliary data structure of an internal

node v its query data structure, and we denote it by Qv.

The query structure Qv contains all the Y-sets of v's
children|�(B2) points in total|and is implemented

to support 3-sided queries using the O(B)-block struc-

ture of Lemma 1. The auxiliary data structure of a leaf

node z consists simply of a list Lz (of blocks) sorted

according to their y-coordinates. Since each of the aux-

iliary structures uses linear space, the base tree occupies

O(n) blocks, and we get the following lemma:

Lemma 4 An external memory priority search tree

on N = nB points has height O(logB N) and occupies

O(n) disk blocks.

3.3.1 Optimal query performance

The basic procedure for answering a 3-sided query q =
(a; b; c) begins at the root r of the external priority

search tree and proceeds recursively to the appropriate

subtrees. All the nodes along the leftmost search path

vv

Figure 3: An internal node v of the base tree. For each

child w of v, the Y-set Y (w) consists of the �(B) high-
est points stored in the subtree of v that are within the

x-range of w. The Y-sets of the �ve children of v are in-
dicated by the bold points. They are stored collectively

in v in the query structure Qv.

for x = a and along the rightmost search path for x = b
are visited. Some nodes in the interior region between

the two search paths are also visited.

If z is a leaf node, visiting z involves accessing the

list Lz. If z's x-range intersects one of the query's edges
x = a or x = b, the full list Lz must be traversed to

�nd the relevant points. If instead the x-range of z lies
completely within the x-range of the query, it is possible
to access only the relevant part of the list, by taking

advantage of the fact that Lz contains points sorted on

the y-values.

Visiting an internal node v involves posing query q
to v's query structure Qv. After the relevant points

of Qv are reported, the search is advanced to some of

the children of v. (See Figure 4.) For each child w of v,
the search is advanced to visit w if one of the following

conditions holds:

1. w is along the leftmost search path for x = a or the
rightmost search path for x = b, or

2. the entire Y-set Y (w) (stored in Qv) satis�es the

query q.

The correctness of the recursive query procedure fol-

lows from the de�nition of the external priority search

tree. If the search procedure visits node v but not its

child w, that means that w is in the interior region and

at least one point p in Y (w) does not satisfy the query.

Since the x-range of w is completely contained in the

query's x-range [a; b], the point p must be below the

query's y-coordinate c. By de�nition of Y-set, all the

points in the subtree of w are no higher than p and thus
cannot satisfy the query.

We can show that a query is performed in the optimal

number of I/Os as follows: In every internal node v vis-
ited by the query procedure we spend O(1+Tv=B) I/Os,
where Tv is the number of points reported (Lemma 1).

There are O(logB N) nodes visited on the direct search

paths in the tree to the leftmost leaf for a and the right-
most leaf for b, and thus the number of I/Os used in

these nodes adds up to O(logB N + t). Each remaining

internal node v that is visited is not on the search path,

but it is visited because �(B) points from its Y-set Y (v)
were reported when its parent was visited. If there are

fewer than B=2 points to report from Qv, we can charge

the O(1) I/O cost for visiting v to the �(B) points

of Y (v) reported from Qparent(v). Thus the total I/O

charge for the internal nodes is O(logB N + t). A sim-

ilar argument applies to the leaves: Only in two leaves

(namely, the ones for a and b) do we need to load all

O(B logB N) points, which takes O(logB N) I/Os. For

each remaining leaf z that we access, we use O(1+Tz=B)
I/Os. if Tz < B=2, we can charge the O(1) I/O cost to

the �(B) points in Y (z) reported from Qparent(z).

7

(a) (b)

vv vvvvv v v v 544 3211 2 3 5

Figure 4: Internal node v with children v1, v2, . . . , v5. The Y-sets of each child, which are stored collectively in

the v's query structure Qv, are indicated by the bold points. (a) The 3-sided query is completely contained in the

x-range of v2. The relevant points are reported from Qv, and the query is recursively answered in v2. (b) The 3-sided
query spans several slabs. The relevant points are reported from Qv, and the query is recursively answered in v2, v3,
and v5. The query is not extended to v4 because not all of its Y-set Y (v4) (stored in Qv) satis�es the query, and as

a result, none of the points stored in v4's subtree can satisfy the query.

Lemma 5 Given an external memory priority search

tree on N = nB points, a 3-sided range query satis�ed

by T = tB points can be answered in O(logB N + t)
I/Os.

3.3.2 Optimal updates|amortized

In order to insert a new point p = (x; y) into an external
priority search tree, we �rst insert x into the base tree.

This may result in nodes in the base tree being split,

which may necessitate a reorganization of the auxiliary

structures. We defer the discussion of this reorganiza-

tion temporarily. To insert the point p = (x; y) into

the appropriate query structure, we initialize node v to
be the root and do the following recursive procedure:

Let vi be the child of v whose x-range includes point p.
We identify the (at most) B points in the Y-set Y (vi),
which are stored in v. These points can be identi�ed

by performing the (degenerate) 3-sided query de�ned

by the x-range of vi and y = �1 on the query struc-

ture Qv . If the number of such points is � B=2 and p is
below all of them, then p is recursively inserted into vi.
Otherwise, p joins the Y-set Y (vi) and is inserted into

v's query structure Qv. If as a result Y (vi) contains

more than B points, the lowest of these points (which

can be identi�ed by a query to Qv) is deleted from Qv

(and thus Y (vi)) and is recursively inserted into vi. If

v is a leaf, then p is inserted into the correct position

in Lv. A simple scanning operation su�ces to �nd the

proper location for p and to update the linear list. It

is easy to see that after the insertion the tree is a valid

external priority search tree.

As mentioned above, auxiliary structures need to be

reorganized when a node v in the base tree splits into

nodes v0 and v00. See Figure 5(a). After the split, one or
both of the Y-sets Y (v0) and Y (v00) obtained by split-

ting Y (v) may contain fewer than B=2 points. In the

worst case we need to promote the topmost B=2 points
from the auxiliary structure of v0 (resp., v00) into Y (v0)
(resp., Y (v00)). See Figure 5(b).

Let us consider the process of promoting one point

from the auxiliary structure of v0 into the auxiliary

structure of parent(v). In O(1) I/Os we �nd the top-

most point p0 stored in v0 by a (degenerate) query to the
query structure Qv0 . Then we delete p0 from Qv0 and in-

sert it into Qparent(v). This process may cause the Y-set

of one of the children of v0 to be too small (namely, the
Y-set that formerly contained p0), in which case we need
to promote a point recursively. The promotion of one

point may thus involve successive promotions of a point

from a node to its parent, along the path from v down

to a leaf. We call such a process a bubble-up operation.

The insertion of the x-coordinate of a new point p
is performed in the optimal O(logB N) I/Os amortized:

According to Lemma 3, the initial insertion of x can be

performed in O(logB N) I/Os and can cause O(logB N)

splits. Each split of an internal node v may cause B=2
bubble-up operations. By the above discussion and

Lemma 1, each bubble-up operation does O(1) I/Os at
each node on the path from v to a leaf, for a total of

O
�
logB weight(v)

�
I/Os. Thus the B=2 bubble-up op-

erations use O
�
B logB weight(v)

�
I/Os. We also need

to split the auxiliary structure of v, which is straight-

forward for leaves and can be done for internal nodes in

O(B) I/Os by Lemma 1. In total a split of node v can

be performed in O
�
B logB weight(v)

�
= O

�
weight(v)

�
I/Os. It then follows from Lemma 2 that each of the

O(logB N) splits cost O(1) I/Os amortized.

After inserting x, the algorithm for inserting p in-

volves traversing at most one root-to-leaf path in the

tree, querying and updating Qv at each node v on the

path, and a scan through the O(B logB N) points in a

leaf. It follows from Lemma 1 that this insertion can be

performed in O(logB N) I/Os.

Deletion of a point p = (x; y) is relatively straightfor-
ward. We recursively search down the path for the node

or leaf containing p. For each node v on the path, let vi
be the child whose x-range includes p. We use the query

structure Qv to identify the points in the Y-set Y (vi).
If p is one of these points, we delete it from Y (vi) (and

8

v1 v2 v4 v5v3 v1 v2 v4 v5v3

(b)(a)

v v’’v’

Figure 5: Two views of a split. (a) Node v in the base tree splits into two nodes v0 and v00. (b) When v splits, its

Y-set (shown by the bold points on the left) also splits, but in this case the two resulting Y-sets Y (v0) and Y (v00)
are too small, and points need to be promoted from v0 and v00 into Y (v0) and Y (v00), as shown on the right.

thus Qv), and if as a result Y (vi) becomes too small,

we perform a bubble-up operation. If p is not in Y (vi),
we continue the search recursively in vi. If the search

reaches a leaf z, we simply scan through Lz and delete p.
Overall p is deleted in O(logB N) I/Os.

After deleting p we should also remove the endpoint x
from the base tree in order to guarantee that the height

of the structure remains O(logB N). However, we can

a�ord to be lazy and leave x in the tree for a while. By

the principle of global rebuilding [19], we can leave x in

the tree and rebuild the structure completely after �(N)

delete operations. It is easy to see that everything can

be rebuilt in O(N logB N) I/Os, and so a delete costs a

total of O(logB N) I/Os amortized. Details will appear

in the full paper.

Lemma 6 An update can be performed on an external

priority search tree in O(logB N) I/Os amortized.

3.3.3 Optimal updates|worst-case

The update algorithms in Section 3.3.2 are I/O-optimal

in the amortized sense, but have bad worst-case per-

formance. The delete operations can easily be made

worst-case e�cient using a standard lazy global re-

building technique [19, 2]. Details will appear in the

full paper. However, obtaining a worst-case bound

on an insert operation is considerably more compli-

cated. In the previous solution the number of I/Os

required to perform an insert can be

�
B(logB N)2

�
:

There can be
(logB N) splits per insert, and each split

may require
(B) bubble-up operations, each taking

(logB N) I/Os. The tricky problem that remains in

order get a worst case bound is how to schedule the

bubble-up operations lazily so that each update only

uses O(logB N) I/Os, while at the same time maintain-

ing a valid external priority search tree so that the op-

timal query bound is retained.

The key idea we use to obtain the worst-case bound

is that when an internal node v in the weight-balanced

base tree gets too heavy, it is not split immediately, but

enters a rebuilding phase that extends over the next

O
�
weight(v)

�
insert operations accessing v. We know

from Lemma 2 that v will not have to split again until

�
weight(v)

�
subsequent insert operations has passed

through it. The purpose of the rebuilding phase on v
is to promote (via bubble-ups) the points needed for

constructing the Y-sets Y (v0) and Y (v00) and the query

structures Qv0 and Qv00 of the two new nodes v0 and v00

that will be created by the split. (We can determine

the points to promote for Y (v0) and Y (v00) before form-
ing v0 and v00 by using a modi�ed form of the 3-sided

structure used for Lemma 1.) During the process, we in-

crementally form the two new query structures, and we

incrementally insert the additional points for the two

Y-sets into Qparent(v). When the rebuilding phase is

completed, the split can be �nalized using O(1) I/Os.

One way of doing the rebuilding within worst-case

bounds is to decompose each bubble-up operation into

individual I/Os and to do the bubble-ups for v one I/O
at a time, doing one I/O each time v is accessed. An

insertion thus only takes O(logB N) I/Os worst case.

However, by doing so, several bubble-up operations may

possibly be pending at a certain node, causing its query

data structure to be temporarily depleted until points

from below are percolated up. At such times, the data

structure will not be a valid external priority search tree

and queries will not be performed in the optimal number

of I/Os.

Below we discuss three approaches for scheduling the

bubble-up operations to obtain the optimal worst-case

I/O bounds. In all three cases, each time a root-to-

leaf path is visited during an insert, one or more of the

nodes on the path get complete bubbling-up procedures

done on them. Thus there will be no partially done

bubble-ups and the optimal query performance is re-

tained. Each insert uses O(logB N) I/Os on bubble-up

procedures, and it is guaranteed that when a node v
gets too heavy it will have B=2 bubble-up operations

performed on it (if necessary) within O
�
weight(v)=B

�
operations that access v. After the necessary bubble up
operations have been performed, v can be split in O(1)
I/Os and we can thus guarantee that the split is accom-

plished before a new split needs to be initiated. This

proves one of our main results. (Details will appear in

the full paper).

9

Theorem 6 A set of N points can be stored in a data

structure using O(n) disk blocks, so that a 3-sided range

query can be answered in O(logB N+t) I/Os worst case,
and such that an update can be performed in O(logB N)

I/Os worst case.

Heavy leaf nodes method. Our �rst method for

scheduling the bubble-up operations utilizes heavy leaf

nodes of size �(B logB N) rather than the normal �(B).
By Lemmas 4 and 5 this is allowable in an external pri-

ority search tree. Our algorithm is extremely simple.

We maintain a level counter ` for each leaf z, which is

initialized to 1 (corresponding to the level of z's parent)
when z is created (split). Every time an item is inserted

into z, a bubble-up operation is performed on the node

at level ` above z, and ` is incremented by 1. When `
reaches the root level, it is reset to 1. Every insertion

is performed in O(logB N) I/Os worst case. From the

time a leaf z is created until when it splits, �(B logB N)

insertions are performed on z, and thus �(B) bubble-up
operations are performed on all the nodes on the path

to the root that are in a rebuilding phase when z is

created.

Lemma 7 Let v be an internal node in an external pri-

ority search tree. When v is in rebuilding mode, it will

get �(B) bubble-up procedures performed on it within

�
�
weight(v)=B + B logB N

�
= �

�
weight(v)=B

�
insert

operations that visit v.

Proof Sketch: The number of leaves below v is

�
�
weight(v)=(B logB N)

�
. The worst case occurs when

each leaf is accessed enough times to do bubble-

up operations for almost all v's ancestors, but not

for v itself. Thus O
�
(logB N)weight(v)=(B logB N)

�
=

O
�
weight(v)=B

�
insert operations may be performed

below v without v having any bubble-up operations

performed. However, after this, on the average every

O(logB N) insertions below v will cause a bubble-up

on v. 2

The proof of Lemma 7 remains valid if the leaf nodes

are of size maxfB; logB Ng. We typically have B �

logB N , so for all practical purposes, the maximum is

equal to B.

Credit method. Our second method uses the same

general principle of doing complete bubble-up opera-

tions used in the heavy-leaf method. We show using a

credit argument how to allow the proper bubble-up op-

erations and still keep the leaf nodes at the normal size

of �(B) points.

We give a count to each node in the weight-balanced

B-tree. The count is 0 when the node is not in rebuilding

mode, and it is nonnegative while in rebuilding mode.

During an insert operation, if the node v on level ` on
the root-to-leaf path is in rebuilding mode, then we in-

crement v's count by 1. We say that v is eligible for a

bubble-up operation when its count is at least `.

After the insertion operation, we do the following

(complete) bubble-up procedures:

C := 0; fC counts I/Os done in bubble-up ops.g;

` := 1;

while C < 2 logB N do

if the node on level ` is eligible then
Perform a bubble-up operation for v

using ` I/Os;
C := C + `;
Reset v's count to 1;
endif

` := `+ 1; fWalk up one level in the treeg

enddo

Lemma 8 Let v be a node on level ` � 1 in the external

priority search tree. If v is in rebuilding mode, then for

any 1 � b � B, it will get b bubble-up procedures done

on it within 4a`(a+2
a�1

) + 2b` = �
�
weight(v)=B

�
insert

operations that visit v, where a = �(B) is the branching
parameter of the weight-balanced B-tree.

Proof Sketch: First consider the case b = 1. We will

show that v gets a bubble-up operation done on it within
4a`(a+2

a�1
)+` inserts that access it, assuming that it is in

rebuilding mode. The proof is by contradiction. Node v
becomes eligible for a bubble-up operation after ` inser-
tion operations that visit it. Once v becomes eligible,

suppose that it does not receive a bubble-up operation

during the next 4a`(a+2
a�1

) accesses. It follows for each

of those insertions that there are always eligible nodes

below v on the insertion path (or else v would have re-

ceived a bubble-up operation). Thus at least 2` worth
of I/Os for bubble-up procedures are done during each

insertion on v's descendants.
When v becomes eligible, the internal nodes below it

(which number at most 2a` + 4a`�1 + 4a`�2 + 4a`�3 +
� � � + 4a � 2a`(a+2

a�1
)) may be in rebuilding mode and

may be eligible too. Since each bubble-up operation

done on a node resets its count to 0, then after the

4a`(a+2
a�1

) inserts that visit v, at least 2a`(a+2
a�1

) of the in-

serts do complete bubble-ups operations exclusively on

nodes that have already received complete bubble-ups

while v was eligible. Each insert operation may add 1 to
a node's count, which allows the node to do one future

I/O of work for a bubble-up procedure. Thus the total

added allowance to v's descendants per insertion is `�1

I/Os. On the other hand, at least 2` I/Os of bubble-ups
are done per insert while v is eligible. The 2a`(a+2

a�1
) in-

serts that do bubble-ups exclusively on nodes that have

received previous bubble-ups must therefore reduce the

nodes' allowances by at least 2a`(a+2
a�1

)(2`) = 4a`(a+2
a�1

)`.
Since the allowances for those nodes are built up only

during v's eligible period, the allowances total at most
4a`(a+2

a�1
)(` � 1), and thus some of them must become

negative, which is impossible.

The argument for b > 1 is similar. After each bubble-

up it receives, v needs to wait ` insertions before it be-

10

comes eligible again, during which time its descendants

may accumulate a total allowance of ` per insert. 2

Child split method. Our third method uses generic

properties of B-trees to schedule the bubble-up opera-

tions. Let us consider a particular insertion. Let h be

the height of the tree, and let v0; v1; : : : ; vh be the nodes
of the path from the leaf where the new point is inserted

up to the root; that is, v0 is the leaf itself, and vh is the

root. We consider only the case where the leaf v0 splits,
but the root vh does not split. If this is not the case, no

bubble-ups are performed for this insertion.

By our assumption that the root does not split, we

conclude the there exists some k, for 0 < k � h, such
that all the nodes v0, . . . , vk�1 split, but none of the

nodes vk, . . . , vh split. In this case, node vk gets (up to)
� bubble-up operations done on it. We call node vk the
designated node of this insertion. The following prop-

erty is trivial:

Lemma 9 For any insertion where a leaf splits but the

root does not split, the number of children of the desig-

nated node increases by 1. All other nodes of the tree

either split or remain unchanged.

This proposition implies that the number of children

of a node increases as a result of an insertion if and only

if the node is the designated node of that insertion.

We now show that � = O(1) is su�cient to ensure

that every internal node vk will receive O(B) bubble-
ups during its rebuilding phase. Let `1 be the number of
children that vk has when it enters its rebuilding phase

and let `2 be the number of children vk has when it is

ready to actually split. By Lemma 9, vk must be the

designated node for exactly `2�`1 insertions during the
rebuilding phase. Thus, it receives �(`2 � `1) bubble-
up operations during rebuilding. Since `2 � `1 =
(B),
we can choose � to be a su�ciently large constant to

guarantee that vk gets B bubble-up done on it in during

its rebuilding phase.

4 Dynamic 4-sided range query data structure

Using the optimal structure for 3-sided range searching

that we just developed, we show in this section how to

augment the approach in Section 2.2.2 with the appro-

priate search structures to obtain a optimal structure

for general 4-sided range queries.

Our structure for 4-sided queries consists of a base

tree with fan-out � = logB N over the x-coordinates of
the N points. An x-range is associated with each node v
and this is subdivided by v's children v1, v2, . . . , v�. We

store all the points that are in the x-range of v in four

auxiliary data structures associated with v. As in Sec-

tion 2.2.2, two of the structures are for answering 3-sided

queries: one for answering queries with the opening to

the left and one for queries with the opening to the

right. We also store the points in a linear list sorted by

y-coordinate. For the fourth structure, we imagine link-
ing together, for each child vi, for 1 � i � �, the points
in the x-range of vi in y-order, producing a polygonal

line monotone with respect to the y-axis. We project

the segments produced in this way onto the y-axis and
store them, together with all the segments produced in

the same way for the other siblings, in the linear space

external interval tree developed in [2]. Each point in the

x-range of v is thus stored in four linear-space auxiliary

data structures, so the auxiliary structures for v occupy
O
�
weight(v)=B

�
disk blocks. Since the tree has height

O(log� n) = O
�
(logn)=log logB N

�
the whole structure

occupies a total of O
�
n(logn)= log logB N

�
disk blocks.

To answer a 4-sided query q = (a; b; c; d), we use a

procedure similar in spirit to that of Section 2.2.2. We

�rst �nd the lowest node v in the base tree for which

the x-range of v completely contains the x-interval [a; b]
of the query. Consider the case where a lies in the x-
range of vi and b lies in the x-range of vj . The query q
is naturally decomposed into three parts consisting of a

part in vi, a part in vj , and a part completely spanning

nodes vk, for i < k < j. The points contained in the

�rst two parts can be found in O(logBN+t) I/Os using
the 3-sided structures corresponding to vi and vj . To

�nd the points in the third part, we query the interval

tree associated with v with the y-value c. This gives us
the � segments in the structure containing c, and thus

the bottommost point contained in the query for each

of the nodes vi+1, vi+2, . . . , vj�1. We assume that each

segment in the interval tree for v has a link to a corre-

sponding endpoint in the linear list of the appropriate

child of v. Following these links, we can traverse the

j� i� 1 sorted lists for vi+1, vi+2, . . . , vj�1 and output

the remaining points using O(� + t) = O(logB N + t)
I/Os.

To do an update, we need to perform O(1) updates
on each of the O(log� n) = O

�
(logn)=log logB N

�
lev-

els of the tree. Each of these updates take O(logB N)

I/Os. We also need to update the base tree. If

we implement the base tree using a weight-balanced

B-tree and apply the techniques of Section 3.3, we

can show that the updates can be accomplished in

O
�
(logB N)(logn)= log logB N

�
I/Os. Additional de-

tails will appear in the full paper.

Theorem 7 A set of N = nB points can be stored

in a data structure using O
�
n(logn)= log logB N

�
disk

blocks, so that a 4-sided range query satis�ed by T =

tB points can be answered in O(logB N + t) I/Os

worst case, and such that updates can be performed in

O
�
(logB N)(logn)= log logB N

�
I/Os.

5 Conclusions

We have shown how to perform 3-sided planar (two-

dimensional) orthogonal range queries in I/O-optimal

worst-case bounds on query, update, and disk space

11

by means of an external version of the priority search

tree. Our approach can be extended to handle (gen-

eral) 4-sided range queries with optimal query and space

bounds.

In practice, the amortized data structures we develop

or a modi�cation of the static data structures that they

are based upon are likely to be most practical. It would

be interesting to compare our methods with other meth-

ods currently in use. Some initial work in that regard

is planned using the TPIE system [27].

There are several interesting range searching prob-

lems in external memory that remain open, such as

higher-dimensional range searching and non-orthogonal

queries. Some recent work has been done on I/O-

e�cient three-dimensional range searching and half-

space range searching [1, 28, 29].

References

[1] P. K. Agarwal, L. Arge, J. Erickson, P. Franciosa, and

J. Vitter. E�cient searching with linear constraints.

In Proc. ACM Symp. Principles of Database Systems,

pages 169{178, 1998.

[2] L. Arge and J. S. Vitter. Optimal dynamic interval

management in external memory. In Proc. IEEE Symp.

on Foundations of Comp. Sci., pages 560{569, 1996.

[3] R. Bayer and E. McCreight. Organization and mainte-

nance of large ordered indexes. Acta Informatica, 1:173{

189, 1972.

[4] G. Blankenagel and R. H. G�uting. XP-trees|External

priority search trees. Technical report, FernUniversit�at

Hagen, Informatik-Bericht Nr. 92, 1990.

[5] B. Chazelle. Filtering search: a new approach to query-

answering. SIAM J. Comput., 15:703{724, 1986.

[6] D. Comer. The ubiquitous B-tree. ACM Computing

Surveys, 11(2):121{137, 1979.

[7] V. Gaede and O. G�unther. Multidimensional access

methods. Computing Surveys, 30(2):170{231, 1998.

[8] R. Grossi and G. F. Italiano. E�cient cross-tree for

external memory. In J. Abello and J. S. Vitter, ed-

itors, External Memory Algorithms and Visualization.

American Mathematical Society Press, 1999.

[9] A. Guttman. R-trees: A dynamic index structure for

spatial searching. In Proc. SIGMOD Intl. Conf. on

Management of Data, pages 47{57, 1985.

[10] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadim-

itriou. On the analysis of indexing schemes. In Proc.

ACM Symp. Principles of Database Systems, pages

249{256, 1997.

[11] S. Huddleston and K. Mehlhorn. A new data structure

for representing sorted lists. Acta Informatica, 17:157{

184, 1982.

[12] C. Icking, R. Klein, and T. Ottmann. Priority search

trees in secondary memory. In Proc. Graph-Theoretic

Concepts in Computer Science, LNCS 314, pages 84{

93, 1987.

[13] P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�, and

J. S. Vitter. Indexing for data models with constraints

and classes. Journal of Computer and System Sciences,

52(3):589{612, 1996.

[14] E. Koutsoupias and D. S. Taylor. Tight bounds for 2-

dimensional indexing schemes. In Proc. ACM Symp.

Principles of Database Systems, 1998.

[15] D. Lomet and B. Salzberg. The hB-tree: A multi-

attribute indexing method with good guaranteed per-

formance. ACM Transactions on Database Systems,

15(4):625{658, 1990.

[16] E. McCreight. Priority search trees. SIAM Journal of

Computing, 14(2):257{276, 1985.

[17] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid

�le: An adaptable, symmetric multikey �le structure.

ACM Transactions on Database Systems, 9(1):257{276,

1984.

[18] J. Orenstein. Spatial query processing in an object-

oriented database system. In Proc. ACM SIGMOD

Conf. on Management of Data, pages 326{336, 1986.

[19] M. H. Overmars. The Design of Dynamic Data Struc-

tures. Springer-Verlag, LNCS 156, 1983.

[20] S. Ramaswamy and S. Subramanian. Path caching:

A technique for optimal external searching. In Proc.

ACM Symp. Principles of Database Systems, pages 25{

35, 1994.

[21] J. Robinson. The K-D-B tree: A search structure for

large multidimensional dynamic indexes. In Proc. ACM

SIGMOD Conf. on Management of Data, pages 10{18,

1984.

[22] H. Samet. Applications of Spatial Data Structures:

Computer Graphics, Image Processing, and GIS. Addi-

son Wesley, MA, 1989.

[23] H. Samet. The Design and Analyses of Spatial Data

Structures. Addison Wesley, MA, 1989.

[24] V. Samoladas and D. Miranker. A lower bound bound

theorem for indexing schemes and its application to

multidimensional range queries. In Proc. ACM Symp.

Principles of Database Systems, pages 44{51, 1998.

[25] T. Sellis, N. Roussopoulos, and C. Faloutsos. The

R+-tree: A dynamic index for multi-dimensional ob-

jects. In Proc. IEEE International Conf. on Very Large

Databases, 1987.

[26] S. Subramanian and S. Ramaswamy. The P-range tree:

A new data structure for range searching in secondary

memory. In Proc. ACM-SIAM Symp. on Discrete Al-

gorithms, pages 378{387, 1995.

[27] D. E. Vengro�. TPIE User Manual and Ref-

erence. Duke University, 1997. Available at

http://www.cs.duke.edu/TPIE/.

[28] D. E. Vengro� and J. S. Vitter. E�cient 3-d range

searching in external memory. In Proc. ACM Symp. on

Theory of Computation, pages 192{201, 1996.

[29] J. S. Vitter. External memory algorithms and data

structures. In J. Abello and J. S. Vitter, editors, Ex-

ternal Memory Algorithms and Visualization. Ameri-

can Mathematical Society Press, 1999. Available at

http://www.cs.duke.edu/~jsv/.

12

